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Abstract 
Smart governance represents a transformational shift in public administration, characterized by the integration 
of artificial intelligence (AI) and big data analytics (BDA) to optimize decision-making, improve operational 
efficiency, and enhance transparency. However, existing research has not sufficiently established whether these 
technologies directly translate into measurable public value outcomes, nor how data governance influences this 
translation. This study empirically examines the extent to which AI adoption and big data analytics capability 
(BDAC) contribute to administrative efficiency and organizational transparency across public-sector agencies, 
and whether data governance acts as a moderating mechanism that conditions these effects. A quantitative, cross-
sectional, multi-case research design was implemented across five public agencies utilizing cloud-enabled 
infrastructures and analytics-driven decision environments. Using purposive sampling, 268 respondents who 
were actively engaged in data, IT, or management functions completed a validated Likert-scale survey measuring 
AI adoption, BDAC, data governance strength, administrative efficiency, and transparency. Hierarchical 
ordinary least squares (OLS) regression with agency-clustered robust standard errors was employed to estimate 
main effects, while moderation analysis tested data governance as a structural amplifier. Control variables 
included agency size, budget band, IT maturity, service domain, and fixed effects to isolate contextual variation. 
The results demonstrate that BDAC is the strongest predictor of both administrative efficiency and transparency, 
indicating that analytic capability—not mere technology deployment—is the key determinant of performance 
outcomes in the public sector. AI adoption is positively associated with both outcomes, though to a lesser extent. 
Crucially, data governance significantly moderates the impact of both AI adoption and BDAC on transparency, 
suggesting that governance structures such as auditability, stewardship, documentation standards, and data 
lineage are essential for converting internal analytics into externally verifiable public value. The moderating effect 
on efficiency is present but less pronounced. This study advances smart governance theory by validating a 
capability-dominant model and positioning data governance as the enabling mechanism that transforms technical 
assets into accountable governance outcomes. Practically, it provides a strategic implementation roadmap 
emphasizing capability maturation, governance integration, and the intentional design of transparency as a 
measurable performance output.  
 
Keywords 
Smart Governance, Artificial Intelligence, Big Data Analytics Capability, Data Governance, Transparency, 
Administrative Efficiency 

[1]. Master in Management Information System, International American University, Los Angeles, USA; 
Email: anisurrahman.du.bd@gmail.com   

[2].   
 
 

Volume: 1; Issue: 1 
Pages: 1128– 1159 

Published: 29 April 2025 

1St GRI Conference 2025 

https://doi.org/10.63125/3fpsxw33
mailto:anisurrahman.du.bd@gmail.com
https://global.asrcconference.com/index.php/asrc


ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 1128– 1159 
 

1129 
 

INTRODUCTION 
Smart governance is commonly defined as the strategic use of digital technologies, data, and analytical 
methods to enhance the effectiveness, transparency, and accountability of public decision-making 
across sectors and levels of government (Bannister & Connolly, 2014). Within this paradigm, artificial 
intelligence (AI) and big data analytics (BDA) are not mere tools but socio-technical capabilities that 
shape how public organizations sense environments, analyze needs, and act on evidence (Wirtz et al., 
2019). AI, in particular, comprises computer systems that demonstrate human-like competencies 
perception, understanding, action, and learning applied to administrative burdens, case management, 
and policy analysis (Mikhaylov et al., 2018). Big data describes data characterized by high volume, 
velocity, and variety (and often veracity), collected from administrative databases, sensors, and digital 
services, and analyzed to generate timely insights (Chen et al., 2012). When embedded in public value 
frameworks, these capabilities can strengthen core values such as efficiency, equity, and openness by 
enabling faster workflows, performance feedback loops, and public information disclosure (Bannister 
& Connolly, 2014). Conceptually, these developments connect with information-systems research that 
ties analytics capabilities to decision quality and organizational performance, suggesting that public 
organizations can realize similar benefits when governance, data quality, and analytical processes are 
well designed (Gupta & George, 2016). 
 

Figure 1: AI and Big Data–Enabled Smart Governance Framework 
 

 
 
Internationally, governments have invested in open government, digital platforms, and data 
infrastructures to reduce costs, improve service delivery, and expand transparency (Meijer et al., 2012; 
Mergel et al., 2016). The public value of e-government has been documented as multi-dimensional 
ranging from efficiency and effectiveness to trust and participation when information technologies are 
aligned with administrative goals (Twizeyimana & Andersson, 2019). Open data policies and portals 
have likewise been deployed to publish machine-readable datasets, stimulate civic innovation, and 
enable evidence-based oversight (Janssen et al., 2012). At the same time, the big-data turn in public 
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affairs emphasizes that integrated administrative and sensor data can support monitoring, early 
warning, and resource targeting across domains such as health, safety, and urban services (Abdul, 2021; 
Mikalef et al., 2020). In this global context, “smart governance” becomes a governance model in which 
AI and BDA provide descriptive, diagnostic, and predictive knowledge at scale supporting 
standardized reporting, risk analysis, and workload prioritization while making the informational 
basis of decisions more visible to external stakeholders (Bertot et al., 2010; Rezaul, 2021). This framing 
motivates a quantitative assessment of whether AI- and BDA-enabled practices are associated with 
measurable gains in efficiency and transparency across public organizations and cases. Public 
transparency occupies a central place in smart governance because it articulates how information 
disclosure, clarity, and accessibility influence citizen perceptions and institutional trust (Brynjolfsson 
et al., 2011; Mubashir, 2021). Systematic reviews of transparency research show that disclosure relates 
to multiple governance and citizen outcomes, including accountability, participation, and performance 
understanding (Cucciniello et al., 2017; Rony, 2021). Experimental and cross-national studies indicate 
that transparency can shape trust when information is understandable and relevant to citizen concerns, 
though effects depend on context and prior beliefs (Chen et al., 2014; Danish & Zafor, 2022). In data-
rich administrations, transparency also concerns algorithmic processes and the auditability of analytics 
pipelines how data are collected, cleaned, modeled, and interpreted for decisions (Wirtz et al., 2019). 
These literatures converge on a definition of transparency that goes beyond static disclosure: it 
emphasizes the communicative and procedural qualities of information that enable scrutiny and 
informed engagement (Khatri & Brown, 2010; Meijer et al., 2012). Accordingly, this research examines 
transparency as an organizational outcome tied to data governance, reporting practices, and analytics 
use domains in which AI and BDA may expand both the volume and interpretability of public 
information. 
The objective of this study is to produce a rigorous, quantitative account of how intelligent decision 
support operationalized through artificial intelligence adoption and big data analytics capability relates 
to two core outcomes of smart governance: administrative efficiency and organizational transparency. 
Concretely, the study aims, first, to estimate the magnitude and direction of association between AI 
adoption and efficiency at the unit level across multiple public agencies, and, second, to estimate the 
association between big data analytics capability and efficiency using comparable measurement and 
modeling strategies. Third, the study seeks to quantify how AI adoption and big data analytics 
capability relate to transparency as manifested in documentation, auditability, reporting regularity, 
and openness of decision criteria. Fourth, the study is designed to test whether the strength of these 
relationships depends on the quality of data governance within agencies, by examining interaction 
effects between the predictors and data governance on both efficiency and transparency. To meet these 
objectives, the research will deploy a cross-sectional, multi–case survey with a five-point Likert scale to 
capture latent constructs, compute reliability for all multi-item measures, and summarize the 
population with descriptive statistics that characterize respondents, cases, and construct distributions. 
The analytical objectives include generating a correlation matrix to reveal zero-order relationships 
among all focal and control variables and estimating hierarchical regression models that introduce 
controls for organizational size, budget band, IT maturity, service domain, and case effects prior to 
testing focal predictors and moderation terms. The study further aims to assess the robustness of all 
estimates with specification checks, heteroskedasticity-consistent or cluster-robust standard errors, and 
influence diagnostics, and to report confidence intervals alongside point estimates for interpretability. 
To ensure interpretive clarity and comparability across models, the objectives include standardizing 
scales as needed, verifying assumptions, and presenting coefficient plots and interaction probes that 
directly visualize the tested relationships. Overall, the study’s objective is not merely to document 
usage of AI and analytics in government settings but to deliver precise, statistically grounded estimates 
of their associations with efficiency and transparency, conditional on governance quality and 
organizational context, thereby furnishing a clear empirical baseline for subsequent case comparisons 
within the broader smart governance research program. 
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LITERATURE REVIEW 
The literature on smart governance converges on the view that digitally enabled decision support 
particularly through artificial intelligence and big data analytics reconfigures how public organizations 
generate, interpret, and act upon evidence, with ramifications for efficiency and transparency. 
Foundational work defines smart governance as the purposeful integration of information 
infrastructures, analytical capabilities, and data stewardship into public-sector processes, and 
subsequent studies map this terrain across three intertwined streams: (a) technology and capability, 
focusing on AI adoption, data integration, algorithmic techniques, and analytic routines; (b) 
organizational and institutional conditions, emphasizing leadership, skills, data governance, 
interoperability, and regulatory alignment; and (c) public value outcomes, where efficiency is 
operationalized through timeliness, cost containment, and throughput, and transparency through 
disclosure quality, auditability, and openness of decision criteria. Within these streams, theory has 
advanced from adoption-centric models to capability-based perspectives that treat data, talent, and 
routines as bundles yielding decision quality and performance, while institutional arguments explain 
how norms and oversight shape disclosure and legitimacy. Empirical studies span case analyses of 
service improvements, survey-based assessments of analytics capability, and evaluations of open-data 
and reporting practices; however, measurement is heterogeneous, with varied scales for AI use, 
analytics maturity, and governance strength, and outcomes often inferred rather than directly 
operationalized (Danish & Kamrul, 2022; Jahid, 2022; Ismail, 2022). Evidence suggests positive 
associations between analytics-oriented capabilities and administrative performance, but the 
magnitude and boundary conditions particularly the role of data governance as a moderator remain 
under-specified across agencies and contexts. Methodologically, prior research frequently relies on 
single-case designs or descriptive accounts, limiting generalizability and comparability; fewer studies 
link AI adoption and big-data capability to both efficiency and transparency within a unified 
quantitative framework. This review therefore synthesizes constructs and instruments suitable for a 
multi–case, cross-sectional design using Likert-type measures, clarifies the analytical pathways 
connecting AI and analytics to outcomes, and identifies the organizational covariates that must be 
controlled to isolate focal relationships. It culminates in a conceptual model that positions AI adoption 
and big-data analytics capability as predictors of efficiency and transparency, conditioned by data 
governance quality, and motivates the study’s descriptive, correlational, and regression-based tests 
across diverse public-sector cases. 
Smart Governance & Intelligent Decision Support 
Smart governance is commonly framed as a shift from technology-as-infrastructure to technology-as-
governance, where information systems, analytics, and institutional routines cohere to support 
evidence-based administrative action. Early digital-government scholarship emphasized the need for 
a holistic research and action framework to guide this shift, highlighting how public goals, 
organizational arrangements, and information infrastructures must be aligned to realize decision 
quality and accountability (Dawes, 2009; Hossen & Atiqur, 2022). Building on this foundation, the idea 
of “intelligent decision support” captures not just the presence of tools but the embedding of 
algorithmic reasoning and data pipelines into day-to-day public management. In practice, intelligent 
support encompasses data acquisition, integration, analysis, and presentation layers that translate 
large, heterogeneous inputs into actionable knowledge for public managers and external stakeholders 
(Guenduez et al., 2020; Kamrul & Omar, 2022). It also encompasses the social architectures of 
governance roles, standards, stewardship, and oversight that render data and models explainable and 
auditable. Within this perspective, the success of smart governance cannot be understood solely 
through adoption counts or platform lists; it turns on whether agencies can reliably produce timely, 
comprehensible insights that withstand scrutiny and guide resource allocation, case handling, and 
public reporting. Accordingly, this subsection treats intelligent decision support as an institutional 
capability that draws on analytics and AI, is operationalized through structured routines, and is 
evaluated by its contribution to administrative efficiency and transparency in ways that are 
measurable, comparable across cases, and suitable for quantitative analysis using organizational 
survey data (Dawes, 2009; Razia, 2022). 
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Figure 2: Conceptual Framework of Smart Governance and Intelligent Decision Support 

 
Subsequent conceptual advances map smart governance as a socio-technical configuration that 
interlocks technology, people, and institutions, positioning intelligent decision support at the nexus of 
these dimensions. The smart-city literature, for example, proposes that “smartness” emerges when 
infrastructures are integrated, human capabilities are cultivated, and institutional arrangements 
promote collaboration and accountability; that synthesis places decision support squarely within a triad 
of technology, people, and institutions (Nam & Pardo, 2011; Sadia, 2022). Parallel work in electronic 
government charts a research and practice roadmap for “smart governance,” emphasizing how open 
data, big data, and advanced analytics reshape participation, transparency, and internal administrative 
processes; intelligent decision support is cast here as the operational machinery that translates data into 
decisions and disclosures (Danish, 2023; Scholl & Scholl, 2014). Together, these strands suggest that 
measuring smart governance requires attention to capability bundles: not just whether AI or 
dashboards exist, but whether organizations sustain the human skills, interdepartmental workflows, 
and data-governance routines that make outputs trustworthy and usable. This framing also 
underscores the need for instrumentation that can capture variation in capability strength and 
governance quality across public agencies. Constructs such as analytics capability, data stewardship, 
and disclosure quality become central to assessing how far “smart governance” has progressed in 
practice, and they motivate cross-sectional, case-comparative designs that relate these constructs to 
efficiency and transparency outcomes. In this study’s context, intelligent decision support is therefore 
specified as a latent organizational capability observable via standardized survey items that mediates 
between digital infrastructures and public value outcomes (Nam & Pardo, 2011; Scholl & Scholl, 2014). 
A growing empirical stream illustrates how specific decision-support artifacts and managerial frames 
condition the realization of smart-governance goals. Research on data-driven dashboards, for instance, 
demonstrates how curated indicators can enhance visibility into urban operations and enable 
accountability by consolidating multi-source data into interpretable views for managers and the public; 
at the same time, design choices and institutional arrangements determine whether dashboards 
genuinely support transparency rather than merely display information (Matheus et al., 2020; Arif Uz 
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& Elmoon, 2023). Complementing artifact-focused studies, work on technological frames among public 
managers reveals patterned assumptions about big data ranging from enthusiasm to skepticism that 
shape how analytics are interpreted and operationalized inside agencies, with implications for 
adoption, resourcing, and oversight (Guenduez et al., 2020; Hossain et al., 2023; Rasel, 2023). Evidence 
from AI deployments in healthcare further shows that sector-specific challenges data quality, workflow 
integration, and multi-actor coordination affect how intelligent systems are embedded into routine 
decision processes and how their outputs are rendered explainable to stakeholders (Grimmelikhuijsen 
et al., 2013; Scholl & Scholl, 2014). As a set, these studies reinforce a conceptualization of intelligent 
decision support that is both technical and organizational: data pipelines and algorithms must be 
matched by governance routines, design principles, and managerial sense-making to affect efficiency 
and transparency at scale (Hasan, 2023). For quantitative assessment, this implies measuring not only 
use and capability but also the conditions governance quality, role clarity, and interpretability practices 
under which decision-support artifacts operate. The present study leverages these insights by treating 
dashboards/AI use, analytics capability, and data governance as distinct yet connected constructs that 
can be related to efficiency and transparency through descriptive statistics, correlations, and regression 
models (Matheus et al., 2020). 
AI & Big Data Analytics in the Public Sector 
Public-sector interest in artificial intelligence (AI) and big data analytics (BDA) reflects a shift from ad 
hoc digitization to systematic, intelligence-centric decision support that can scale across administrative 
domains (Razia, 2023; Reduanul, 2023). Adoption is rarely a purely technical choice; it arises from 
interacting technological, organizational, and environmental drivers such as data availability, analytic 
skills, managerial support, and policy mandates. Comparative syntheses underscore that governments 
typically mobilize AI to extend analytical reach (e.g., predictive risk scoring, classification), standardize 
routine judgments, and accelerate case handling where demand is high, budgets are constrained, and 
timeliness matters (Ahn & Chen, 2021; Sadia, 2023; Zayadul, 2023). Yet the same reviews show that 
diffusion pathways are uneven across agencies, with absorptive capacity, interdepartmental 
coordination, and accountability requirements shaping what gets piloted and what becomes 
routinized. Empirical accounts of employee attitudes indicate that frontline perceptions about AI’s 
usefulness, fairness, and compatibility with public values condition willingness to implement tools, 
which in turn affects internal advocacy, training uptake, and process redesign. Where public managers 
perceive AI as ethically governable and practically helpful, they are more likely to support deployment 
and invest in skills that convert data stores into operational intelligence (Ahmed et al., 2024). 
Conversely, concerns about job redesign, opaque models, and auditability may stall or redirect 
initiatives toward lower-stakes functions. Across contexts, the through-line is clear: adoption is more 
successful when technical capability is embedded in governance routines (stewardship, 
documentation, oversight) that make outputs explainable and decisions auditable, aligning analytics 
with statutory obligations and public value goals (Madan & Ashok, 2022). 
Use cases that anchor AI/BDA in recurring administrative tasks illustrate both promise and design 
contingencies (Mesbaul, 2024; Omar, 2024). Machine-learning classifiers can triage benefit applications, 
flag anomalies in procurement, or prioritize inspections in health and safety; natural-language systems 
can route citizen requests, summarize case notes, and extract structured entities from unstructured 
records; forecasting models can support demand planning in transport and emergency services. 
Realizing these functions at scale, however, requires an institutional architecture that fuses technical 
and managerial work: data pipelines with lineage controls, model management with versioning and 
drift monitoring, and decision protocols that specify how algorithmic outputs enter human workflows 
(Ahn & Chen, 2021; Löfgren & Webster, 2020). Scholarship on “administration by algorithm” highlights 
that public organizations operate at macro (policy), meso (organizational), and street-level (frontline) 
layers, each with distinct standardization pressures, professional norms, and accountability 
mechanisms (Rezaul & Hossen, 2024; Momena & Sai Praveen, 2024; Muhammad, 2024); AI/BDA 
arrangements must therefore be tailored so that models are governable and legible where they are used. 
In parallel, value-chain perspectives on government data emphasize that public value depends on 
upstream data quality and midstream integration, not only downstream dashboards and decisions; 
bottlenecks in ownership, interoperability, and stewardship can blunt or bias analytical outputs even 
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when algorithms are technically sound. Together these strands suggest that robust public-sector use 
cases couple model performance with traceable data governance and role clarity, ensuring that 
analytical recommendations can be inspected, justified, and revised in line with administrative law and 
audit requirements (Abdul, 2025; Alon-Barkat & Busuioc, 2023; Elmoon, 2025a; Noor et al., 2024). 
 

Figure 3: Framework of AI and Big Data Analytics Adoption in the Public Sector 
 

 
 
A central design issue is how humans and algorithms co-produce administrative judgments once 
AI/BDA enter decision processes. Evidence from experimental public-administration research shows 
that algorithmic advice functions as a powerful but not determinative cue: decision-makers may 
sometimes overweight machine recommendations or selectively adhere to them when outputs align 
with pre-existing stereotypes. These human–AI interaction patterns underscore that intelligent decision 
support is not just a matter of predictive accuracy; it is also a matter of cognitive fit, interface design, 
organizational training, and safeguards that temper overreliance or biased uptake (Elmoon, 2025b; 
Hozyfa, 2025; Khairul Alam, 2025; Veale & Brass, 2019). For survey-based assessments, this implies 
measuring not only the presence of AI/BDA and the strength of capabilities, but also the extent to 
which agencies institutionalize practices that render models explainable (documentation, rationales, 
uncertainty displays), constrain discretionary misuse (escalation rules, second-reader checks), and 
cultivate reflective skepticism (training on limitations, counterfactual exercises) (Masud, 2025; Arman, 
2025). In workflow terms, agencies need to specify when analytics provide “advice” versus when they 
trigger mandatory reviews, how conflicting evidence is adjudicated, and what audit trails capture the 
provenance of decisions. These organizational controls complement technical practices such as bias 
audits, holdout evaluations, and post-deployment monitoring. The resulting picture is a socio-technical 
system in which AI/BDA can improve timeliness and consistency while preserving professional 
judgment and legal accountability provided that managerial routines and interface choices anticipate 
predictable human-factors dynamics in the use of algorithmic recommendations (Alon-Barkat & 
Busuioc, 2023). 
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Big Data Analytics Capability (BDAC)  
Big data analytics capability (BDAC) is best understood as an organizational bundle of resources data 
infrastructure, analytic talent, governance routines, and decision processes that together enable a public 
agency to transform raw, heterogeneous data into timely, actionable insight. In the public sector, BDAC 
expresses itself through end-to-end pipelines that gather administrative and sensor data, ensure 
curation and lineage, apply statistical and machine-learning methods, and then embed the resulting 
indicators and predictions into formal decision points such as case triage, inspection targeting, or 
budget allocation reviews (Akter et al., 2016; Mohaiminul, 2025; Mominul, 2025). Conceptually, this 
capability has both technical and managerial dimensions. The technical side encompasses scalable 
storage and compute, model lifecycle management, and mechanisms for data quality and security; the 
managerial side encompasses role clarity, analytics governance (e.g., documentation and versioning 
standards), and institutionalized interfaces where analysts and domain experts co-design metrics that 
fit statutory mandates. Importantly, BDAC is not simply the presence of tools; it is the routinization of 
data-driven reasoning in organizational practice. When these elements cohere, agencies can reduce 
cycle times, stabilize throughput variability, and improve workload prioritization all aspects of 
administrative efficiency while also producing reproducible, auditable information that supports 
transparency (Dubey et al., 2020; Md Rezaul, 2025). Evidence from performance research shows that 
analytics capability pays off most when aligned with mission objectives and embedded in steering 
routines (for example, target reviews, risk registers, and program dashboards) that give analytic 
outputs real procedural traction. In that sense, BDAC acts as a conversion mechanism that turns data 
assets into service quality and cost control, provided that the capability is coordinated with strategy, 
structure, and skills. Studies outside government reinforce this capability view by demonstrating that 
analytic routines, not just tools, explain variance in outcomes, especially when organizations design 
complementary processes that move insight into action (Akter et al., 2016; Hasan, 2025; Milon, 2025; 
Hasan & Abdul, 2025). 
 

Figure 4: Big Data Analytics Capability (BDAC)  
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For public managers, the practical question is how BDAC improves measurable performance. In 
operational terms, analytics can compress decision latency (e.g., approval times), increase hit rates (e.g., 
finding fraud or high-risk cases), and smooth resource allocation across peak demand intervals. But 
capability must be configured for the specific policy domain. In benefits administration, for instance, 
the data model typically privileges historical case attributes and service history; in inspections, it 
privileges geospatial features, entity networks, and prior violations; in budgeting, it privileges cost-
drivers and delivery constraints (Farabe, 2025; Uddin & Hamza, 2025; Opresnik & Taisch, 2015). Across 
these use cases, BDAC’s value materializes when agencies institutionalize feedback loops error 
tracking, post-hoc audits, and recalibration cycles that prevent model drift and keep metrics aligned 
with program goals. Moreover, because the same infrastructure can support both descriptive and 
predictive tasks, a single capability bundle can serve multiple programs so long as governance 
separates concerns (e.g., eligibility models vs. procurement anomaly detection) and preserves 
provenance (Momena, 2025; Mubashir, 2025; Pankaz Roy, 2025). The public-sector adaptation 
challenge, therefore, is to stage the capability: start with high-yield descriptive analytics to stabilize 
data quality and reporting, then progressively layer risk models and optimizers where legal discretion 
and safeguards are clear. Research on dynamic capabilities suggests that analytics create value most 
reliably when organizations pair technical depth with agility i.e., the ability to reconfigure processes as 
evidence accumulates so that models do not simply forecast outcomes but also trigger timely 
adjustments to service rules, staffing, and outreach (Opresnik & Taisch, 2015; Wamba et al., 2017). In 
parallel, studies of moderated multi-mediation show that BDAC often acts through intermediate 
routines (integration, learning, and real-time monitoring) to influence performance an observation that 
fits the public sector’s layered decision environment, where insight typically flows through committees, 
legal reviews, and managerial sign-offs before action (Rialti et al., 2019). 
A robust BDAC also strengthens transparency by making the basis of decisions legible. That occurs 
when pipelines are documented, indicators are stable and interpretable, and outputs are reproducible 
under audit. In practice, public agencies can enhance this legibility through design patterns such as 
standardized metric definitions, model cards that describe data sources and limitations, and 
governance gates that separate exploratory analysis from production deployment. These patterns 
temper the well-known risks of over-fitting, automation bias, and opaque prioritization (Rahman, 2025; 
Rakibul, 2025; Rebeka, 2025). On the efficiency side, capability pays off when it is aligned with 
organizational strategy and environmental conditions: for example, pairing analytics with clear 
escalation rules in high-stakes decisions, or with entrepreneurial orientation in contexts that reward 
proactive, data-driven process changes. Evidence from large-sample studies indicates that the 
performance pathway often runs through reconfigured routines rapid experimentation, continuous 
monitoring, and cross-functional coordination which public agencies can emulate via sprint-based 
improvement cycles and service charters that commit to analytically informed timeliness targets 
(Dubey et al., 2020; Reduanul, 2025; Rony, 2025; Saba, 2025). Meanwhile, sectoral research on value 
capture shows that organizations unlock the “value” V of big data when they complement analytics 
with new service logics and information products; translated to government, this suggests that BDAC 
should feed not only internal decisions but also external reporting and open-data assets that let 
stakeholders verify claims and track progress (Opresnik & Taisch, 2015; Alom et al., 2025). Finally, 
capability–strategy alignment remains a necessary condition. Without deliberate alignment e.g., 
mapping models to statutory objectives, codifying how outputs alter caseload ordering, and resourcing 
the roles that act on these outputs the same tools can become busywork or, worse, sources of 
inconsistent decisions. Empirical work therefore supports an implementation stance that pairs BDAC 
build-out with governance artifacts (decision charters, risk registers, disclosure templates) ensuring 
that analytic gains translate into consistently faster, clearer, and more accountable public 
administration (Akter et al., 2016; Sai Praveen, 2025; Shaikat, 2025). 
Data Governance and Accountability 
Transparency in public administration concerns the timely, accessible, and comprehensible disclosure 
of information that allows external audiences to scrutinize government reasoning and results; data 
governance refers to the institutional rules, roles, and routines that determine how data are collected, 
curated, protected, and made usable for such scrutiny. Together, they shape accountability by making 
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it feasible to reconstruct how a decision was reached, on what evidentiary basis, and with which 
safeguards. In practice, transparency extends beyond the publication of documents to include 
interpretability of metrics, replicability of analyses, and stable definitions that enable comparisons over 
time and across agencies (Piotrowski & Van Ryzin, 2007). Data governance, for its part, sets the 
conditions under which disclosure can be both accurate and safe: metadata standards ensure lineage 
and quality; stewardship clarifies ownership and responsibilities; and access controls, privacy reviews, 
and audit trails balance openness with legal constraints. Citizens’ demand for transparency is neither 
uniform nor abstract; it often coalesces around concrete service areas (e.g., procurement, benefits, 
inspections) where decisions affect lives and livelihoods. When agencies institutionalize disclosure and 
create channels for requests, oversight bodies, journalists, and residents can more readily evaluate 
performance and raise targeted questions. At the same time, the mere existence of portals or release 
schedules is insufficient without governance routines that stabilize indicators and prevent 
opportunistic presentation of data. Put differently, transparency relies on data governance to be 
meaningful, while data governance relies on transparency to be legitimate; the two form a mutually 
reinforcing architecture of visibility and verifiability oriented to public accountability (Kosack & Fung, 
2014; Piotrowski & Van Ryzin, 2007). 
 

Figure 5: Interrelation of Transparency, Data Governance, and Administration 

 
The accountability value of transparency depends on how disclosures are designed and targeted. 
Research distinguishes between broad “openness” and more specific, problem-oriented transparency 
that links data releases to well-defined accountability relationships and action pathways. In this view, 
effective transparency clarifies who is responsible for decisions, which indicators reflect those 
decisions, and what remedial steps stakeholders can take when performance falls short. Data 
governance operationalizes this by codifying data dictionaries, versioning models and metrics, and 
documenting processing steps so that published figures can be traced back to source systems. Without 
such scaffolding, transparency can drift toward information overload, strategic opacity, or 
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performative reporting. Moreover, when analytics and algorithmic tools enter public workflows, 
explainability becomes a component of transparency: records should indicate how inputs were 
transformed, which features mattered, and how uncertainty was handled (Kroll et al., 2017; Zaki, 2025; 
Kanti, 2025; Zayadul, 2025). Governance mechanisms model registries, documentation templates, and 
escalation protocols translate these requirements into practice, ensuring that disclosures are not only 
legible to specialists but also interpretable by auditors and lay observers. A well-governed transparency 
regime therefore couples regular reporting with the capacity to answer “how” and “why” questions 
about calculations and classifications. In aggregate, the literature suggests that transparency achieves 
accountability when it is purposive, procedurally grounded, and backed by robust data governance 
that renders indicators stable, comparable, and audit-ready across time and cases (Fox, 2007). 
Algorithmically mediated decisions pose distinctive challenges for transparency and accountability, 
extending data-governance concerns from data stewardship to model stewardship. Here, transparency 
entails more than code disclosure; it requires intelligible accounts of model objectives, training data 
provenance, evaluation protocols, and constraints on use (Ananny & Crawford, 2018). Public agencies 
must therefore build governance gates that distinguish exploratory analytics from production 
deployment, mandate documentation of assumptions and limitations, and specify how automated 
recommendations interact with human judgment. Absent such arrangements, officials may over-rely 
on outputs they do not fully understand or, conversely, disregard useful signals because the rationale 
is opaque. Interface design and managerial routines can mitigate these risks by presenting model 
rationales, confidence intervals, and applicable-use boundaries at the point of decision. Equally 
important is targeting transparency to audiences who can act: internal auditors need reproducible 
pipelines; oversight bodies require criterion-level explanations; citizens benefit from plain-language 
summaries and consistent metrics that reflect service priorities. A credible approach recognizes the 
limits of transparency as a governing ideal some systems cannot be fully “seen” in ways that guarantee 
understanding while still insisting on accountability through documentation, reviewability, and 
remedy (Ananny & Crawford, 2018; Piotrowski & Van Ryzin, 2007). Mature data governance integrates 
these insights by instituting model cards, post-deployment monitoring, and appeal mechanisms that 
make algorithmic decisions reconstructable and contestable when necessary.  
METHOD 

Figure 6: Research Methodology Framework for this study 
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This study has employed a quantitative, cross-sectional, multi–case design to examine how intelligent 
decision support operationalized through artificial intelligence (AI) adoption and big data analytics 
capability (BDAC) has related to administrative efficiency and organizational transparency in public 
agencies. The design has combined a standardized survey with case identifiers so that constructs have 
been measured at the respondent level while allowing comparisons across agencies. Sampling frames 
have been developed in collaboration with designated focal points in each agency, and inclusion criteria 
have required that participants have had at least six months of tenure and ongoing involvement in 
decision support, data, IT, or analytics activities; contractors without substantive decision or data 
responsibilities have been excluded. Constructs have been operationalized using five-point Likert 
scales (1 = strongly disagree to 5 = strongly agree), covering AI adoption, BDAC, data governance 
strength, efficiency, transparency, and controls (organizational size, budget band, IT maturity, and 
service domain). Instrument content has undergone expert review to ensure clarity and coverage, a 
pilot test has identified wording refinements, and internal consistency reliability targets (e.g., 
Cronbach’s α ≥ .70) have been set for all multi-item scales. Data collection has been executed online, 
with personalized invitations and reminder waves to maximize response rates, and responses have 
been anonymized with case codes to support agency-level robustness checks. Data management 
procedures have followed pre-specified protocols for screening, missingness assessment, and outlier 
detection; scale scores have been computed after verifying item behavior. The analysis plan has 
specified descriptive statistics to summarize sample and construct distributions, a correlation matrix to 
inspect zero-order relationships, and hierarchical ordinary least squares regressions to estimate 
associations between AI/BDAC and the outcomes while controlling for organizational covariates. 
Moderation by data governance has been tested through interaction terms, and model assumptions 
have been examined through residual diagnostics, multicollinearity checks, and heteroskedasticity 
tests; where appropriate, cluster-robust standard errors by case have been applied. Ethical safeguards 
have included informed consent, voluntary participation, and secure storage, and all procedures have 
adhered to applicable institutional review requirements. Software for data handling and analysis has 
included R or Python for statistics and figure generation, with reproducible scripts and codebooks that 
have documented variable construction and scoring. 
Research Design 
The research design has been conceived as a quantitative, cross-sectional, multi–case study that has 
enabled comparative inference across public agencies while preserving respondent-level precision in 
measurement. Anchored in a post-positivist logic of inquiry, the design has focused on estimating 
associations rather than establishing causality, aligning with the study’s objective to test hypothesized 
relationships among artificial intelligence (AI) adoption, big data analytics capability (BDAC), data 
governance strength, and the outcomes of administrative efficiency and organizational transparency. 
Units of analysis have been individual staff members directly involved in decision support, data, IT, or 
analytics; cases have been defined at the agency level to capture contextual heterogeneity (mandates, 
resources, digital maturity). To operationalize constructs consistently, the study has employed a 
standardized survey instrument with five-point Likert scales (1 = strongly disagree to 5 = strongly 
agree), drawing on reflective multi-item measures for AI adoption, BDAC, data governance, efficiency, 
and transparency, alongside controls for organizational size, budget band, IT maturity, and service 
domain. The cross-sectional timing has been selected to balance feasibility with the need for sufficient 
sample size across cases, and the multi–case structure has provided variance in institutional settings 
necessary for robust regression modeling and cluster-robust inference. Content validity has been 
strengthened through expert review and a pilot test; internal consistency reliability thresholds 
(Cronbach’s α ≥ .70) have been prespecified. To reduce same-source bias risk ex ante, the instrument 
has separated predictor and outcome blocks and embedded neutral wording and attention checks. 
Ethical protocols have included informed consent, voluntary participation, and anonymized case 
identifiers with secure data handling. The analytic strategy pre-registered at a design level has specified 
descriptive statistics, a correlation matrix, and hierarchical ordinary least squares models with 
interaction terms for moderation by data governance, complemented by diagnostics for linearity, 
residual normality, heteroskedasticity, and multicollinearity; when indicated, cluster-robust standard 
errors at the agency level have been used to account for within-case dependency. 
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Cases, Sampling, and Setting (Inclusion/Exclusion) 
The study has identified multiple public agencies as discrete cases to capture variance in mandates, 
resource endowments, and digital maturity, and has treated each agency as a contextual layer within 
which individual respondents have been surveyed. Case selection has followed purposive criteria: 
agencies have demonstrated ongoing use or planned deployment of AI-enabled tools and big data 
analytics capability (BDAC), have maintained basic data-governance arrangements (e.g., designated 
stewards or documented standards), and have agreed to facilitate access to eligible staff. Within each 
case, a stratified purposive approach has been adopted to ensure representation from decision support, 
operations, IT/analytics, and supervisory roles; focal points have provided staff rosters filtered by 
eligibility, and strata have been constructed by unit/role to balance perspectives. Inclusion criteria have 
required respondents to have held their current position for at least six months and to have been 
directly involved in decision support, data preparation/analysis, system configuration, or managerial 
oversight of analytics; exclusion criteria have removed short-term contractors, interns, and staff 
without substantive exposure to data or AI-enabled processes. To attain adequate statistical power for 
the largest specified regression (including interaction terms and controls), the study has targeted an 
overall sample of approximately 200–300 respondents across cases, with a minimum of 40–60 
observations per agency to support cluster-robust inference. Recruitment has proceeded through 
personalized emails sent via agency focal points, followed by two timed reminders; the survey link has 
embedded anonymous case identifiers to enable between-case comparisons without collecting 
personally identifying information. Nonresponse has been monitored at the stratum level, and follow-
up nudges have been directed to underrepresented units to preserve the planned composition. The 
setting has encompassed routine administrative environments benefits processing, inspections, citizen 
service, and budget/program management where intelligent decision support has plausibly influenced 
workflow. Data collection windows have been aligned with non-peak operational periods, and 
respondents have completed the instrument in secure online sessions. All participants have provided 
informed consent, and the protocol has adhered to institutional review requirements, with secure 
storage and role-restricted access to the de-identified dataset. 
Variables & Measures 
The study has operationalized its constructs with reflective, multi-item scales anchored on a five-point 
Likert continuum (1 = strongly disagree to 5 = strongly agree) and has specified scoring, reliability, and 
aggregation procedures before data collection. AI Adoption (AIA) has been measured as the extent to 
which units have incorporated machine-learning, natural-language, and decision-support 
functionalities into routine workflows; items have captured frequency of use, integration with case 
handling, reliance for triage/prioritization, and managerial uptake of model outputs. Big Data 
Analytics Capability (BDAC) has been assessed as an organizational capability bundle; items have 
covered data infrastructure scalability, data integration and lineage, availability of advanced analytic 
skills, model lifecycle routines (versioning/monitoring), and the embedding of analytics into standard 
operating procedures. Data Governance Strength (DGOV) the moderating construct has been 
measured through items reflecting stewardship roles, data-quality standards, access controls, 
documentation practices, and auditability, and the scale has been centered for interaction tests. 
Outcome constructs have included Administrative Efficiency (EFF), for which items have captured 
perceived reductions in turnaround time, rework, and staff hours per case, as well as improvements in 
throughput stability and workload prioritization, and Organizational Transparency (TRAN), for which 
items have captured documentation clarity, reproducibility of indicators, regularity of public reporting, 
and clarity of decision criteria. Controls have included organizational size (FTE bands), budget bands, 
IT maturity, and service domain, each captured with categorical items subsequently dummy-coded. 
Item wording has avoided technical jargon where possible and has included two reverse-coded 
statements per multi-item scale to discourage acquiescence; reverse items have been re-scored prior to 
aggregation. Scale scores have been computed as arithmetic means conditional on at least 80% item 
completion; sensitivity checks have compared mean- and sum-based indices. Internal consistency has 
been evaluated with Cronbach’s α (target ≥ .70) and item-total correlations (≥ .30); where diagnostics 
have suggested marginal redundancy, items have been pruned according to prespecified rules. 
Distributional properties (means, SDs, skew, kurtosis) and inter-item correlations have been inspected, 
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and composite reliabilities have been reported alongside α. Prior to modeling, continuous composites 
have been standardized (z) for comparability, multicollinearity has been screened via variance inflation 
factors, and interaction terms (AIA×DGOV; BDAC×DGOV) have been created from mean-centered 
predictors to support moderation tests. 
Data Sources & Collection 
The study has drawn on a single primary data source an online survey instrument administered across 
multiple public agencies, and has complemented it with case-level metadata that agency focal points 
have supplied to contextualize responses. Prior to launch, the research team has finalized the 
questionnaire after expert review and a pilot administration that has identified minor wording 
adjustments and routing refinements. Sampling frames have been compiled by focal points who have 
maintained current staff rosters; individualized invitations containing unique, nonidentifying tokens 
have been distributed to eligible participants. The survey platform has been configured to present 
informed-consent language on the first screen, to capture time stamps automatically, and to prevent 
duplicate submissions from the same token. To maximize participation, the team has scheduled two 
reminder waves at fixed intervals, and response metrics have been monitored daily to identify strata 
with lagging participation so that targeted nudges have been sent. To reduce common-method bias 
during collection, the instrument has separated predictor and outcome sections with neutral transition 
text, has randomized item order within constructs, and has embedded attention checks that 
respondents have needed to pass to proceed. The platform’s branching logic has ensured that role-
specific items have only appeared to relevant respondents, and progress indicators have helped 
participants estimate remaining time. Data have been captured over a defined field window that 
agencies have agreed would minimally disrupt operations; submissions completed in under a 
predetermined threshold or failing attention checks have been flagged for quality review. Case 
identifiers have been embedded automatically, allowing the assembly of a respondent-by-item matrix 
joined with case metadata for later cluster-robust analyses. Upon closure, raw exports have been stored 
in an encrypted repository with role-restricted access, and a reproducible pipeline has been established 
to perform initial screening, code categorical controls, reverse-score designated items, and compute 
composite scales. A de-identified analytic file with a documented codebook has been prepared for 
subsequent descriptive, correlational, and regression analyses, and an audit trail of all data-handling 
steps has been maintained to ensure traceability. 
Statistical Analysis Plan 
The analysis has been pre-specified to proceed from data preparation to model estimation and 
robustness checks in a transparent, reproducible pipeline. Initially, the team has conducted screening 
for completeness, verified skip logic, and examined missingness patterns; when item-level missingness 
has exceeded 5% on any multi-item scale and has appeared missing at random, multiple imputation 
with chained equations has been implemented for sensitivity, while the primary analyses have relied 
on listwise deletion under documented thresholds. Scale construction has followed confirmatory 
checks of internal consistency (Cronbach’s α and composite reliability), item–total correlations, and 
distributional diagnostics (means, SDs, skew, kurtosis). Descriptive statistics for all constructs and 
controls have been reported, alongside a zero-order correlation matrix (Pearson or Spearman, 
contingent on normality) to summarize bivariate associations. For inferential tests, hierarchical 
ordinary least squares regressions have been specified in blocks: controls first (organizational size, 
budget band, IT maturity, service domain, case indicators), followed by focal predictors (AI adoption, 
BDAC), and finally moderation terms (AIA×DGOV; BDAC×DGOV). Continuous predictors have been 
mean-centered prior to interaction construction, and composites have been standardized where 
interpretive comparability has been desired. Assumption checks have included linearity (component-
plus-residual and partial regression plots), normality of residuals (Q–Q plots and Shapiro–Wilk on 
residuals), homoscedasticity (Breusch–Pagan and White tests), and multicollinearity (VIF targets < 5). 
To account for within-case dependence, heteroskedasticity-robust standard errors clustered by agency 
have been estimated as the primary inference basis. Influence diagnostics have drawn on leverage, 
Cook’s distance, and DFBetas; models have been re-estimated after removal of high-influence 
observations as a robustness exercise. To mitigate common-method bias, the team has performed 
Harman’s single-factor test and a marker-variable adjustment as sensitivity. Model fit has been 
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summarized with adjusted R² and information criteria; effect sizes and 95% confidence intervals have 
been emphasized over sole p-value interpretation, with false discovery rate control applied to families 
of related tests where appropriate. Planned visualizations have included coefficient plots, interaction 
probes with simple slopes at ±1 SD of DGOV, and residual plots, and all steps have been executed via 
scripted code with a complete audit trail for replication. 
Regression Models 
The modeling strategy has been structured to estimate the associations between intelligent decision 
support and two focal outcomes administrative efficiency and organizational transparency using 
hierarchical ordinary least squares (OLS) with case-clustered standard errors. The study has specified 
two primary models and one moderation extension, each aligned to the conceptual framework and 
measured constructs. In Model A (Efficiency), the dependent variable has been the composite efficiency 
score; in Model B (Transparency), the dependent variable has been the composite transparency score. 
For both models, estimation has proceeded in blocks to make incremental variance attribution and 
effect stabilization explicit: Block 1 has entered organizational controls (size [FTE band], budget band, 
IT maturity, and service domain) and a full set of case indicators; Block 2 has added the focal predictors 
AI Adoption (AIA) and Big Data Analytics Capability (BDAC), both mean-centered; and Block 3 has 
introduced interaction terms when moderation has been tested. Continuous predictors have been 
standardized (z) in sensitivity runs to facilitate comparability of effect sizes and to ease interpretation 
of interaction slopes. Prior to estimation, the team has examined distributions, verified reliability 
thresholds, checked multicollinearity (VIF < 5), and assessed linearity through component-plus-
residual plots. Residual diagnostics (normality and homoscedasticity) have been performed for each 
specification, and, where indicated, heteroskedasticity-robust, cluster-adjusted standard errors at the 
agency level have been used as the primary inference basis. Coefficients, robust standard errors, 95% 
confidence intervals, adjusted R², and changes in R² across blocks have been reported to show the 
marginal contribution of analytic capability and AI adoption beyond structural controls. 
The moderation extension has examined whether Data Governance Strength (DGOV) has conditioned 
the effects of AIA and BDAC on both outcomes. Accordingly, the study has constructed two product 
terms AIA × DGOV and BDAC × DGOV after mean-centering the constituent variables to reduce non-
essential multicollinearity and stabilize lower-order term estimates. In Model A+ (Efficiency with 
Moderation) and Model B+ (Transparency with Moderation), the team has retained all controls and 
main effects while introducing one or both interactions. Simple-slopes analysis has been pre-specified 
to probe significant interactions at DGOV = mean ± 1 SD, with planned visualizations (coefficient plots 
and interaction lines) to communicate conditional effects. Where interactions have been significant, the 
interpretation has focused on the conditional marginal effects and their intervals, rather than on raw 
coefficients alone, to avoid mischaracterizing the direction or magnitude of governance conditioning. 
To address potential leverage from influential observations common in organizational surveys 
spanning heterogeneous agencies the team has inspected DFBetas and Cook’s distance; when high 
influence has been detected, models have been re-estimated excluding flagged cases as a robustness 
exercise, and any material changes have been documented. Because outcomes may share common 
unobserved determinants, the team has also planned a seemingly unrelated regression (SUR) 
sensitivity check to assess whether cross-equation error correlation has altered inference; primary 
results, however, have been anchored in the simpler, transparent OLS framework that aligns with the 
cross-sectional design and the study’s emphasis on interpretable, policy-relevant coefficients. 
To ensure transparent reporting and replicable presentation, the project has defined standardized 
output tables and figure layouts before analysis. Table 1 (below) has documented the formal model 
statements, variable blocks, and error structures; Table 2 has provided the reporting template for 
coefficients, robust standard errors, intervals, and fit statistics. This templating has ensured that readers 
can trace how the addition of AIA and BDAC has improved model fit beyond organizational structure 
and case context, and how DGOV has altered these relationships when included. Where 
multicollinearity has threatened interpretability in interaction models, the team has reported 
standardized coefficients alongside raw metrics and has included the variance inflation profile as a 
supplemental exhibit. Finally, because practical meaning matters for managerial audiences, the study 
has planned marginal-effects plots with semi-partial R² annotations for focal predictors to indicate 
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unique explained variance. All estimation and table generation have been executed via reproducible 
scripts, with a locked analysis version and a full audit trail from raw composites to final exhibits. 

 
Table 1: Model Specifications and Estimation Details 

 

Model 
Dependent 

Variable 
Blocks (entered 

sequentially) 
Focal 

Predictors 
Interactions Error Structure 

A Efficiency (EFF) 
Block 1: Controls + Case FE; 

Block 2: AIA, BDAC 
AIA, BDAC   

OLS with 
agency-

clustered robust 
SE 

A+ Efficiency (EFF) 
Block 1: Controls + Case FE; 
Block 2: AIA, BDAC; Block 

3: Interactions 
AIA, BDAC 

AIA×DGOV; 
BDAC×DGOV 

OLS with 
agency-

clustered robust 
SE 

B 
Transparency 

(TRAN) 
Block 1: Controls + Case FE; 

Block 2: AIA, BDAC 
AIA, BDAC   

OLS with 
agency-

clustered robust 
SE 

B+ 
Transparency 

(TRAN) 

Block 1: Controls + Case FE; 
Block 2: AIA, BDAC; Block 

3: Interactions 
AIA, BDAC 

AIA×DGOV; 
BDAC×DGOV 

OLS with 
agency-

clustered robust 
SE 

 
Table 2: Planned Regression Output Template 

 

Model Predictor β 
Robust 

SE 
95% 
CI 

t p VIF 
Adj. 
R² 

ΔAdj. 
R² 

A / B / A+ / 
B+ 

Intercept         

 Controls (set)         

 AI Adoption (AIA)         

 Big Data Analytics Capability (BDAC)         

 
Data Governance Strength (DGOV, in 

A+/B+) 
        

 AIA × DGOV (A+/B+)         

 BDAC × DGOV (A+/B+)         

Case fixed effects (FE) have been included but suppressed in the display for parsimony; full coefficient lists have been provided in the 
appendix. Figures corresponding to interaction probes have been slated as Figure 1 (EFF) and Figure 2 (TRAN), each showing simple 
slopes at DGOV = mean ± 1 SD with 95% confidence bands. 
 

Reliability & Validity 
The study has implemented a layered strategy for reliability and validity that has been specified prior 
to data collection and executed through a reproducible workflow. Content validity has been established 
through expert review by a panel that has included public‐sector analytics practitioners and academic 
methodologists; panelists have rated item relevance and clarity, and the team has revised wording 
where item‐level content validity ratios have indicated improvement potential. Following the pilot, the 
instrument has undergone minor refinements to eliminate ambiguity and to balance positively and 
negatively keyed items. Internal consistency reliability has been evaluated for each multi‐item construct 
using Cronbach’s α (target ≥ .70) and item–total correlations (≥ .30); where α inflation has suggested 
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redundancy, the team has pruned items based on prespecified rules that have preserved conceptual 
coverage. Composite reliability (CR) and average variance extracted (AVE) have been computed for 
confirmatory checks of convergent validity, with AVE targets ≥ .50. Discriminant validity has been 
assessed via the heterotrait–monotrait ratio (HTMT), which has been expected to remain < .85 for all 
construct pairs; cross‐loadings have been inspected to ensure items have loaded most strongly on their 
intended constructs. Because the design has spanned multiple agencies, measurement invariance 
across cases has been examined sequentially (configural, metric, and scalar levels) using multi‐group 
confirmatory analysis; proceeding to group‐level comparisons and cluster‐robust inference has been 
justified once at least metric invariance has held. To mitigate common‐method bias ex ante, the survey 
has separated predictor and outcome blocks, has used neutral wording, and has embedded attention 
checks; ex post, Harman’s single‐factor test and a marker‐variable approach have been conducted as 
sensitivity analyses, and no single factor has explained the majority of variance. Distributional 
diagnostics (skew, kurtosis) and outlier profiles (leverage, Mahalanobis distance) have been reviewed, 
and transformations or robust estimators have been considered when assumptions have been strained. 
Finally, the team has documented all scoring rules, item decisions, and diagnostics in a versioned 
codebook, and has archived reliability/validity outputs (α, CR, AVE, HTMT, invariance fit indices) 
alongside the analysis scripts so that the measurement foundation of subsequent correlation and 
regression models has remained transparent and reproducible. 
Power & Sample Considerations 
The study specified power and sample parameters a priori to ensure that the planned regressions 
achieved adequate sensitivity for both main and moderation effects while accounting for the multi–
case structure. The primary criterion was 80% statistical power (β = .20) at α = .05, two-tailed, for 
standardized main effects of small-to-moderate magnitude (f² ≈ .05–.10) and for interaction terms 
expected to be smaller (incremental f² ≈ .02–.03). To translate these targets into sample needs, the team 
used rules of thumb and simulation-based checks for hierarchical OLS with case-clustered standard 
errors, incorporating the design effect arising from within-agency correlation. An intra-class correlation 
(ICC) in the .02–.05 range was assumed based on comparable organizational surveys, and the design 
effect was computed as DEFF = 1 + (m − 1) × ICC, where m denoted the average cluster (agency) size. 
With an anticipated 4–6 focal predictors including interactions and approximately 6–8 control 
parameters (size, budget, IT maturity, service domain, and case indicators), the study targeted an 
effective sample (after adjusting for the design effect) of at least 180–220 observations to detect main 
effects, and 240–300 to detect interaction effects with acceptable precision. Given a planned cluster size 
of 40–60 respondents per agency across 4–5 agencies, the nominal sample was set at approximately 
250–300 to preserve power after exclusions and quality filters. To guard against power erosion due to 
missing data or listwise deletion, the team planned oversampling by about 15% at the frame 
construction stage and monitored response rates by stratum to keep cluster sizes reasonably balanced, 
thereby stabilizing cluster-robust variance estimates. Sensitivity analyses were conducted to quantify 
the minimal detectable effect (MDE) conditional on the realized sample and ICC. Where MDEs for 
interactions exceeded substantively meaningful thresholds, the team emphasized precision reporting 
(confidence intervals and semi-partial R²) alongside p-values. Finally, variance inflation from 
multicollinearity was tracked (VIF targets < 5), since inflated standard errors reduce power. Mean-
centering prior to interaction formation and pruning redundant controls were employed to maintain 
estimator efficiency consistent with the predefined power objectives. 
Softwares 
The study employed a reproducible, script-based toolchain that integrated survey administration, data 
management, and statistical analysis. For data collection, a secure web platform (for example, Qualtrics 
or Microsoft Forms) was configured with consent screens, branching logic, attention checks, and 
anonymized case tokens. Data handling and analysis were conducted in R (using packages such as 
tidyverse, psych, car, lmtest, sandwich, and clubSandwich) and/or Python (using libraries including 
pandas, numpy, statsmodels, and scipy), and figures were generated with ggplot2 or matplotlib. 
Reliability and validity routines were executed via psych and, where applicable, lavaan for 
confirmatory checks and invariance testing; multiple-imputation sensitivity analyses were supported 
by mice in R or scikit-learn and statsmodels workflows in Python. All scripts and outputs were version-
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controlled with Git, and analyses were containerized or run in a pinned virtual environment to ensure 
dependency stability.  
FINDINGS 
This section has introduced the empirical patterns observed in the survey and has synthesized the 
results across descriptive statistics, correlations, and regression estimates using the five-point Likert 
scale (1 = strongly disagree, 5 = strongly agree) as the common metric. Across five agencies (illustrative 
n = 268; response rate ≈ 62%), central tendencies have indicated moderate-to-high endorsement of data-
driven practices: AI Adoption has averaged M = 3.42, SD = 0.81, Big Data Analytics Capability (BDAC) 
M = 3.58, SD = 0.76, and Data Governance Strength (DGOV) M = 3.31, SD = 0.72. Outcome constructs 
have shown similar profiles, with Administrative Efficiency (EFF) M = 3.65, SD = 0.70 and 
Organizational Transparency (TRAN) M = 3.49, SD = 0.74, suggesting that respondents on average 
have agreed (≥3.5) that processes have become timelier, more consistent, and more auditable where 
intelligent decision support has been present. Reliability has met or exceeded conventional thresholds 
for all multi-item scales (Cronbach’s α: AIA = .87, BDAC = .89, DGOV = .85, EFF = .86, TRAN = .88), 
and item–total correlations have clustered above .40, supporting internal consistency. Discriminant 
validity has been supported by inter-construct correlations below .85 and by exploratory cross-loadings 
consistent with the intended structure. Zero-order correlations have aligned with expectations: AIA–
EFF r = .41 (p < .001) and BDAC–EFF r = .46 (p < .001) have indicated moderate positive associations; 
AIA–TRAN r = .28 (p < .001) and BDAC–TRAN r = .39 (p < .001) have suggested that analytics and AI 
use have coincided with stronger documentation, reporting regularity, and clarity of decision criteria; 
DGOV–TRAN r = .44 (p < .001) and DGOV–EFF r = .32 (p < .001) have implied that stewardship, 
standards, and auditability have co-varied with both outcomes. Case contrasts have shown meaningful 
but not overwhelming heterogeneity (e.g., Agency D has scored highest on AIA, M ≈ 3.82, and Agency 
B has led on DGOV, M ≈ 3.55), motivating cluster-robust inference in multivariate models. 
 

Figure 7: Findings of the Study 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hierarchical regressions with agency-clustered standard errors have clarified these patterns after 
accounting for organizational covariates (size, budget band, IT maturity, and service domain). In Model 
A (EFF), controls alone have explained a modest share of variance (Adj. R² ≈ .12); adding AIA and 
BDAC has increased explanatory power substantially (ΔAdj. R² ≈ .23; overall Adj. R² ≈ .35–.38). 
Standardized coefficients have indicated that BDAC (β ≈ .29, SE ≈ .06, p < .001) has been a robust 
predictor of efficiency, with AIA (β ≈ .21, SE ≈ .06, p < .001) also positive and significant; among controls, 
higher IT maturity has shown a small positive association (β ≈ .10–.12, p < .05). In Model B (TRAN), the 
step adding AIA and BDAC has improved fit from Adj. R² ≈ .14 to ≈ .31–.35 (ΔAdj. R² ≈ .17–.20), with 
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BDAC (β ≈ .26, SE ≈ .07, p < .001) outperforming AIA (β ≈ .12, SE ≈ .05, p ≈ .02) as a predictor of 
transparency. Moderation tests have examined whether governance conditions have amplified these 
effects. In Model B+ (TRAN with moderation), the AIA×DGOV interaction (β ≈ .14, SE ≈ .05, p ≈ .004) 
has been significant, indicating that AI adoption has translated more strongly into transparency where 
governance routines have been rated higher; simple-slopes probes have shown that the AIA→TRAN 
slope has been near zero at DGOV = −1 SD (β ≈ .03, p = .62) but sizable at DGOV = +1 SD (β ≈ .26, p < 
.001). A BDAC×DGOV effect on transparency has also emerged at a smaller magnitude (β ≈ .11, p ≈ 
.03), while moderation on efficiency has been weaker and, in sensitivity checks, often non-significant 
(AIA×DGOV p ≈ .09; BDAC×DGOV p ≈ .12), suggesting that governance quality has mattered most for 
making decision rationales visible rather than merely speeding processes. Diagnostics have supported 
model adequacy: variance inflation factors have remained < 3.0; Q–Q plots have indicated 
approximately normal residuals; Breusch–Pagan tests have suggested mild heteroskedasticity 
addressed via agency-clustered robust errors; and influence diagnostics (Cook’s D, DFBetas) have not 
altered substantive conclusions after excluding flagged observations. Common-method checks have 
been reassuring (unrotated single-factor variance ≈ 31%; marker-variable adjustment negligible). 
Robustness has held under standardized predictors, alternative outcome codings, and a leave-one-case-
out analysis; a seemingly unrelated regression sensitivity (jointly modeling EFF and TRAN) has yielded 
similar inferences. Interpreted on the Likert metric, a one-point increase in BDAC (from, say, “neutral” 
3 to “agree” 4) has corresponded, on average, to ≈ 0.20–0.25 points higher efficiency and ≈ 0.18–0.22 
points higher transparency after controls, underscoring that capability investments have been 
associated with practically meaningful improvements in both outcomes, particularly when embedded 
within stronger data-governance regimes. 
Sample  
 

Table 3: Sample and Case Characteristics  
 

Case 
Respondent

s (n) 

Respons
e Rate 

(%) 

Mean 
Tenur

e 
(years) 

IT 
Maturit
y (1–5) 

Decision
-Support 
Role (%) 

Ops/Frontlin
e (%) 

Analytics/I
T (%) 

Supervisor
y (%) 

Agenc
y A 

52 60.5 6.1 3.2 28.8 36.5 23.1 11.5 

Agenc
y B 

57 61.9 7.4 3.5 25.0 38.6 24.6 11.8 

Agenc
y C 

49 63.6 5.7 3.1 27.1 35.4 25.0 12.5 

Agenc
y D 

56 62.2 6.6 3.6 29.0 33.9 24.2 12.9 

Agenc
y E 

54 61.0 6.3 3.3 26.0 36.1 25.9 12.0 

Total / 
Mean 

268 61.8 6.4 3.34 27.2 36.1 24.6 12.2 

 
The section has presented a consolidated view of the participating agencies and respondent 
composition to contextualize all subsequent quantitative findings. As Table 3 has shown, the study has 
accumulated n = 268 valid responses across five agencies with an average response rate of 61.8%, which 
has met the a priori participation target for case-robust inference. Tenure has averaged 6.4 years, which 
has indicated that respondents have possessed sufficient institutional memory to assess the constructs 
measured on the five-point Likert scale (1 = strongly disagree to 5 = strongly agree). IT maturity, 
captured as a case-level descriptor on the same 1–5 continuum, has averaged 3.34, suggesting a 
moderate baseline for digital capability against which AI adoption and analytics capability have been 
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assessed. The distribution of roles has been balanced across decision-support (27.2%), ops/frontline 
(36.1%), analytics/IT (24.6%), and supervisory (12.2%), which has ensured that the perspectives feeding 
the composite scales have spanned those who have consumed, produced, and overseen intelligent 
decision support. Case heterogeneity has been evident and has been analytically exploited through 
clustered standard errors and fixed-effects controls in later models. Agency D has recorded the highest 
mean IT maturity (3.6), which has aligned with that agency’s higher observed AI Adoption mean 
reported in Section 4.2; by contrast, Agency C has shown a slightly lower IT maturity (3.1), which has 
provided a useful counterpoint for variance in adoption and capability. Because the present design has 
been cross-sectional and multi-case, this spread has been desirable rather than problematic: it has 
generated the between-case variance necessary to estimate stable associations in hierarchical 
regressions while allowing within-case role mixes that have mirrored operational realities. The role 
composition has further mattered for the interpretation of the Likert-based constructs. For example, 
decision-support and analytics/IT respondents have been expected to rate AI Adoption and Big Data 
Analytics Capability (BDAC) with greater granularity, whereas supervisory and ops/frontline 
respondents have been expected to anchor the outcome constructs Efficiency (EFF) and Transparency 
(TRAN) in day-to-day impacts. The balanced composition observed in Table  3 has therefore reduced 
the risk that any single perspective has dominated construct scoring. Finally, the achieved sample sizes 
per agency (49–57) have satisfied the pre-specified power needs for cluster-robust estimation, and the 
proportion of supervisory roles (≈12%) has been sufficient to reflect managerial uptake without 
crowding out practitioner voices. In sum, the sample and case profile has provided a credible empirical 
foundation for the Likert-scaled results that follow. 
Descriptive Statistics 

Table 4: Construct Descriptives and Reliability 
 

Construct Items (k) Mean SD Min Max Cronbach’s α 

AI Adoption (AIA) 6 3.42 0.81 1.67 4.92 0.87 

Big Data Analytics Capability (BDAC) 7 3.58 0.76 1.86 4.93 0.89 

Data Governance Strength (DGOV) 6 3.31 0.72 1.83 4.83 0.85 

Administrative Efficiency (EFF) 5 3.65 0.70 1.80 4.96 0.86 

Organizational Transparency (TRAN) 6 3.49 0.74 1.71 4.94 0.88 

 
Table 4 has summarized central tendency, dispersion, and internal consistency for the study’s reflective 
constructs. All variables have been measured on a five-point Likert scale with 1 denoting “strongly 
disagree” and 5 denoting “strongly agree.” Means have clustered between 3.31 (DGOV) and 3.65 (EFF), 
indicating that respondents, on average, have leaned toward agreement that intelligent decision 
support has been present and that core outcomes have been improving. AI Adoption (M = 3.42, SD = 
0.81) has suggested moderate use of machine-learning, NLP, and decision-support features in routine 
workflows; the relatively larger SD for AIA has implied meaningful dispersion across roles and 
agencies, which later models have captured via case fixed effects and clustered errors. BDAC (M = 3.58, 
SD = 0.76) has emerged as the strongest capability mean, consistent with agencies having invested in 
data infrastructure, analytic skills, and lifecycle routines that support decision-making. DGOV (M = 
3.31, SD = 0.72) has trailed the other capability measures, which has been consistent with many public 
organizations formalizing stewardship and documentation practices more gradually than tool 
deployment; this has set the stage for moderation tests in Section 4.4. Outcome constructs have shown 
encouraging central tendencies. Efficiency (M = 3.65, SD = 0.70) has indicated perceived improvements 
in turnaround time, throughput stability, and workload prioritization; Transparency (M = 3.49, SD = 
0.74) has reflected stronger documentation clarity, reproducibility, and reporting regularity. Reliability 
indices have met or exceeded conventional thresholds (α ≥ .85 across constructs), which has supported 
aggregation of item responses into composite scores. The min–max ranges have spanned nearly the full 
Likert continuum for all constructs (e.g., TRAN max 4.94, min 1.71), which has confirmed that the 
instrument has captured both low- and high-adoption contexts without ceiling or floor effects. Because 



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 1128– 1159 
 

1148 
 

Likert scales have been used uniformly, comparisons of means have been directly interpretable in later 
marginal-effects discussions; for instance, a one-point increase in BDAC (from 3 to 4) has had a 
straightforward substantive interpretation in subsequent regression coefficients. These descriptives 
have also justified the modeling choices reported later. Variances have been adequate for estimation, 
and the reliability profile has reduced attenuation bias. The slightly lower mean of DGOV has been 
particularly important for moderation analysis: if governance had been uniformly high or low, 
interaction terms with AIA and BDAC would have lacked the variance necessary for stable slope 
probes. Finally, the descriptive profile has aligned with Section 4.1’s sample composition: agencies with 
higher IT maturity (Figure 1) have tended to concentrate observations toward the upper end of AIA 
and BDAC, thereby contributing to the dispersion seen in Table 4 and allowing the study to estimate 
gradients rather than dichotomies in capability and outcome relationships. 
 
Correlation Matrix 
 

Table 5: Zero-Order Correlations among Likert-Scaled Constructs (n = 268) 
 

Variable AIA BDAC DGOV EFF TRAN 

AI Adoption (AIA) 1.00 .55*** .36*** .41*** .28*** 

BDAC  1.00 .49*** .46*** .39*** 

DGOV   1.00 .32*** .44*** 

Efficiency (EFF)    1.00 .47*** 

Transparency (TRAN)     1.00 

*** p < .001 (two-tailed). All variables have been measured on the same Likert 1–5 scale; coefficients are Pearson’s r. 

 
Table 5 has displayed the zero-order association structure among the core constructs prior to 
introducing controls or interaction terms. The matrix has confirmed theoretically coherent relationships 
while also signaling which links have warranted careful multivariate testing. AIA–BDAC (r = .55, p < 
.001) has indicated that units reporting higher AI usage have also tended to report stronger analytics 
capability an expected pattern given that sustained AI deployment has typically required scalable data 
infrastructure and skilled personnel. BDAC–EFF (r = .46, p < .001) and AIA–EFF (r = .41, p < .001) have 
suggested moderate positive correlations between intelligent decision support and administrative 
efficiency. On the transparency side, BDAC–TRAN (r = .39, p < .001) has exceeded AIA–TRAN (r = .28, 
p < .001), which has anticipated regression findings where capability has often outperformed mere 
adoption counts as a predictor of disclosure quality and auditability.  Data governance has been 
positively correlated with both outcomes DGOV–TRAN (r = .44) and DGOV–EFF (r = .32) and with the 
two predictors (DGOV–BDAC r = .49; DGOV–AIA r = .36). This pattern has suggested two 
complementary roles for governance: as a direct correlate of outcomes and as an enabling context for 
AI and analytics. However, because such inter-correlations have also implied potential shared variance, 
the study has not inferred causation from these bivariate statistics. Instead, the matrix has served as an 
entry point for hierarchical regressions with controls and moderation, where the incremental 
contributions of AIA and BDAC over organizational structure and case context have been assessed, 
and where AIA×DGOV and BDAC×DGOV interactions have been probed. From a measurement 
perspective, coefficients have remained below .85, which has supported discriminant validity among 
constructs and has reduced concerns about multicollinearity inflating standard errors in later models. 
The moderately strong EFF–TRAN (r = .47) has reinforced the idea that agencies reporting smoother, 
quicker processes have also tended to report clearer documentation and more regular public reporting 
plausible co-movement given shared managerial attention and overlapping process reforms. Yet this 
co-movement has not been so high as to preclude modeling EFF and TRAN separately; indeed, the later 
seemingly unrelated regression (SUR) sensitivity has capitalized on this correlation while leaving 
primary inference within the transparent OLS framework. Overall, the correlation matrix has offered 
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an interpretable snapshot consistent with the theoretical model, while motivating the need for adjusted, 
cluster-robust regressions to delineate conditional relationships and governance moderation. 
Regression Results (Primary & Moderation) 
 

Table 6: Hierarchical OLS Results for Efficiency (EFF) and Transparency (TRAN)  
 

Model Predictor β (Std.) Robust SE 95% CI t p Adj. R² 

A: EFF (Blocks 1–2) Intercept           .35 
 Controls (set)            
 AIA .21 .06 [.09, .33] 3.50 <.001  
 BDAC .29 .06 [.17, .41] 4.83 <.001  

B: TRAN (Blocks 1–2) Intercept           .33 
 Controls (set)            
 AIA .12 .05 [.02, .22] 2.34 .020  
 BDAC .26 .07 [.12, .40] 3.72 <.001  

A+: EFF (Blocks 1–3) Intercept           .36 
 Controls (set)            
 AIA, BDAC, DGOV            
 AIA×DGOV .09 .05 [−.01, .19] 1.69 .092  
 BDAC×DGOV .07 .05 [−.03, .17] 1.36 .175  

B+: TRAN (Blocks 1–3) Intercept           .35 
 Controls (set)            

 AIA, BDAC, DGOV            

 AIA×DGOV .14 .05 [.05, .23] 2.90 .004  

 BDAC×DGOV .11 .05 [.01, .21] 2.17 .031  
β are standardized; controls include size, budget band, IT maturity, service domain, and case fixed effects. Likert 1–5 scales used for all 
composites. Robust SEs are clustered by agency (k = 5). 

 
Table 6 has reported hierarchical OLS models that have estimated the associations between intelligent 
decision support and the two focal outcomes, using agency-clustered robust standard errors to respect 
within-case dependence. In Model A (EFF), the introduction of AIA and BDAC after organizational 
controls has raised adjusted R² to .35, and both predictors have remained statistically significant with 
substantively meaningful standardized coefficients (BDAC β = .29, p < .001; AIA β = .21, p < .001). 
Interpreted on the Likert metric, this pattern has implied that one standard deviation increases in BDAC 
and AIA have been associated with higher perceived efficiency shorter turnaround times, more stable 
throughput, and better prioritization after accounting for size, budget, IT maturity, service domain, and 
case effects. In Model B (TRAN), adjusted R² has reached .33, with BDAC (β = .26, p < .001) again 
outperforming AIA (β = .12, p = .020), indicating that capability depth has explained more variance in 
transparency than adoption alone. The moderation extensions have explored whether Data 
Governance Strength (DGOV) has conditioned these relationships. In Model A+ (EFF), interaction 
terms have trended positive but have not reached conventional significance (AIA×DGOV p = .092; 
BDAC×DGOV p = .175), which has suggested that governance quality has not systematically amplified 
efficiency gains once controls and main effects have been accounted for. By contrast, Model B+ (TRAN) 
has shown significant moderation for both interactions: AIA×DGOV (β = .14, p = .004) and 
BDAC×DGOV (β = .11, p = .031). Simple-slopes probes (not pictured) have indicated that the AIA → 
TRAN slope has been negligible at DGOV = −1 SD but has been materially stronger at DGOV = +1 SD, 
implying that in well-governed contexts, the same level of AI adoption has translated into clearer 
documentation, more reproducible indicators, and more regular public reporting. This conditional 
finding has aligned with the theoretical expectation that transparency has required not just tools and 
capability, but also stewardship, documentation, and auditability routines captured by DGOV. 
Diagnostics (not displayed in the figure) have confirmed model adequacy: VIFs have remained below 
3, residuals have approximated normality in Q–Q inspections, and mild heteroskedasticity has been 
addressed via agency-clustered robust errors. Collectively, the regression results have supported the 
study’s primary hypotheses that AI adoption and analytics capability have been positively associated 
with efficiency and transparency, and they have provided moderated evidence that governance quality 
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has been an important catalyst for translating technical capability into visible, auditable decision 
rationales. 
Robustness and Sensitivity Analyses 
 

Table 7: Diagnostic and Sensitivity Summary 
 

Check / Sensitivity Metric / Test Result 

Multicollinearity VIF (max across models) 2.85 

Heteroskedasticity Breusch–Pagan (p) .041 → addressed by agency-clustered SEs 

Within-case dependence ICC (EFF / TRAN) .04 / .05 

Influence Max Cook’s D 0.18 (no case > 0.50) 

Leave-one-case-out Δβ (AIA on TRAN) ±0.03; inference unchanged 

Standardization β vs. raw scale Rank ordering unchanged 

Alternative outcomes EFF, TRAN standardized (z) Adj. R² shifts < .02 

SUR sensitivity ρ (error correlation) .31; coefficients substantively similar 

Common-method bias Single-factor variance 31%; marker variable negligible 

Interaction probes AIA→TRAN at DGOV ±1 SD β_low ≈ .03 (ns); β_high ≈ .26 (p < .001) 

 
Table 7 has consolidated robustness and sensitivity evidence to demonstrate that the reported 
associations have not depended on fragile specification choices. First, multicollinearity has been 
modest: maximum VIF across models has been 2.85, well below the conservative threshold of 5 used in 
the analysis plan, so coefficient standard errors have not been inflated to a degree that would jeopardize 
inference. Second, heteroskedasticity has been mild but present (Breusch–Pagan p = .041); this issue 
has been handled via agency-clustered robust standard errors, which have accommodated both 
unequal variances and within-case correlation. The estimated intra-class correlations for EFF (.04) and 
TRAN (.05) have confirmed non-trivial clustering, validating the decision to use cluster-robust 
inference and to include case fixed effects in all models. Influence diagnostics have shown that max 
Cook’s D = 0.18 and that no case has exceeded .50, which has suggested that individual observations 
or single agencies have not driven results. A leave-one-case-out analysis has further supported this 
conclusion: when each case has been removed in turn, the standardized coefficient for AIA on TRAN 
has varied within ±0.03, and no removals have reversed significance. Standardization checks have 
demonstrated that ranking and significance of predictors have remained stable whether composites 
have been kept on the original Likert metric or standardized, which has improved interpretability 
without altering conclusions. Alternative outcome codings (z-scored EFF and TRAN) have shifted 
adjusted R² by less than .02, confirming that fit measures have not been sensitive to scale respecification. 
Because EFF and TRAN have been moderately correlated outcomes, a seemingly unrelated regression 
(SUR) sensitivity has been run; the cross-equation error correlation (ρ = .31) has indicated shared 
unobserved factors, yet coefficients and significance patterns have remained substantively similar to 
those in Figure 4, which has strengthened confidence in the simpler OLS presentation. Common-
method bias checks have been reassuring: the unrotated single-factor has captured 31% of variance 
below the levels that would indicate dominance and a marker-variable adjustment has produced 
negligible changes in focal coefficients. Finally, the interaction probe reported in the table has replicated 
the moderation claim central to transparency: the AIA → TRAN slope has been near zero at low 
governance (DGOV −1 SD) and sizeable at high governance (DGOV +1 SD).  
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DISCUSSION 
The findings of this study have indicated three core results: first, big data analytics capability (BDAC) 
has shown a stronger and more consistent association with administrative efficiency and organizational 
transparency than AI adoption alone; second, AI adoption has been positively related to both outcomes 
but with smaller standardized effects; and third, data governance strength (DGOV) has significantly 
moderated the pathway to transparency amplifying the effects of both AI adoption and BDAC while 
showing weaker or null moderation for efficiency. Taken together, these patterns have aligned with a 
capability-centered view of digital transformation in government, where the routinization of analytics 
(infrastructure, skills, and lifecycle processes) has mattered more than the mere presence of algorithmic 
tools (Chen et al., 2012; Gupta & George, 2016). The transparency-specific moderation has reinforced 
the argument that disclosure quality, auditability, and interpretability hinge on governance artifacts 
such as metadata standards, documentation templates, and stewardship roles (Grimmelikhuijsen et al., 
2013). In contrast, efficiency gains have appeared more “direct,” materializing as faster cycle times and 
better workload triage once analytics and AI have been embedded regardless of whether governance 
is exceptionally strong an interpretation consistent with prior municipal and service-delivery cases 
(Chatfield & Reddick, 2018). The overall pattern has therefore extended prior work by estimating, 
within one quantitative framework, how capability, adoption, and governance have combined to shape 
efficiency and transparency across multiple agencies, lending empirical precision to conceptual claims 
about “smart governance” (Brynjolfsson et al., 2011; Dawes, 2009). 
 

Figure 8: AI, Big Data Analytics Capability, and Data Governance  
 

 
 
Interpreting the efficiency pathway, the results have suggested that BDAC has operated as a conversion 
mechanism translating heterogeneous data assets into operational improvements reduced turnaround 
time, more stable throughput, and better prioritization. This interpretation has dovetailed with 
resource-based and dynamic-capabilities perspectives, which have emphasized the orchestration of 
data infrastructure, analytical talent, and managerial routines as the proximal drivers of performance 
(von Briel et al., 2022; Wamba et al., 2017). The observed positive association between AI adoption and 
efficiency has echoed evidence that machine-learning classifiers, NLP assistants, and decision-support 
heuristics can accelerate case handling and triage when integrated with frontline workflows (Chatfield 
& Reddick, 2018). However, the comparatively larger coefficient for BDAC has aligned with studies 
showing that the depth of analytics routines not just tool deployment explains variance in 
organizational outcomes (Akter et al., 2016). From a benchmarking perspective, the Likert-based effect 
sizes have implied practically meaningful improvements: moving a unit from “neutral” capability to 
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“agree” has corresponded to non-trivial gains in perceived timeliness and workload stability. That 
pattern has updated prior single-case narratives by providing cross-case estimates with cluster-robust 
inference, showing that capability consistently “travels” across contexts. Importantly, the results have 
not implied that governance is irrelevant to efficiency; rather, they have suggested that once analytics 
are competently integrated into operations, many efficiency benefits can accrue through local process 
redesign and managerial uptake, even when formal documentation and stewardship are still maturing 
(Twizeyimana & Andersson, 2019). This nuance has situated the present evidence alongside earlier 
accounts while clarifying boundary conditions regarding where governance adds the most value. 
The transparency pathway has revealed a different structure: governance has mattered. The significant 
AIA×DGOV and BDAC×DGOV interactions for transparency have indicated that adoption and 
capability have translated into clearer documentation, reproducible indicators, and more regular 
reporting when stewardship, standards, and audit trails have been stronger. This pattern has been 
consistent with public-transparency syntheses that locate accountability gains in targeted, well-
governed disclosures rather than in “openness” alone (Cucciniello et al., 2017). It has also aligned with 
scholarship on algorithmic accountability, which has emphasized model documentation, data 
provenance, and reviewability as prerequisites for intelligible public justification (Kroll et al., 2017). In 
essence, governance has acted as the bridge between internal intelligence and external visibility: 
without DGOV, analytics have improved internal management but have not reliably produced 
auditable, citizen-facing signals; with DGOV, the same analytics have been more likely to appear as 
stable metrics and narrative-ready explanations. The results have, therefore, reconciled two strands in 
the literature e-government’s focus on public value and IS’s focus on capability by specifying where 
they intersect: analytics produce value for the public sphere when governance practices make their 
logic legible and their outputs replicable (Bannister & Connolly, 2014; Meijer et al., 2012). Notably, the 
lack of robust governance moderation on efficiency has fit with the notion that some outcomes (speed, 
throughput) are internally realized and less dependent on disclosure scaffolding, whereas 
transparency, by definition, is entangled with governance processes for documentation and 
auditability. 
The practical implications for public-sector CISOs, data architects, and program leads have followed 
directly from these results. First, investments in BDAC should prioritize end-to-end lineage and 
lifecycle controls schema registries, reproducible data pipelines, model versioning, and drift 
monitoring so that analytic outputs can be trusted operationally and rendered audit-ready externally 
(Khatri & Brown, 2010; Löfgren & Webster, 2020). Second, agencies should pair AI deployments with 
governance gates that require model cards, data source inventories, and limitation statements before 
production use, aligning with algorithmic accountability guidance (Veale & Brass, 2019). Third, 
transparency should be implemented as a designed product: indicator dictionaries, stable refresh 
schedules, and templated explanations should be owned by named stewards and tied to oversight 
calendars; this converts internal intelligence into outward-facing legitimacy (Meijer et al., 2012). Fourth, 
to unlock efficiency gains without undermining trust, human–AI interaction patterns should be 
anticipated through interface choices (rationales, uncertainty displays) and escalation rules that 
prevent overreliance, consistent with evidence on automation bias and selective adherence in public 
decision-making (Alon-Barkat & Busuioc, 2023). Finally, the results have suggested a sequencing guide: 
establish baseline descriptive analytics and data quality controls; implement BDAC components that 
stabilize production (integration, monitoring); deploy AI on use cases with clear discretion and 
safeguards; and bring DGOV artifacts online to transform internal metrics into explainable, reportable 
transparency assets. For CIO/CISO offices, this roadmap has been operationally specific and congruent 
with observed effect patterns in both outcomes. 
The theoretical implications have centered on refining pipeline-oriented models of smart governance. 
First, the stronger BDAC effects have supported a capability-dominant logic in which infrastructural, 
human, and process resources jointly enable performance consistent with resource-based and dynamic-
capabilities theories (Guenduez et al., 2020; Gupta & George, 2016). Second, the governance-
conditioned transparency effects have encouraged models that treat DGOV as a boundary resource that 
converts internal intelligence into public value by mediating explainability, reproducibility, and 



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 1128– 1159 
 

1153 
 

comparability (Khatri & Brown, 2010). Third, the pattern has suggested a multi-stage pipeline data → 
capability (BDAC) → internal outcomes (efficiency) → governance curation → external outcomes 
(transparency) which unites IS capability frameworks with digital-government value theory (Bannister 
& Connolly, 2014). Fourth, the comparatively smaller but significant AI adoption coefficients have 
implied that “adoption counts” are insufficient proxies for intelligence; theory building should 
privilege embeddedness the location of analytics in decision points and institutionalization the stability 
of routines as the operative constructs. Finally, the moderation asymmetry (strong for transparency, 
weaker for efficiency) has cautioned against universal claims about governance; theory should specify 
outcome-contingent roles for DGOV, with a stronger role for outward-facing outcomes that demand 
legibility and traceability. These refinements have suggested testable propositions for future 
comparative and longitudinal research. 
The study’s limitations have qualified these interpretations. The cross-sectional design has precluded 
causal claims; associations could reflect reciprocal reinforcement (e.g., more efficient agencies being 
more likely to invest in capability) or omitted variables tied to leadership quality or reform cycles. Self-
reported Likert measures, although reliable and discriminant, have remained subject to perceptual 
biases; while common-method checks have been reassuring, unmeasured halo effects cannot be fully 
excluded. The multi–case sample has encompassed five agencies with moderate IT maturity; 
generalizability to very low-capacity or very high-capacity contexts may be limited, and effect sizes 
could differ under severe legal or budgetary constraints. Measurement choices have emphasized 
organizational-level composites; micro-process measures (e.g., ticket-level timestamps, audit-trail 
metadata) have not been included, which could provide finer-grained tests of efficiency claims. 
Additionally, AI adoption has been measured as breadth and integration, not as specific model classes 
or risk tiers; future work may find differentiated effects by use case (eligibility triage vs. inspections vs. 
procurement). Finally, transparency has been conceptualized as documentation clarity, reproducibility, 
and reporting regularity; citizen trust, participation, and contestation outcomes while related have not 
been directly measured here (Cucciniello et al., 2017). These limits have not undermined the core 
findings but have delineated the boundaries within which they should be interpreted. 
Future research has several clear avenues. First, longitudinal or panel designs could track pre/post 
adoption and capability build-out to estimate causal effects using fixed effects or difference-in-
differences designs, particularly around phased rollouts of analytics platforms (Brynjolfsson et al., 
2011). Second, quasi-experimental tests in operational settings could compare units that implement 
governance gates (model cards, lineage) against units that do not, quantifying the incremental 
contribution of DGOV to transparency. Third, mixed-method designs that link survey composites to 
objective administrative traces (e.g., system logs, SLA adherence, publication histories) could 
triangulate and calibrate effect magnitudes. Fourth, sector-specific studies (health, welfare, transport) 
could examine whether capability–outcome elasticities differ by regulatory intensity and data richness 
(Scholl & Scholl, 2014). Fifth, human–AI interaction experiments in public workflows could test 
interface-level safeguards (rationales, uncertainty bands, dissent prompts) to mitigate automation bias 
and selective adherence (Alon-Barkat & Busuioc, 2023). Sixth, cross-national comparisons could 
examine institutional moderators legal mandates for disclosure, FOI regimes, audit intensity mapping 
how governance institutions shape transparency realization (Mikhaylov et al., 2018). Finally, program-
evaluation frameworks could be extended to include citizen-facing outcomes trust, satisfaction, and the 
usability of open-data outputs thereby connecting internal intelligence to external public value 
pathways in a fully specified smart-governance model (Brynjolfsson et al., 2011; Meijer et al., 2012). 
CONCLUSION 
This study has advanced an integrated, empirical account of intelligent decision support in smart 
governance by demonstrating that big data analytics capability (BDAC) has been the most consistent 
and substantively meaningful predictor of administrative efficiency and organizational transparency 
across multiple public agencies, while artificial intelligence (AI) adoption has contributed positively 
with smaller effect sizes, and data governance strength (DGOV) has conditioned the translation of 
technical capacity into outward-facing transparency. Using a quantitative, cross-sectional, multi–case 
design and standardized five-point Likert scales, the analysis has shown that agencies with more 
mature analytics pipelines spanning data integration, lineage, model lifecycle routines, and the 
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embedding of metrics in managerial processes have reported shorter turnaround times, more stable 
throughput, clearer documentation, reproducible indicators, and more regular reporting. Crucially, 
moderation tests have indicated that governance artifacts stewardship roles, quality standards, audit 
trails, and documentation templates have amplified the link between both AI adoption and BDAC and 
transparency outcomes, while exerting a weaker, less systematic influence on efficiency, which has 
tended to materialize once tools and analytic routines have been competently integrated into day-to-
day operations. Methodologically, the study has contributed a coherent measurement model, strong 
reliability, discriminant validity across constructs, and cluster-robust inference that has respected case-
level dependence, thereby improving on single-case narratives and heterogeneous metrics that have 
limited comparability in prior work. Substantively, the results have provided a concrete sequencing 
and design logic for practitioners: build BDAC as an end-to-end capability rather than a collection of 
tools; require governance gates (model cards, data dictionaries, lineage) before production use; and 
design transparency as a managed product with stable indicators, refresh schedules, and named 
stewards. Theoretically, the evidence has supported a capability-dominant view and a refined pipeline 
model in which data, capability, and governance interact to produce distinct internal (efficiency) and 
external (transparency) outcomes, clarifying why adoption counts alone rarely predict public value. 
The study’s limitations cross-sectional timing, self-reported measures, and a moderate range of 
institutional contexts have been acknowledged, yet robustness checks (e.g., leave-one-case-out, 
alternative codings, SUR sensitivity) have suggested that the central inferences have been stable. 
Overall, the research has furnished a defensible empirical baseline and a practical blueprint for agencies 
seeking to align AI and analytics with measurable gains in efficiency and demonstrable gains in 
transparency: invest first in BDAC foundations and workflow integration; pair deployments with 
governance that renders decisions explainable and audit-ready; and use standardized indicators to 
make internal intelligence visible, comparable, and accountable.  
RECOMMENDATIONS 
Building on the evidence that capability depth and governance have driven the strongest results, this 
study has recommended a sequenced, end-to-end modernization program that has started with 
foundations, moved through operationalization, and culminated in visible accountability. First, 
agencies have prioritized establishing a formal Data & Analytics Governance Office chaired jointly by 
the CIO/CISO and a program executive, with named stewards for each data domain; this office has 
maintained data dictionaries, lineage maps, access policies, privacy impact assessments, and model 
registries, and it has enforced governance gates (model cards, limitation statements, and approval 
checklists) before any analytic asset has reached production. Second, capability build-out has focused 
on BDAC essentials rather than tool proliferation: standardized data ingestion and quality checks; 
reproducible pipelines with version control; scalable storage/compute; and MLOps routines for model 
monitoring, drift alerts, rollback, and incident response. Third, agencies have adopted a risk-tiering 
approach to AI use cases (e.g., Tier 1 = advisory triage; Tier 2 = workload prioritization; Tier 3 = 
eligibility recommendations) and have matched safeguards accordingly escalation rules, second-reader 
requirements, uncertainty displays, and audit trails so that human–AI collaboration has remained 
explainable and contestable. Fourth, to convert internal intelligence into public value, teams have 
productized transparency through stable indicator definitions, refresh schedules, and narrative 
templates, publishing reproducible metrics with provenance fields and maintaining a changelog 
whenever definitions have evolved; this has turned DGOV into tangible, audit-ready outputs. Fifth, 
workforce enablement has been continuous: managers and frontline staff have received role-specific 
training on data literacy, interpretation of model outputs, and appropriate skepticism (how to weigh 
algorithmic advice, recognize bias, and act on uncertainty), while architects and analysts have been 
trained on secure coding, threat modeling, and privacy-preserving techniques (minimization, de-
identification, differential privacy where appropriate). Sixth, procurement and vendor management 
have been reshaped to require deliverable accountability open documentation, 
performance/robustness reports on representative public-sector data, handover of reproducible 
pipelines, and explicit obligations for bias testing and post-deployment support avoiding black-box 
dependencies. Seventh, program leadership has institutionalized evidence routines: quarterly steering 
reviews that have tied BDAC/AI initiatives to service KPIs (turnaround time, throughput stability, 
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backlog age) and to transparency KPIs (on-time publication, reproducibility checks passed, help-desk 
resolution for data inquiries), with a standing “kill or scale” decision rubric. Eighth, security and 
privacy have been embedded by design: zero-trust access to analytic environments, secrets 
management, continuous vulnerability scans, and tabletop exercises for model or data incidents, all 
coordinated with legal and ethics advisors. Ninth, to sustain improvement, agencies have implemented 
measurement and feedback loops that have reused the validated survey scales from this study to track 
AIA, BDAC, DGOV, efficiency, and transparency semiannually, and they have complemented 
perceptions with objective traces (SLA compliance, audit-trail completeness, publication histories) for 
triangulation. Finally, interagency collaboration has been formalized through a shared pattern library 
reference pipeline, indicator templates, and governance artifacts so that gains have propagated beyond 
single pilots; this has ensured that investments have translated into persistent, scalable improvements 
in timeliness, consistency, and public accountability. 
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