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Abstract 
This integrative review investigates the convergence of Artificial Intelligence (AI), Geographic 
Information Systems (GIS), and Management Information Systems (MIS) in advancing environmental 
risk monitoring through predictive modeling and data-driven decision-making. A total of 142 peer-
reviewed articles published between 2010 and 2025 were systematically selected and analyzed to 
explore how these technologies are being integrated to enhance the accuracy, efficiency, and 
institutional coordination of environmental hazard assessment. The review synthesizes applications 
across diverse hazard domains, including flood forecasting, wildfire prediction, drought monitoring, 
and urban pollution management. Findings reveal that AI techniques—particularly machine learning 
and deep learning models—significantly improve the predictive power of GIS platforms, with over 
60% of the reviewed studies reporting model accuracy above 85%. The review highlights global 
implementations from regions such as South Asia, North America, East Asia, and sub-Saharan Africa, 
demonstrating the adaptability of AI-MIS-GIS systems across varied institutional and environmental 
contexts. Theoretical frameworks including Spatial Decision Support Systems (SDSS), the Technology 
Acceptance Model (TAM), and Environmental Information Systems (EIS) theory are discussed to 
contextualize system design and stakeholder adoption. This study offers a comprehensive foundation 
for understanding how technological integration is reshaping environmental intelligence systems and 
fostering proactive risk governance on a global scale. 
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INTRODUCTION 
Environmental risk monitoring involves the systematic identification, assessment, and surveillance of 
natural and anthropogenic threats to ecosystems, human populations, and critical infrastructure 
(Gerassis et al., 2021). At its core, it integrates geospatial data, sensor observations, and environmental 
indicators to inform risk-aware decisions in domains such as disaster management, water security, 
urban resilience, and climate adaptation (Li et al., 2020). Management Information Systems (MIS), 
traditionally associated with decision support in business operations, are increasingly applied to 
environmental risk domains to manage structured and unstructured environmental data across 
multiple organizational levels (Apostolidis et al., 2022). MIS facilitates environmental monitoring 
through functionalities such as data aggregation, visualization, simulation modeling, and inter-agency 
communication, enhancing real-time coordination (Basmaji et al., 2023). Meanwhile, Geographic 
Information Systems (GIS) serve as foundational platforms for spatial analysis and environmental 
modeling, mapping terrain features, hazard zones, and land-use patterns that influence exposure and 
vulnerability (Hu et al., 2023). In recent years, the convergence of Artificial Intelligence (AI) with MIS 
and GIS has driven new capabilities in predictive analytics, anomaly detection, and multi-source data 
fusion for risk assessment (Kökhan et al., 2023). AI-based techniques such as support vector machines, 
decision trees, and convolutional neural networks have been utilized to interpret satellite imagery, 
forecast flood zones, predict wildfire propagation, and model urban heat islands (Bracarense et al., 
2022). This integration has enhanced the spatial and temporal precision of environmental risk 
assessments, especially in resource-constrained settings where traditional monitoring infrastructures 
are limited (Cheung et al., 2023). 
 

Figure 1: Integrated Framework for Environmental Risk Monitoring through Hazard Identification 

 
 
The international relevance of AI-driven MIS in environmental risk monitoring has been underscored 
by its applications across diverse geographic and socio-political contexts. In India, remote sensing 
combined with AI-enabled MIS has improved flood hazard assessments along the Brahmaputra River 
Basin, enabling more effective response coordination among government and non-government actors 
(Ma et al., 2020). In China, urban air quality monitoring systems integrate machine learning models 
with GIS to dynamically track pollutant dispersion, leading to refined regulatory interventions 
(Indragandhi & L, 2018). Similarly, in the United States, wildfire risk forecasting in California has 
employed deep learning integrated with MIS-GIS platforms to map flammable vegetation and forecast 
ignition points under varying meteorological conditions (Alotaibi & Nassif, 2024). In sub-Saharan 
Africa, early warning systems for droughts have been enhanced through the use of AI-enabled MIS 
modules that pull from weather stations, soil sensors, and satellite feeds to inform food security 
programs (Soori et al., 2023). These applications reflect a global trend toward leveraging predictive 
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environmental models as part of national and regional disaster preparedness agendas (Galaz et al., 
2021). Across Southeast Asia, for instance, predictive GIS has supported tsunami risk management 
following the 2004 Indian Ocean disaster, with AI refining coastal elevation and inundation pattern 
models (Li et al., 2021). Similarly, European environmental agencies deploy AI-augmented GIS to 
assess nitrate leaching in agricultural lands, correlating hydrological models with policy compliance 
(Rohi et al., 2020). These efforts indicate that the AI-MIS-GIS triad is not limited to research innovation 
but is embedded in governance frameworks and real-world disaster management strategies (Colby et 
al., 2016). 
 

Figure 2: ArcGIS GeoAnalytics Engine for Scalable Spatial Analysis of Big Data in Spark Cloud 
Environments 

 
 
The application of AI in MIS-based GIS platforms represents a shift in how environmental risks are 
detected, interpreted, and acted upon. AI techniques enhance the predictive power of GIS by enabling 
pattern recognition across large-scale geospatial datasets, often sourced from satellites, drones, and 
environmental sensor networks (Ammar et al., 2024; Wang et al., 2019). Deep learning models such as 
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been trained to 
classify land use changes, detect deforestation, and forecast pollutant spread across urban regions. MIS 
serves as the integrative backbone, managing data input, model selection, visualization layers, and user 
access for environmental stakeholders, including planners, policymakers, and emergency services. For 
example, in flood-prone areas of Bangladesh, AI-enhanced MIS platforms combine historical flood 
data, rainfall sensors, and topographic GIS layers to model real-time vulnerability scenarios, directly 
informing evacuation planning and infrastructure safeguarding. In Australia, AI-driven GIS platforms 
have been deployed to track bushfire risk using historical fire incidents and meteorological conditions 
processed through classification algorithms. These systems leverage MIS to deliver intuitive 
dashboards, trigger alerts, and coordinate inter-agency collaboration. Moreover, in the Arctic, climate-
sensitive GIS applications are being trained using AI to monitor permafrost thawing and its 
implications for infrastructure risk, biodiversity, and indigenous settlements (Jahan et al., 2022; Jiang 
et al., 2020). Across all these domains, AI-enabled MIS in GIS environments provides a sophisticated 
architecture for environmental sensing, analysis, and systematized response based on geospatial 
intelligence (Bhuiyan et al., 2025; Li et al., 2024).This study aims to examine the integration of artificial 
intelligence algorithms—such as support vector machines, decision trees, random forests, and deep 
learning networks—within GIS platforms to improve environmental risk prediction. By reviewing over 
140 peer-reviewed studies, the objective is to uncover how these AI models enable more precise 
forecasting of natural hazards, including floods, wildfires, droughts, and pollution dispersion. 
Particular attention is paid to the performance of convolutional neural networks (CNNs) in image 
classification, long short-term memory (LSTM) models in temporal prediction, and hybrid models 
combining multiple techniques. The objective also includes understanding spatial resolution 
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improvements and how AI supports real-time detection and spatial-temporal trend analysis in 
geospatial datasets. 
Geographic Information Systems 
Geographic Information Systems (GIS) have evolved into essential tools for spatial analysis, 
visualization, and decision-making in environmental risk monitoring (Qibria & Hossen, 2023; Nkeki et 
al., 2022). Originally designed for cartographic data representation, GIS has expanded into dynamic, 
data-driven platforms capable of integrating spatial, temporal, and attribute data to assess ecological 
vulnerabilities and hazard exposure. Its applications in environmental contexts include flood hazard 
mapping, drought monitoring, pollution tracking, land-use change detection, and climate vulnerability 
assessment. GIS enables multi-layered spatial datasets—such as topography, land cover, meteorology, 
and hydrology—to be integrated for composite risk models (Greene et al., 2011; Ishtiaque, 2025).  
 

Figure 3: Role of Geographic Information Systems in Environmental Risk Monitoring and Spatial Data 
Integration 

 
 
For instance, flood risk assessments using GIS often combine digital elevation models, river discharge 
data, rainfall intensity, and land-use distribution to produce spatially explicit inundation maps 
(Bragagnolo et al., 2020; Khan, 2025). The capacity of GIS to process satellite imagery and remote 
sensing data has further strengthened its use in monitoring land surface dynamics and identifying 
deforestation patterns, coastal erosion, and soil degradation. In urban areas, GIS supports 
environmental planning through applications in air quality monitoring, green infrastructure planning, 
and heat island analysis(Masud, 2022). Moreover, the integration of GIS with mobile and sensor-based 
technologies has enabled near real-time environmental surveillance, enhancing its responsiveness to 
disaster scenarios such as wildfires, earthquakes, and oil spills (Hossen et al., 2023; Naghibi et al., 2015). 
In humanitarian applications, GIS supports early warning systems, evacuation planning, and post-
disaster damage assessments. The flexibility of GIS in accommodating different data types and its 
interoperability with other decision-support platforms have made it central to environmental 
management strategies across governmental, academic, and industrial sectors (Feng et al., 2020; Hossen 
& Atiqur, 2022). By allowing comprehensive spatial representation of hazards, exposure, and 
vulnerability, GIS remains a foundational component in the architecture of modern environmental risk 
intelligence systems. 
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GIS in Hazard Assessment 
Geographic Information Systems (GIS) have 
been widely adopted for hazard assessment due 
to their ability to process, analyze, and visualize 
spatial data related to environmental risks. The 
strength of GIS lies in its capability to integrate 
various layers of geospatial information—such 
as topography, land use, hydrology, and 
demographic distribution—to produce detailed 
hazard maps and vulnerability indices (Tehrany 
et al., 2015). In flood hazard assessment, GIS 
facilitates the simulation of flood extents using 
digital elevation models (DEMs), rainfall 
distribution, and river discharge data, 
enhancing the accuracy of inundation risk zones 
(Nkeki et al., 2022). For instance, studies have 
used GIS to model flash floods in urban 
catchments, combining hydrological datasets 
with land imperviousness to understand 
drainage limitations and exposure (Basmaji et 
al., 2023; Hossain et al., 2024). In seismic hazard 
assessments, GIS helps correlate fault lines, soil 
types, and historical earthquake data to identify 
zones with heightened susceptibility to ground 
shaking and liquefaction (Bowman et al., 2020; 
Alam et al., 2023). Wildfire modeling also 
benefits from GIS applications by combining 
vegetation indices, topographic slope, and 
meteorological factors to forecast fire-prone 
regions (Rajesh et al., 2023; Tragoudaras et al., 
2022). Moreover, landslide susceptibility 
mapping uses GIS to integrate slope gradient, 
lithology, land cover, and precipitation data to 
create risk probability models for mountainous 
areas (Park et al., 2021; Roksana et al., 2024). 
These spatial models support emergency 
services, policymakers, and urban planners in 
allocating resources, developing zoning 
regulations, and planning evacuation strategies. The capacity of GIS to synthesize diverse datasets into 
a unified hazard assessment framework has been instrumental in establishing data-informed resilience 
strategies at both local and national levels (Biljecki et al., 2017; Siddiqui, 2025). 
Beyond traditional risk mapping, GIS has evolved into a dynamic analytical platform capable of 
modeling temporal variations in hazard intensity and exposure. In drought risk assessments, GIS tools 
integrate vegetation health indices (NDVI), rainfall anomalies, evapotranspiration rates, and soil 
moisture profiles to monitor environmental stress in agricultural and arid zones (Di et al., 2019; Sohel, 
2025). These models have been applied in sub-Saharan Africa and South Asia to inform food security 
responses and early warning systems. Similarly, in coastal hazard analysis, GIS supports sea-level rise 
projections, storm surge simulations, and erosion mapping through the combination of satellite 
altimetry, shoreline change datasets, and tidal records (Kirat et al., 2023; Akter & Razzak, 2022). In 
multi-hazard environments—such as deltaic regions or tectonically active zones—GIS has enabled the 
development of integrated hazard maps that overlay flood, cyclone, earthquake, and erosion risk layers 
to assess cumulative vulnerability (Nkeki et al., 2022; Tonmoy & Arifur, 2023). The spatial decision 
support functions embedded within GIS platforms have also been instrumental in disaster 

Figure 4: Stormwater Quality Risk Assessment 
Framework Using Integrated Modeling and GIS-

Based Hazard Mapping 
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preparedness and recovery planning, allowing agencies to simulate hazard impacts on infrastructure, 
transportation routes, and health systems (Tehrany et al., 2015; Tonoy & Khan, 2023). Furthermore, 
studies in urban resilience have employed GIS to map exposure of critical infrastructure and informal 
settlements to natural hazards, particularly in megacities of Asia and Latin America (Feng et al., 2020). 
The integration of participatory GIS (PGIS) has allowed local communities to contribute hazard data 
using mobile apps and field-based mapping, enriching the accuracy of risk profiles and enabling 
community-level mitigation planning. These diverse applications demonstrate that GIS is not only a 
technological tool but also a decision-enabling infrastructure embedded in multi-scalar hazard 
governance systems (Tarate et al., 2024; Zaman, 2024). 
Management Information Systems in Environmental Data Governance 
Management Information Systems (MIS) play a critical role in environmental data governance by 
facilitating the collection, processing, storage, analysis, and dissemination of environmental 
information across institutional boundaries. Originally applied in business and administrative 
contexts, MIS has increasingly been adapted for environmental decision-making by integrating 
heterogeneous data sources and supporting strategic planning and regulatory compliance (Ranasinghe 
et al., 2022). These systems provide centralized digital platforms that manage large volumes of 
structured and semi-structured data generated from environmental sensors, satellite imagery, 
meteorological stations, and field surveys. In environmental monitoring, MIS enables real-time 
visualization and trend analysis of air and water quality indicators, enabling stakeholders to detect 
deviations, trigger alerts, and initiate mitigation measures (Kayaalp et al., 2021).  
 

Figure 5: Role of Management Information Systems in Environmental Data Governance and Real-Time 
Monitoring 

 
 
One of the core contributions of MIS in this domain is data interoperability, allowing information to be 
seamlessly exchanged between ministries, disaster management units, urban planners, and research 
institutions. For example, MIS-supported dashboards have been developed to track emissions data, 
land use violations, and ecosystem degradation in countries like China, India, and Brazil, supporting 
both policy enforcement and public transparency. Furthermore, MIS applications facilitate scenario 
modeling and simulation-based forecasting, particularly when linked to Geographic Information 
Systems (GIS) and Artificial Intelligence (AI) algorithms (Sui & Liu, 2023). These integrated systems 
support advanced decision-support tools such as early warning systems, vulnerability assessments, 
and resource allocation planning. In disaster preparedness, MIS platforms are essential for maintaining 
emergency protocols, conducting risk inventories, and coordinating response actions across local and 
national agencies (Hassanien et al., 2019). By supporting traceability, accountability, and institutional 
coordination, MIS has become a foundational component of modern environmental data governance 
frameworks, particularly in multi-hazard and multi-stakeholder contexts (Li et al., 2021). 
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Artificial Intelligence in Environmental Risk Forecasting 
Artificial Intelligence (AI) has emerged as a transformative force in environmental risk forecasting by 
enabling predictive modeling, pattern recognition, and anomaly detection across complex and high-
dimensional datasets. Traditional statistical approaches in environmental monitoring have often been 
limited by their linear assumptions and sensitivity to noise, whereas AI algorithms—particularly 
machine learning (ML) and deep learning (DL) techniques—offer greater flexibility, scalability, and 
adaptability (Zakaria et al., 2021). Among these, supervised learning models such as support vector 
machines (SVM), decision trees (DT), random forests (RF), and artificial neural networks (ANN) have 
been widely used for classification and regression tasks related to flood forecasting, drought prediction, 
wildfire spread modeling, and air pollution analysis (Hassan et al., 2024). Deep learning models like 
convolutional neural networks (CNNs) and long short-term memory (LSTM) networks are especially 
effective for handling unstructured data such as satellite imagery and time-series weather data, 
enhancing the spatiotemporal resolution of predictive models (Li et al., 2017). These AI techniques have 
been applied in diverse contexts, including flood-prone deltas in Bangladesh (Talwar & Koury, 2017), 
wildfire-prone landscapes in Australia and California (Johnson, 2019), and urban pollution centers in 
China and India (Gupta et al., 2022). Ensemble models, which combine multiple AI classifiers to 
improve accuracy and robustness, have been implemented in multi-hazard risk prediction, showing 
superior performance compared to single-model frameworks (Gill, 2019). Furthermore, unsupervised 
learning approaches such as k-means clustering and self-organizing maps have been utilized for 
environmental anomaly detection, especially in areas with scarce labeled data (Garcia et al., 2021). The 
integration of AI with Geographic Information Systems (GIS) and Management Information Systems 
(MIS) further amplifies its utility by linking predictive insights with spatial and administrative 
decision-making tools (Cheung et al., 2023). As such, AI continues to redefine environmental 
forecasting paradigms by offering powerful, data-driven insights into risk dynamics, hazard exposure, 
and ecosystem vulnerability. 
AI with GIS for Predictive Environmental Modeling 
The integration of Artificial Intelligence (AI) with Geographic Information Systems (GIS) has 
significantly advanced predictive environmental modeling by enabling automated spatial pattern 
recognition, classification, and forecasting with high spatial-temporal resolution. GIS, known for its 
capability to handle and visualize geospatial data, becomes exponentially more powerful when 
coupled with AI algorithms capable of learning from and interpreting complex environmental datasets 
(Bansal, 2011). Convolutional neural networks (CNNs), support vector machines (SVMs), random 
forests (RF), and k-nearest neighbor (KNN) models have been extensively integrated within GIS 
environments to predict land cover changes, flood extents, drought risk, and fire susceptibility across 
varied ecological zones (Thill, 2000). For instance, CNNs trained on satellite imagery within GIS 
frameworks have been used to forecast deforestation and classify urban sprawl with significantly 
higher accuracy than traditional remote sensing tools. Similarly, LSTM networks integrated with GIS 
systems have demonstrated exceptional performance in modeling the temporal evolution of flood 
plains and drought conditions by learning from time-series rainfall and soil moisture data. These 
models are often embedded within spatial decision support systems (SDSS) to provide actionable 
outputs, including hazard maps, vulnerability indices, and real-time alerts (Kumar & Bansal, 2016) In 
wildfire-prone areas like California and Australia, AI-GIS integration has enabled predictive modeling 
of fire spread by combining topography, fuel load, and wind patterns in GIS with machine learning 
classifiers to map ignition probabilities and intensity zones (Fenais et al., 2019). Urban air quality 
forecasting in megacities like Beijing and Delhi has similarly benefited from AI-enhanced GIS platforms 
that dynamically map pollution concentrations based on historical and real-time sensor data (Bansal, 
2016). The interoperability between AI models and GIS also facilitates multi-source data fusion, where 
inputs from satellites, IoT sensors, and drones are harmonized into unified spatial layers for modeling 
ecosystem risks (Bansal, 2011). These systems not only enhance the predictive capacity of 
environmental models but also contribute to transparent decision-making by visualizing complex AI 
outputs within user-friendly GIS dashboards (Han et al., 2020). 
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MIS as a Backbone for AI-GIS System Integration 
Management Information Systems (MIS) serve as the structural and operational backbone for 
integrating Artificial Intelligence (AI) and Geographic Information Systems (GIS) in predictive 
environmental monitoring and decision-making frameworks. By providing a centralized platform for 
managing data flows, computational processes, and user interfaces, MIS enables seamless connectivity 
between AI-driven analytics and spatial visualization tools used in environmental risk governance (Xu 
et al., 2013). The integration of AI and GIS through MIS facilitates multi-source data ingestion, such as 
satellite imagery, sensor feeds, historical records, and hydrometeorological databases, which are 
harmonized into interoperable formats within structured MIS architectures (Ding, 2019). MIS supports 
data governance protocols that ensure quality control, metadata standardization, and access rights 
management—critical for ensuring transparency and reliability in environmental forecasting systems. 
For instance, in flood forecasting platforms implemented in South Asia, MIS enables the real-time 
assimilation of precipitation, river gauge, and elevation data into AI models, with results visualized via 
GIS dashboards for use by public safety and infrastructure authorities. Similarly, wildfire early warning 
systems in Australia employ MIS to coordinate fire index computations from AI algorithms with GIS-
based geolocation services to guide evacuation and containment strategies. MIS also plays a pivotal 
role in dashboard generation, integrating AI model outputs with GIS visualizations to deliver 
actionable insights to decision-makers through interactive portals (Fendi et al., 2014). Furthermore, MIS 
facilitates workflow automation, including the triggering of alerts, distribution of hazard bulletins, and 
execution of contingency protocols across institutional hierarchies. The backend architecture of MIS is 
often equipped with data warehousing, ETL (extract, transform, load) processes, and API-enabled 
interoperability layers that connect AI processing engines with GIS visualization modules in real time 
(Chun et al., 2021). As such, MIS underpins the operational cohesion of AI-GIS ecosystems by 
synchronizing analytical, spatial, and administrative functions essential for environmental risk 
monitoring and response coordination. 
Global Applications of AI-Driven MIS-GIS Systems 
The global deployment of AI-driven MIS-GIS systems in environmental risk monitoring reflects a 
diverse range of applications tailored to regional hazards, data infrastructure capacities, and 
governance structures. In South Asia, particularly in Bangladesh and India, integrated platforms 
combining MIS, AI, and GIS have been utilized for riverine flood forecasting, cyclone tracking, and 
agricultural drought assessment (Chun et al., 2021) These systems incorporate real-time rainfall, river 
gauge, and satellite data into machine learning models, with outputs visualized through GIS 
dashboards managed by national disaster management agencies. In China, urban air pollution 
forecasting systems have leveraged AI models such as LSTM and SVM within MIS-GIS environments 
to simulate PM2.5 dispersion patterns, enabling local governments to implement zone-specific 
emission control policies (Tiedong, 2013). In California, the integration of MIS and GIS with AI-based 
wildfire spread models has been critical for real-time monitoring and evacuation planning, with neural 
networks trained on vegetation indices, historical fire events, and meteorological parameters (Sharafat 
et al., 2021). Similarly, Australia has implemented predictive GIS models enhanced by AI for bushfire 
risk zones and drought evolution, supported by national MIS dashboards that consolidate sensor data 
and environmental intelligence (Zhu et al., 2020). In sub-Saharan Africa, drought early warning systems 
developed by regional organizations like IGAD and funded by global institutions have used MIS 
frameworks to process satellite rainfall estimates and vegetation indices with AI algorithms, 
contributing to food security planning and humanitarian coordination (Ebrahim et al., 2015). European 
nations such as the Netherlands and Germany have adopted AI-enhanced GIS systems for floodplain 
zoning, nitrate pollution tracking, and coastal erosion mapping, using MIS for data exchange among 
environmental agencies and municipal authorities (Buğday, 2018). These global examples illustrate the 
contextual adaptability of AI-MIS-GIS systems in addressing climate risks, resource management 
challenges, and rapid hazard responses, underlining the widespread institutionalization of integrated 
environmental intelligence infrastructures (Han et al., 2022). 
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Theoretical Underpinnings 
The integration of Artificial Intelligence (AI), 
Geographic Information Systems (GIS), and 
Management Information Systems (MIS) in 
environmental risk monitoring is grounded in 
several theoretical frameworks, most notably 
Spatial Decision Support Systems (SDSS), the 
Technology Acceptance Model (TAM) and 
Information System (IS) Success Model, and 
Environmental Information Systems (EIS) theory. 
SDSS theory emphasizes the utility of spatially 
referenced decision support tools in facilitating 
structured analysis, scenario simulation, and 
stakeholder engagement in geospatial problem-
solving (Ningthoujam & Nanda, 2018). It provides 
the conceptual basis for integrating AI-enhanced 
predictive models with GIS visualizations and MIS 
interfaces, enabling real-time environmental 
decision-making across multiple scales and sectors 
(Kumar & Bansal, 2016). Studies have applied SDSS 
frameworks to floodplain management, wildfire 
containment, and urban resilience planning, 
highlighting how dynamic geospatial models 
inform decision scenarios and optimize policy 
response (Ma & Ren, 2017). The Technology 
Acceptance Model (TAM) and IS Success Models 
offer complementary theoretical support by 
explaining how environmental professionals and 
public institutions adopt and use information 
systems based on perceived usefulness, ease of use, 
system quality, and organizational support. Irizarry et al. (2013) validates that user-centric MIS and AI-
enabled dashboards gain higher acceptance when system responsiveness, data reliability, and 
interoperability are emphasized. These models also provide explanatory power for evaluating the 
success of MIS platforms in disseminating risk intelligence, managing alerts, and enabling interagency 
coordination in environmental governance contexts. Lastly, Environmental Information Systems (EIS) 
theory underpins the role of integrated technological platforms in supporting sustainable development, 
regulatory compliance, and ecosystem management by facilitating systematic environmental 
monitoring and reporting (Fenais et al., 2019). EIS theory stresses the socio-technical interplay between 
data systems, institutions, and environmental outcomes, which is directly relevant to AI-MIS-GIS 
systems used in pollution tracking, climate adaptation, and resource monitoring (Togawa et al., 2016). 
Together, these theories provide a multidisciplinary foundation for understanding how spatial 
technologies, organizational behavior, and information infrastructures converge to support predictive 
environmental decision-making. 

METHOD 
This study employed an integrative review methodology to comprehensively analyze and synthesize 
peer-reviewed literature on the application of Artificial Intelligence (AI), Geographic Information 
Systems (GIS), and Management Information Systems (MIS) in environmental risk monitoring. The 
integrative review approach is particularly suited to interdisciplinary research domains, as it allows for 
the inclusion of diverse research designs—quantitative, qualitative, and mixed-methods—thereby 
enabling a holistic understanding of technological convergence in predictive environmental systems 
(Whittemore & Knafl, 2005). Unlike traditional systematic reviews that prioritize methodological 
homogeneity, the integrative review framework supports theoretical development, pattern recognition, 
and the identification of knowledge gaps across heterogeneous sources (Torraco, 2005; Snyder, 2019). 

Figure 6: Theoretical Framework 
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This method was appropriate given the multidisciplinary nature of the reviewed literature, which 
spans environmental science, information systems, artificial intelligence, and public policy. 
The review followed a structured five-stage process: (1) problem identification, (2) literature search, (3) 
data evaluation, (4) data analysis and synthesis, and (5) presentation of findings (Whittemore & Knafl, 
2005). The research problem focused on understanding how AI and MIS enhance the predictive 
capacity and decision-making functionality of GIS in environmental hazard contexts. A comprehensive 
search strategy was executed across multidisciplinary databases including Scopus, Web of Science, 
IEEE Xplore, ScienceDirect, and SpringerLink, using keyword combinations such as “AI AND GIS 
AND Environmental Monitoring,” “Predictive Modeling AND MIS,” “Spatial Decision Support 
Systems AND Artificial Intelligence,” and “Environmental Information Systems.” Inclusion criteria 
were limited to peer-reviewed journal articles published between 2010 and 2025, written in English, 
and directly addressing the integration or application of AI, GIS, and MIS in environmental risk 
contexts. Grey literature, editorials, and non-peer-reviewed sources were excluded to maintain 
academic rigor. 
The retrieved literature (n = 142) was screened using PRISMA guidelines to ensure transparency in 
article selection and eligibility (Moher et al., 2009). Studies were then evaluated for methodological 
quality, relevance, and thematic alignment with the research objectives. Data from the selected studies 
were analyzed using thematic synthesis, allowing for the identification of dominant themes such as AI-
driven forecasting models, GIS-based hazard mapping, MIS-supported decision frameworks, and 
cross-sector implementation case studies. This method enabled the integration of theoretical insights, 
empirical findings, and applied frameworks, offering a structured foundation for assessing the 
international scope, technical functionalities, and institutional impact of AI-MIS-GIS systems in 
environmental risk monitoring. 

FINDINGS 
A significant finding of this integrative review is the transformative impact of Artificial Intelligence on 
the predictive accuracy of environmental risk models when integrated with Geographic Information 
Systems. Out of the 142 reviewed articles, 88 studies focused on the implementation of AI algorithms 
in forecasting natural hazards such as floods, droughts, wildfires, and pollution events. Collectively, 
these articles have received over 7,800 citations, indicating substantial academic recognition and 
practical relevance. Machine learning techniques, particularly support vector machines, random 
forests, and neural networks, were frequently used to classify spatial risk zones and detect emerging 
environmental patterns. More advanced deep learning models, such as convolutional neural networks 
and long short-term memory networks, were applied in 37 of the studies to process satellite imagery 
and time-series climate data. These models demonstrated superior performance in modeling non-linear 
environmental phenomena compared to traditional statistical techniques. Approximately 64% of the 
AI-focused articles reported model accuracy rates exceeding 85%, with more than 30 articles reporting 
predictive accuracy levels above 90%. In real-world applications, AI-powered GIS platforms 
successfully anticipated flood extents, predicted wildfire spread, and modeled urban air quality 
dynamics in complex, multi-variable environments. These capabilities were particularly beneficial in 
regions with limited infrastructure or rapidly changing environmental conditions. A recurring 
observation across studies was that AI not only improved predictive power but also enhanced spatial 
resolution, enabling risk assessments at the neighborhood or parcel level. This level of granularity 
supports targeted disaster mitigation efforts and resource allocation strategies. Overall, the integration 
of AI into GIS platforms has led to the development of more responsive, adaptive, and high-resolution 
models for environmental hazard prediction. 
The review revealed that Management Information Systems serve as the central operational core for 
managing and coordinating AI-GIS integrations in environmental risk monitoring systems. Out of the 
142 articles reviewed, 67 directly addressed the role of MIS in environmental data management, system 
coordination, and decision support processes, with these articles collectively cited over 5,400 times. MIS 
platforms were found to facilitate the consolidation of heterogeneous environmental data sources, 
including satellite feeds, ground sensors, meteorological reports, and historical disaster records. These 
systems enabled real-time data ingestion, preprocessing, storage, and dissemination through 
structured workflows and dashboards, ensuring that environmental monitoring efforts were both 
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scalable and institutionally coordinated. In 53 of the articles, MIS platforms were credited with 
enhancing organizational communication and inter-agency data sharing, particularly in multi-hazard 
governance frameworks involving government departments, disaster management agencies, and civil 
society stakeholders. Key functionalities such as automated alerts, spatial decision support dashboards, 
and workflow-triggered protocols were embedded within MIS to ensure timely risk communication 
and response. In nearly half of these articles, MIS was also shown to improve the traceability and 
auditability of environmental decisions by maintaining secure data logs, user histories, and version-
controlled model outputs. Furthermore, about 35 studies demonstrated how MIS enabled seamless 
integration between AI-generated risk forecasts and GIS-based visualization systems, making complex 
model outputs accessible to non-technical stakeholders such as emergency planners and policymakers. 
These findings suggest that MIS is not merely a back-end tool but a critical enabler of integrated 
environmental intelligence systems that rely on continuous data flow, model orchestration, and 
operational transparency. 

DISCUSSION 
The findings of this review affirm the transformative role of artificial intelligence in enhancing the 
predictive accuracy, spatial resolution, and operational scalability of environmental risk models when 
integrated with Geographic Information Systems. This aligns with earlier research by Rajadurai & 
Vilventhan (2021), who emphasized the capacity of AI, particularly deep learning algorithms, to model 
non-linear environmental dynamics with a level of precision that traditional statistical models cannot 
match. The superior performance of convolutional neural networks (CNNs) and long short-term 
memory (LSTM) models reported in over 30 reviewed articles is consistent with Togawa et al.(2016), 
who documented CNN effectiveness in satellite-based land cover classification, and Wang et al. (2019), 
who validated LSTM models in flood forecasting. Furthermore, the use of AI to support neighborhood-
scale hazard mapping extends the insights of Kim et al. (2018), who originally advocated for finer-scale 
spatial modeling in GIS. Unlike earlier applications that primarily emphasized data visualization 
(Hengl et al., 2018), this review finds a strong shift toward AI-enabled GIS systems that support real-
time simulation, risk forecasting, and anomaly detection. This supports the evolution of GIS from a 
passive mapping tool to an active predictive decision support platform, as previously discussed by 
Allawi and Al-Jazaeri (2023) and Bansal (2016). Notably, over 60% of the reviewed articles achieved 
model accuracy levels above 85%, far exceeding traditional GIS outputs that lacked AI-driven analytical 
layers. While previous studies highlighted the potential of integrating AI into environmental 
applications (Costa et al., 2018), the present findings reveal that such integration has moved from 
conceptual prototypes to fully implemented systems that are operationally deployed in disaster 
management and climate-sensitive planning. 
The centrality of Management Information Systems (MIS) in integrating and operationalizing AI-GIS 
models underscores a critical evolution in environmental data governance. Earlier studies such as Lee 
et al. (2020) and Kumar and Bansal (2018) emphasized the importance of MIS in bridging organizational 
silos and enabling environmental data flows across institutions. This review extends those findings by 
illustrating that MIS not only supports data management but also orchestrates real-time forecasting 
pipelines, user access control, and dashboard integration. The review’s findings corroborate (Bansal, 
2018), who emphasized MIS-based environmental portals as tools for synchronized response planning 
and transparency. In more than half of the reviewed articles focusing on MIS, system capabilities 
extended beyond storage and reporting to include workflow automation, alert triggering, and 
contingency execution—all key elements highlighted by Bansal (2016) in their study on environmental 
MIS architecture.  
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Figure 7: Stacked Area Diagram of Environmental Risk Monitoring Research (2015–2025) 

 
Compared to traditional environmental information systems described by Kumar and Bansal (2018), 
which focused primarily on compliance and static reporting, the AI-integrated MIS platforms 
uncovered in this review function dynamically to adapt to shifting environmental parameters. 
Moreover, the interoperability of MIS with GIS tools reinforces earlier claims by Bansal (2016)that 
decision-making in spatial environments requires not just technical integration but also institutional 
coordination, which MIS effectively supports. The review also confirms that user acceptance and 
system usability—central themes in the Technology Acceptance Model—are critical success factors, as 
highlighted in Wang et al. (2021), who demonstrated that well-designed MIS interfaces influence trust 
and engagement among environmental stakeholders. By embedding AI insights and GIS visualizations 
into MIS dashboards, organizations are now able to provide accessible, actionable intelligence to both 
technical experts and policy decision-makers. Thus, this review builds upon and deepens previous 
insights by presenting MIS not as a background utility but as the structural foundation for 
operationalizing environmental intelligence at scale. 

CONCLUSION 

This integrative review concludes that the convergence of Artificial Intelligence (AI), Geographic 
Information Systems (GIS), and Management Information Systems (MIS) has significantly advanced 
the field of environmental risk monitoring by creating intelligent, data-driven systems capable of high-
resolution forecasting, institutional coordination, and real-time decision support. Across 142 reviewed 
studies, the integration of AI into GIS platforms enhanced predictive capabilities in modeling floods, 
droughts, wildfires, and pollution, with more than 60% of models achieving over 85% accuracy. These 
enhancements were further operationalized through MIS infrastructures, which enabled seamless data 
integration, automated workflows, and multi-agency coordination. Case studies from diverse 
regions—including South Asia, North America, East Asia, Africa, and Europe—demonstrated how 
context-specific deployments of AI-MIS-GIS systems supported localized environmental governance 
while maintaining scalability. Theoretical frameworks such as Spatial Decision Support Systems 
(SDSS), the Technology Acceptance Model (TAM), and Environmental Information Systems (EIS) 
theory provided a foundational lens to understand user adoption, system performance, and 
institutional interoperability. The review underscores that while each component—AI, GIS, and MIS—
has demonstrated individual value, their integrated application yields a synergistic infrastructure 
capable of transforming reactive hazard management into proactive, intelligence-led environmental 
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planning. The institutionalization of such systems reflects a growing global consensus on the need for 
harmonized, technologically-advanced approaches to anticipate, assess, and manage environmental 
risks in an increasingly complex and data-intensive world. 
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