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Abstract 
This paper introduces a Hybrid Discrete-Event and Agent-Based Simulation Framework (H-DEABSF) 
designed for dynamic process control in smart factories. The framework integrates the advantages of 
discrete-event simulation (DES)—noted for its efficiency in modeling system flows and queues—with 
the adaptability and autonomy of agent-based simulation (ABS), which captures decentralized 
decision-making and interactions among heterogeneous entities. By combining these paradigms, the 
H-DEABSF addresses the limitations of each when applied in isolation, enabling both macroscopic 
process optimization and microscopic behavior modeling. The proposed framework is specifically 
developed to support the evolving needs of Industry 4.0, where factories must continuously adapt to 
fluctuating demand, real-time disruptions, and resource constraints. It leverages smart sensors, IoT-
enabled devices, and cyber-physical systems to feed real-time data into the hybrid model, ensuring that 
simulations reflect operational realities. Through dynamic control loops, the H-DEABSF facilitates 
adaptive scheduling, predictive maintenance, and production-line reconfiguration, thereby enhancing 
responsiveness and resilience. A case study in a digital twin–enabled smart factory environment 
demonstrates the applicability of H-DEABSF for dynamic production scheduling under stochastic 
conditions. The results show improvements in system throughput, reduction of idle time, and 
optimized allocation of resources when compared to conventional single-method simulation models. 
Furthermore, the integration of human operators as autonomous agents highlights the framework’s 
ability to capture socio-technical interactions critical in real-world factory operations. This research 
contributes to the field of smart manufacturing by providing a comprehensive simulation framework 
that enhances real-time decision-making and supports sustainable operational strategies. It also offers 
an extensible platform for future integration with machine learning algorithms, enabling data-driven 
decision support for next-generation intelligent factories. 
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INTRODUCTION 
The concept of hybrid simulation arises from the recognition that no single modeling paradigm suffices 
to represent the full complexity of many real‐world systems, especially in socio-technical or industrial 
contexts. In the modeling & simulation (M&S) community, hybrid simulation is broadly understood as 
an approach that integrates two or more of the principal simulation paradigms—namely, discrete‐event 
simulation (DES), agent‐based modeling (ABM / ABS), and system dynamics (SD)—within a single cohesive 
framework (Liu & Wu, 2014). The power of this amalgamation lies in combining the strengths of each 
paradigm to represent different levels of abstraction or dynamics: DES captures event-driven, 
queueing, and resource‐utilization dynamics; ABM models individual entities’ autonomy and 
interactions; and SD represents aggregated continuous flows or feedback loops. Hybrid methods have 
seen near‐exponential growth over the last two decades, both in the academic literature and in applied 
domains (Mustafee et al., 2021). The editorial on hybrid modelling and simulation emphasizes that 
rapidly increasing system complexity in domains like manufacturing, healthcare, transportation, and 
social systems has driven adoption of multimethod approaches (Badakhshan & Ball, 2023). Within this 
spectrum, hybrid DES–ABS (or DES–ABM) is especially relevant when one must capture both process 
flows (queues, timing, resource contention) and localized agent behaviors or decision logic. 
 

Figure 1: Modeling and Simulation Validation Framework 

 
 
To situate hybrid DES–ABS in the domain of smart manufacturing or Industry 4.0, it is necessary to 
define key terms. Discrete‐event simulation (DES) models the state of a system as changing at discrete 
instants—events—that instantaneously transition the system from one state to another (Jaenichen et al., 
2022; Rezaul, 2021). DES is particularly adept at capturing queuing delays, machine breakdowns, job 
routing, resource constraints, and workflow in manufacturing or logistics settings (Danish & Zafor, 
2022; Gutierrez-Franco et al., 2021). Agent‐based simulation (ABS), by contrast, models individual entities 
(agents) that carry state, execute behavior rules, perceive their environment, and interact with each 
other and the environment over time. Agents can adapt, learn, and generate emergent patterns not 
directly coded into the model—useful in modeling human operators, decision logic, decentralized 
scheduling, or cooperative behaviors. A hybrid DES–ABS approach thus allows process flows (the 
macro view) and agent behaviors (the micro view) to co‐exist and interact, which is precisely the dual 
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need in advanced manufacturing control. Several authors have underscored that DES alone may not 
capture adaptive decision making or resilience under disturbances, while ABS alone may struggle with 
representing high‐volume process flows efficiently (Danish & Kamrul, 2022; Mustafee et al., 2021). 
 

Figure 2: Hybrid DES-ABS Modelling Framework for Smart Factories 

 
 
In the context of smart factories, the term implies a cyber‐physical environment where manufacturing 
systems are instrumented, networked, and capable of adaptive control, self‐optimization, and 
decentralized coordination. Smart factories are a core element of Industry 4.0, which emphasizes 
connectivity, real-time data, digital twins, reconfigurability, and autonomy (Jahid, 2022; Swinerd & 
McNaught, 2012). Simulation technologies are central to designing, controlling, and validating such 
systems. A recent survey on simulation in Industry 4.0 identified ten simulation approaches deployed 
across smart manufacturing contexts, pointing out that hybrid and multi‐method simulation can 
capture interactions between infrastructure, agents, processes, and control logic (Ismail, 2022; Vázquez-
Serrano et al., 2021). In manufacturing, DES remains perhaps the most applied simulation 
methodology, due to its maturity, tool support, and direct fit to process models (Gutierrez-Franco et 
al., 2021; Hossen & Atiqur, 2022). However, DES models often assume static control rules or fixed 
scheduling, which constrains their ability to represent real-time adaptation or agent negotiation. On 
the other hand, agent‐based and hybrid frameworks allow more flexible, decentralized decision 
schemes embedded within process flows, enabling richer experiments on resilience, scheduling 
adaptation, and resource collaboration ((Kamrul & Omar, 2022; Swinerd & McNaught, 2012). 
Among published studies applying hybrid DES–ABS to manufacturing or reconfigurable systems, 
several foundational works stand out. (Roozkhosh et al., 2022) present a modeling framework for 
reconfigurable manufacturing systems by hybridizing discrete‐event and agent‐based simulation, 
examining emergent behaviors when system configurations change. Meanwhile, a modular hybrid 
simulation framework for complex manufacturing systems was proposed by a different research team 
to address static complexity and support resource planning. In reconfigurability studies, hybrid 
simulation has been used to explore the effect of structural modifications, agent coordination, and 
process adaptation. A framework for modeling reconfigurable manufacturing using hybrid ABS–DES 
is cited as a key example of representing both local agent decision logic and global process flows 
(Jaenichen et al., 2022; Razia, 2022). Other empirical works combine DES and agent modeling in 
scheduling, maintenance, and resource allocation—for example, integrating job agents with resource 
agents in flexible manufacturing systems (e.g., in hybrid DES–ABS applied to FMS). In broader hybrid 
simulation literature, methodological reviews note that combining DES and ABM is a common pattern 
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in hybrid M&S, and one of the most tractable and applicable pairings (Sadia, 2022). 
Methodological challenges and design patterns for hybrid DES–ABS have been studied in multiple 
works. Hybrid simulation modeling in operations research has been extensively reviewed, highlighting 
issues of synchronization, time management, state sharing, interface design, and scalability when 
combining paradigms. The editorial in the hybrid modelling domain underscores that hybrid 
approaches must address consistency, coupling, and performance issues in complex socio‐technical 
systems (Danish, 2023; Wallentin & Neuwirth, 2017). In hybrid DES–ABS, synchronization between 
event scheduling (DES side) and agent steps (ABS side) demands careful selection of time advancement 
schemes or coupling mechanisms (e.g., cycle‐based stepping, event triggers, or hybrid schedulers). 
(Tolk et al., 2020) introduce a novel DES extension in the MASON ABM platform to support hybrid 
models, demonstrating one path for integration. Hybridizing with system dynamics (SD) has also been 
proposed; though outside the pure DES–ABS boundary, these tri‐paradigm hybrids offer instructive 
lessons about coupling strategies. Additional work compares output accuracy and representational 
fidelity between pure DES and hybrid DES–ABS in human‐centric systems, which supports the view 
that hybrid models may yield better expressive richness without sacrificing process fidelity (Arif Uz & 
Elmoon, 2023; Hossain et al., 2023). Because dynamic process control in smart factories involves 
continuous and discrete disturbances, decentralized decision making, and real-time adaptation under 
uncertainty, a hybrid DES–ABS simulation framework is appealing. In manufacturing control, real‐
time updating of DES models based on streaming data (e.g. sensor feeds) has been explored (Hasan, 
2023; Shoeb & Reduanul, 2023; Zhu et al., 2023), emphasizing the need for feedback loops and online 
decision logic. Incorporating agent logic into such models could enable intelligent controllers or 
distributed agents to adjust schedules, manage disturbances, or negotiate resource conflicts while still 
relying on accurate event simulation for throughput and queueing effects. Additionally, some hybrid 
digital twin frameworks combine discrete‐event and continuous processes, sustaining the need for 
hybrid modeling in real operations. The adoption of AI in simulation, such as AI-assisted discrete-event 
simulation, further blurs boundaries between simulation control and agent logic (as in recent works 
integrating AI agents to construct DES models and analyze outputs) (Kolominsky-Rabas et al., 2015; 
Mubashir & Jahid, 2023; Razia, 2023). Thus, hybrid DES–ABS serves as a promising envelope within 
which dynamic control experiments, agent rationality, and process flows coexist. 
The primary objective of this research is to develop and validate a Hybrid Discrete-Event and Agent-
Based Simulation Framework (H-DEABSF) that addresses the challenges of dynamic process control in 
smart factory environments. The framework aims to provide a comprehensive modeling approach that 
integrates the structured, event-driven strengths of discrete-event simulation with the adaptive, 
autonomous, and decentralized decision-making capabilities of agent-based simulation. The 
overarching goal is to establish a simulation platform that accurately reflects the complex interplay 
between macro-level system flows and micro-level agent behaviors, thereby enabling more robust 
experimentation with control strategies, production scheduling, and resource allocation. A key 
objective is to create a modeling environment that can incorporate real-time data streams, digital twin 
integration, and feedback loops, ensuring that the simulation outcomes are not static projections but 
dynamic reflections of ongoing operational realities. This research seeks to demonstrate that such a 
hybrid framework can support adaptive scheduling mechanisms, predictive maintenance routines, and 
rapid reconfiguration of production lines in response to disruptions or demand fluctuations. Another 
core objective is to capture the role of human operators, intelligent machines, and cyber-physical 
systems as autonomous agents within the model, allowing for analysis of socio-technical interactions 
that directly impact factory performance. By constructing and evaluating a case study within a smart 
factory context, the framework is further intended to show measurable improvements in throughput, 
reduction of idle time, and optimization of resource distribution when compared to conventional 
single-method simulation models. Beyond technical validation, an additional objective is to provide an 
extensible methodological foundation that practitioners and researchers can adapt across different 
industrial sectors where dynamic process control is essential. Through these objectives, the study seeks 
to contribute to the advancement of simulation methodologies aligned with the operational demands 
of Industry 4.0, offering a structured pathway for modeling, analyzing, and improving the adaptability 
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and resilience of smart manufacturing systems. 
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LITERATURE REVIEW 
The literature on simulation methodologies in manufacturing and industrial systems has expanded 
significantly with the advent of Industry 4.0 and smart factories, where adaptability, autonomy, and 
resilience are critical. Traditional approaches such as Discrete-Event Simulation (DES) have long been 
applied to model production flows, scheduling, and resource utilization in manufacturing 
environments. However, these methods alone often lack the flexibility to capture the heterogeneous 
behaviors of autonomous entities, including machines, cyber-physical systems, and human operators. 
To bridge this gap, Agent-Based Simulation (ABS) has been increasingly introduced, offering the 
capacity to represent decentralized decision-making and emergent behaviors. Yet, ABS by itself can be 
inefficient in handling large-scale process flows or queue-based dynamics that characterize factory 
operations. These limitations have led to the development of hybrid frameworks that combine DES and 
ABS, bringing together the structured efficiency of DES and the adaptability of ABS to form a more 
powerful simulation approach.Within this context, scholars have proposed hybrid models for a variety 
of applications, including flexible manufacturing systems, reconfigurable production lines, adaptive 
scheduling mechanisms, and real-time process control. The evolution of these methods demonstrates 
not only the technical value of hybrid simulation but also its growing relevance in addressing the 
complexities of smart factory ecosystems, where dynamic data, machine connectivity, and human–
machine collaboration create environments beyond the scope of single-method simulation. This 
literature review is organized thematically to provide a structured understanding of foundational 
concepts, technological advancements, integration challenges, and applications of hybrid DES–ABS 
approaches. The objective is to critically examine prior research, highlight methodological 
contributions, and identify research gaps that establish the rationale for the proposed H-DEABSF. 
Simulation in Manufacturing Systems 
Simulation has become a central methodological tool in manufacturing systems research due to its 
ability to represent complex processes, variability, and stochastic behaviors without disrupting real 
operations. Discrete-Event Simulation (DES) has historically been the most widely adopted approach, 
enabling researchers and practitioners to examine system performance in terms of throughput, 
resource utilization, and waiting times (Badakhshan et al., 2022). DES models have been extensively 
applied to production scheduling, bottleneck analysis, and system design in a variety of industrial 
contexts. Their advantage lies in handling queuing dynamics and resource interactions with precision, 
making them suitable for manufacturing environments characterized by sequential processes and 
event-driven dynamics. However, critics note that DES often assumes centralized decision-making and 
static logic, which limits its ability to capture adaptive human or machine behaviors in dynamic 
contexts. In contrast, System Dynamics (SD), although less common in shop-floor modeling, has been 
employed to capture aggregated flows and feedback loops at higher levels of abstraction (Kolominsky-
Rabas et al., 2015). The comparison between DES and SD in manufacturing highlights the strengths of 
DES for micro-level operations and SD for strategic-level planning, demonstrating that each paradigm 
serves different layers of manufacturing analysis. These foundational insights have established 
simulation as a powerful tool for analyzing industrial systems under both deterministic and stochastic 
conditions, while revealing the limitations of single-paradigm approaches when applied to complex, 
adaptive environments. 
The increasing complexity of manufacturing processes and the emergence of flexible and 
reconfigurable production systems have elevated the role of simulation in evaluating adaptability, 
resilience, and scalability. DES has been utilized to model machine breakdowns, process variability, 
and job routing strategies in flexible manufacturing systems (FMS) (Paul et al., 2010; Reduanul, 2023; 
Sadia, 2023). Studies have demonstrated its capacity to test alternative scheduling policies and capacity-
expansion scenarios, showing measurable improvements in performance outcomes. However, 
traditional DES models often overlook decentralized decision-making mechanisms inherent in modern 
smart factories. To address this, researchers have incorporated Agent-Based Simulation (ABS), which 
allows autonomous entities—such as machines, operators, and robotic agents—to interact and adapt 
in real time. ABS excels in capturing heterogeneity and emergent behavior, as shown in studies 
modeling workforce collaboration, resource negotiation, and machine-to-machine communication in 
production lines (Bonabeau, 2002; Danish & Zafor, 2024; Jahid, 2024a). Empirical applications indicate 
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that ABS can replicate dynamic reconfigurations that DES alone cannot achieve, especially in 
environments requiring self-organization. Comparative research has reinforced that ABS provides 
richer insights into socio-technical systems, while DES retains superior efficiency in handling large-
scale event-driven workflows (Yousefi & Ferreira, 2017). This duality underscores the complementary 
nature of simulation paradigms, suggesting the necessity of integrating multiple approaches for 
accurate representation of modern manufacturing complexity. 

 
Figure 3: Simulation in Manufacturing Systems 

 
 
Discrete-Event Simulation in Manufacturing Control 
Discrete-Event Simulation (DES) has been one of the most widely employed methods for analyzing and 
optimizing manufacturing control due to its ability to replicate the stochastic and event-driven nature 
of production systems. At its core, DES models capture the state of a system as it evolves through 
discrete changes triggered by events such as machine failures, order arrivals, and job completions 
(Assad et al., 2019). Its strength lies in providing detailed analysis of queuing dynamics, resource 
utilization, and system bottlenecks under varying operating conditions (Xiong et al., 2022). Numerous 
applications demonstrate DES as a vital decision-support tool for evaluating scheduling policies, shop-
floor layouts, and machine allocation strategies. For example, in flexible manufacturing environments, 
DES has been used to assess throughput under varying demand profiles, identifying optimal 
sequencing and batch sizes. Research further highlights its utility in reducing production lead times 
and improving overall system performance in both small-scale and large-scale manufacturing 
operations (Jahid, 2024b; Ismail, 2024; Mustafee et al., 2021). Despite its dominance in manufacturing 
modeling, critiques note that DES often emphasizes efficiency and productivity metrics, while 
underrepresenting adaptive behaviors of workers, machines, or autonomous systems. Nevertheless, 
the method’s enduring relevance underscores its foundational role in manufacturing control research. 
The application of DES in production scheduling and control has been particularly influential, enabling 
manufacturers to test strategies in virtual environments before implementation. Simulation 
experiments using DES have been widely reported to optimize job-shop scheduling, flow-shop 
sequencing, and dynamic allocation of machines and labor. DES has been integrated into studies of 
just-in-time (JIT) systems, kanban-based scheduling, and lean manufacturing practices, where it 
provides insight into variability impacts and process synchronization (Assad et al., 2019; Mesbaul, 2024; 
Md Omar, 2024). Studies demonstrate how DES captures variability in order arrivals, processing times, 
and setup requirements, offering valuable tools for analyzing robustness of control policies under 
uncertainty ((Fellah et al., 2021; Rezaul & Hossen, 2024; Momena & Sai Praveen, 2024). In 
semiconductor and electronics manufacturing, DES models have been developed to address high 
product mix and rapid changeover challenges, where results revealed improvements in utilization and 
reduction in work-in-process inventory. In addition, empirical studies on automotive manufacturing 



ASRC Procedia: Global Perspectives in Science and Scholarship, May 2024, 72–96 
 

79 
 

show how DES can assess bottleneck relief strategies and sequencing optimization across complex 
assembly lines. These applications illustrate that DES not only provides performance insights but also 
contributes to enhancing reliability and cost-effectiveness in manufacturing control systems where 
experimentation with physical processes is impractical. Beyond scheduling, DES has been extensively 
used for system performance evaluation and bottleneck analysis, offering quantitative support for 
control decisions in dynamic production environments. Simulation-based bottleneck detection has 
been reported to significantly improve cycle times, throughput rates, and system responsiveness 
(Muhammad, 2024; Saleh et al., 2019; Noor et al., 2024).  
 

Figure 4: Discrete-Event Simulation in Manufacturing Control 

 
 
In assembly systems, DES has revealed how workstation sequencing and buffer sizing affect overall 
productivity, allowing more accurate predictions of system capacity. Research also indicates that DES 
is effective in comparing push- versus pull-based control mechanisms, showing advantages in terms of 
inventory stability and responsiveness. Studies in reconfigurable manufacturing demonstrate that DES 
facilitates evaluation of structural flexibility by modeling alternative system configurations and 
analyzing their impact on throughput and resource utilization. Applications in the pharmaceutical and 
process industries further reinforce DES’s versatility, where it has been applied to evaluate batch 
production strategies and compliance with regulatory constraints (Stoldt et al., 2016). Collectively, 
these studies affirm DES as a cornerstone of manufacturing control research by providing a rigorous 
means of measuring performance outcomes under variable operational conditions. 
Agent-Based Simulation in Smart Manufacturing 
Agent-Based Simulation (ABS) has emerged as a powerful methodology in smart manufacturing due 
to its capacity to model autonomous entities, decentralized decision-making, and emergent behaviors. 
Unlike discrete-event simulation, which is primarily process-oriented, ABS focuses on the interactions 
of individual agents—such as machines, human operators, robots, or cyber-physical systems—each 
endowed with local decision rules and adaptive behaviors (Zhu et al., 2023). This paradigm is 
particularly relevant in smart factories, where multiple heterogeneous actors operate concurrently 
under distributed control schemes. Early studies demonstrated the effectiveness of ABS in modeling 
workforce behavior and decision-making on the shop floor, capturing dynamics such as cooperation, 
competition, and learning (Zhu et al., 2023). In manufacturing contexts with high complexity and 
uncertainty, ABS provides a means to replicate emergent system performance resulting from localized 
interactions rather than centrally imposed logic. Researchers have applied ABS to model negotiation 
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among machine agents for resource allocation, dynamic response to disruptions, and adaptive 
scheduling mechanisms. By capturing heterogeneity and autonomy, ABS enables analysis of how 
micro-level decision rules impact macro-level system outcomes in smart factories, offering insights into 
resilience, adaptability, and operational efficiency. 
Applications of ABS in manufacturing extend across flexible and reconfigurable production systems, 
where autonomy and adaptability are critical. Studies demonstrate that ABS can replicate machine-to-
machine and human-machine interactions in environments where resources must be dynamically 
reallocated in response to changing demands (Stephenson et al., 2020). For example, ABS models have 
been used to evaluate reconfigurable manufacturing systems, where agents represent machines with 
varying capabilities that negotiate tasks under stochastic demand conditions. In the context of supply 
chains, ABS has been adopted to represent decentralized actors coordinating production and logistics 
under variable lead times and disruptions. Empirical research highlights that ABS is particularly 
suitable for capturing emergent patterns, such as the formation of bottlenecks due to localized decision-
making or the stabilization of flows through cooperative negotiation. Furthermore, ABS provides a 
methodological advantage in studying reconfigurable production lines where modularity and 
scalability influence system performance, enabling detailed exploration of how autonomous decisions 
affect throughput and resource utilization (Liu et al., 2011). These studies collectively demonstrate that 
ABS enriches the understanding of manufacturing control by reflecting decentralized, adaptive, and 
emergent characteristics inherent in smart factory systems. 
 

Figure 5: Agent-Based Simulation in Smart Manufacturing 

 
 
Another major area of research emphasizes the use of ABS in human-centric and socio-technical 
dimensions of smart manufacturing, where human operators act as autonomous agents interacting 
with machines, robots, and digital systems. Studies have shown that ABS can effectively represent 
operator decision-making, collaboration, and learning, offering a more realistic depiction of factory 
operations compared to process-driven models (Kitchin & Baber, 2015). Research on workforce 
scheduling demonstrates how ABS can simulate absenteeism, fatigue, or skill variations, which 
significantly influence overall system performance. In collaborative robotics, ABS has been applied to 
study human-robot interaction, focusing on safety, workload balancing, and decision sharing in 
production lines. The methodology has also been instrumental in modeling socio-technical resilience, 
where the interaction of humans and machines determines the ability of a factory to absorb 
disturbances and maintain productivity (Lohmer et al., 2020). ABS provides a means of testing 
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alternative configurations of human involvement, highlighting how operator autonomy and 
adaptability influence throughput, quality, and system stability. These contributions reinforce ABS as 
a vital tool for capturing the complexity of human-machine collaboration in Industry 4.0 environments. 
Research further demonstrates the integration of ABS with cyber-physical systems, digital twins, and 
intelligent decision-support technologies to enhance its application in smart manufacturing. ABS has 
been used in conjunction with IoT-enabled devices to simulate decentralized decision-making based 
on real-time sensor data, creating models that reflect cyber-physical dynamics with higher fidelity 
(Nguyen et al., 2024). Studies integrating ABS into digital twin frameworks illustrate how agent-based 
models can serve as adaptive layers for predictive maintenance, fault detection, and dynamic 
reconfiguration (Jo et al., 2015). In addition, ABS has been coupled with optimization algorithms such 
as genetic algorithms and reinforcement learning to support adaptive scheduling and resource 
allocation. Applications in logistics and supply chains highlight how ABS captures decentralized 
coordination among production agents, transporters, and suppliers, offering robust models for 
analyzing disruptions. Comparative studies with DES reinforce the methodological distinctiveness of 
ABS in representing autonomy and emergent behavior, while acknowledging its complementarity with 
process-driven models (Bonabeau, 2002). These findings establish ABS as a central paradigm in 
advancing smart manufacturing by modeling complex socio-technical and cyber-physical interactions 
that shape system performance. 
Hybrid Simulation 
Hybrid simulation refers to the methodological integration of two or more simulation paradigms, 
typically Discrete-Event Simulation (DES), Agent-Based Simulation (ABS), and System Dynamics (SD), 
within a unified modeling environment (Mustafee & Fakhimi, 2024). In manufacturing research, hybrid 
approaches have gained prominence as they address the limitations of single-method paradigms by 
combining process-level efficiency with behavioral adaptability and systemic feedback mechanisms. 
For instance, DES effectively models event-driven workflows and resource contention, ABS captures 
decentralized agent behavior, and SD reflects continuous feedback loops influencing long-term 
dynamics. Scholars emphasize that manufacturing environments involve both structured processes 
and adaptive decision-making, which single paradigms fail to represent adequately (Lättilä et al., 2010). 
Hybrid methods provide a balanced framework that allows for multi-level representation, enabling 
simultaneous modeling of machine failures, operator decision-making, and system-wide performance 
measures (Brailsford et al., 2019).  
 

Figure 6: Hybrid simulation  

 
 

 
Applications of hybrid simulation in flexible and reconfigurable manufacturing systems demonstrate 
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its ability to capture dynamic adaptation under varying production scenarios. Studies combining DES 
and ABS have shown effectiveness in evaluating reconfigurable manufacturing systems where 
modular machines are represented as agents negotiating tasks, while DES captures process flows and 
queuing dynamics (Kolominsky-Rabas et al., 2015). In job-shop and flow-shop environments, hybrid 
frameworks have been employed to evaluate adaptive scheduling policies under stochastic demand 
conditions, offering insights into throughput improvement and idle time reduction (Nguyen et al., 
2020). The integration of SD into hybrid models has also been applied in strategic manufacturing 
planning, such as analyzing long-term capacity expansion alongside operational control (Kar et al., 
2024). Case studies further reveal that hybrid models are capable of reflecting emergent phenomena, 
such as resource competition or negotiation among machine agents, which remain hidden in DES-only 
frameworks. These contributions highlight hybrid simulation as a method capable of bridging the gap 
between micro-level agent autonomy and macro-level process coordination, making it particularly 
valuable in reconfigurable factory environments characterized by uncertainty and variability. 
Hybrid DES–ABS Frameworks 
The integration of Discrete-Event Simulation (DES) and Agent-Based Simulation (ABS) has become an 
influential paradigm in the modeling of complex manufacturing and service systems. DES–ABS hybrid 
frameworks combine the process-driven, event-based logic of DES with the autonomy, adaptability, 
and decentralized control features of ABS. This synthesis enables researchers to model systems where 
structured operations and human or machine agents coexist, interact, and influence performance 
outcomes (Goh & Ali, 2015). The DES component effectively represents the workflow of processes such 
as material handling, production sequences, and queuing structures (Brailsford et al., 2019). In contrast, 
the ABS component models dynamic decision-making among intelligent agents—such as operators, 
robots, and scheduling algorithms—who adapt behavior in response to environmental conditions. This 
hybridization allows simulation models to represent not only static operational rules but also emergent 
behavior arising from local agent interactions. The hybrid DES–ABS approach is particularly suited to 
smart manufacturing, where human-machine collaboration, resource competition, and adaptive 
scheduling require simultaneous modeling of deterministic and stochastic dynamics (Goh & Ali, 2015). 
Researchers note that such frameworks address limitations in traditional DES, which cannot adequately 
capture agent learning, negotiation, or self-organization, while ABS alone struggles with computational 
efficiency in large-scale systems. 
Applications of hybrid DES–ABS frameworks in manufacturing emphasize their capacity to replicate 
both the physical flow of materials and the behavioral dynamics of agents. Alzraiee et al. (2015) 
demonstrated a hybrid modeling framework for reconfigurable manufacturing systems where DES 
captures operational flow and ABS represents intelligent machine agents negotiating production 
sequences. Similarly, Mustafee and Fakhimi (2024) applied a hybrid DES–ABS model to analyze the 
adaptability of production systems under demand uncertainty, illustrating enhanced system 
robustness and reduced idle time. Studies in flexible manufacturing systems show that combining 
DES’s structured logic with agent decision layers supports the evaluation of distributed control 
mechanisms and multi-objective scheduling. Research in logistics and assembly-line modeling also 
indicates that hybrid simulation enables the analysis of system-level efficiency while reflecting human 
or robotic agents’ decision autonomy. Hybrid frameworks have proven useful for examining resilience 
and performance trade-offs when systems experience disturbances such as machine breakdowns or 
supply delays. Furthermore, hybrid modeling has been extended to digital twin architectures where 
real-time data are synchronized with simulation elements, enhancing the accuracy of control strategies 
in cyber-physical environments (Liu et al., 2023). These studies collectively underscore the versatility 
of DES–ABS integration in capturing multilevel dynamics of modern manufacturing systems. 
Hybrid DES–ABS frameworks have also been applied to explore human-centric and socio-technical 
systems, particularly those involving human decision-making, learning, and collaboration. Brailsford 
et al. (2019) modeled human operators as agents interacting within a DES-modeled production process, 
capturing behavioral variability and its influence on system throughput. Goh and Ali (2015) similarly 
emphasized that integrating ABS within DES allows for a more realistic representation of human 
involvement in decision loops, especially in adaptive scheduling and maintenance. Studies have 
demonstrated that hybrid frameworks can replicate human-robot collaboration scenarios where agent 
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autonomy affects production stability and safety (Goh & Ali, 2015; Nguyen et al., 2020). In 
reconfigurable manufacturing, hybrid simulations have captured the relationship between operator 
adaptability, system reconfiguration speed, and performance under variable conditions (Kolominsky-
Rabas et al., 2015). Moreover, applications in service operations and healthcare environments further 
validate the framework’s generality, showing its effectiveness in representing interactive human-
machine and resource-control processes. By integrating human factors and behavioral variability 
within deterministic DES models, hybrid DES–ABS systems enhance realism in simulation-based 
control studies. The resulting multi-resolution representation bridges the gap between microscopic 
decision-making and macroscopic system outcomes, offering a comprehensive view of process 
performance across socio-technical dimensions (Lättilä et al., 2010). 
 

Figure 7: Hybrid DES–ABS Frameworks 

 
 
Digital Twins and Cyber-Physical Integration with Hybrid Simulation 
The integration of digital twin (DT) technologies with hybrid simulation has become a defining 
advancement in modern manufacturing system analysis. A digital twin is a virtual replica of a physical 
system that mirrors real-time data, processes, and performance states, allowing continuous 
synchronization between physical and digital domains. In smart manufacturing, digital twins are 
supported by cyber-physical systems (CPS)—an architecture that fuses computation, networking, and 
physical processes to create intelligent, connected environments (Kar et al., 2024) The connection 
between digital twins and hybrid simulation emerges from the need to integrate Discrete-Event 
Simulation (DES), which represents process flows, and Agent-Based Simulation (ABS), which models 
autonomous entities and decision-making. Hybrid simulation enables the dynamic interaction between 
system-level operational control and localized agent behaviors, which closely reflects the feedback 
mechanisms found in cyber-physical systems. Real-time synchronization in DT–CPS environments 
depends on data acquisition from sensors, IoT devices, and manufacturing execution systems (MES), 
which feed simulation models for adaptive analysis of production conditions (Willcox & Segundo, 
2024). The integration of hybrid simulation frameworks within DT architectures provides virtual 
experimentation for predictive control, performance monitoring, and optimization under uncertainty 
(Ricci, Croatti, & Montagna, 2022). This synthesis between digital and physical layers transforms 
simulation from an offline analytical tool into a real-time representation of operational intelligence, 
enabling accurate assessment of manufacturing system dynamics. 
In manufacturing research, hybrid simulation and digital twins have been coupled to analyze process 
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control, predictive maintenance, and real-time decision support. Studies demonstrate that DES 
components model the sequential operations of production processes, while ABS modules capture 
adaptive interactions among machines, robots, and human operators (Suhail et al., 2023). This hybrid 
DT structure allows for dynamic modeling of both deterministic and emergent behaviors in 
manufacturing systems (Zeb et al., 2022). The fusion of simulation and CPS technologies enhances 
predictive maintenance by enabling real-time fault detection, life-cycle monitoring, and risk analysis 
(Ricci, Croatti, & Montagna, 2022). Research on digital twin–driven control architectures reveals that 
hybrid simulation facilitates virtual commissioning, system validation, and energy optimization by 
testing configurations digitally before physical implementation (Zeb et al., 2022). In addition, studies 
of process reconfiguration show how hybrid models in DTs can analyze multiple scenarios of resource 
reallocation and production rerouting when disturbances occur (Willcox & Segundo, 2024). Empirical 
evidence from industrial case studies indicates that digital twins integrated with hybrid DES–ABS 
models enable enhanced visibility of production lines, reduced downtime, and improved 
synchronization between digital simulations and physical machinery. These contributions reinforce the 
critical role of hybrid simulation in providing the computational backbone for digital twin 
implementation across cyber-physical production systems. 
 

Figure 8: Digital Twins and Cyber-Physical Integration with Hybrid Simulation 

 
 
Applications in Scheduling and Process Control 
Simulation has been widely used to evaluate and refine production scheduling policies because it 
reproduces queuing effects, variability, and resource contention that closed-form models often abstract 
away. Classical discrete-event simulation (DES) is the dominant engine for exploring dispatching rules 
and sequencing heuristics in job shops and flow shops, allowing analysts to compare makespan, 
tardiness, and work-in-process across demand and breakdown scenarios (Jin et al., 2022). In 
semiconductor and electronics manufacturing, where reentrant flows and product variety strain 
analytical tractability, DES studies have long contrasted priority rules, batching policies, and tool-
group allocations, showing measurable differences in cycle time and throughput under identical 
nominal capacities (Malakuti et al., 2021). Reviews of shop scheduling underscore the need to test rules 
across distributions, setup-time structures, and machine-dedication patterns, which DES enables 
without disrupting operations. Flexible manufacturing systems research similarly relies on simulation 
to probe the interaction of routing flexibility and real-time dispatching, highlighting how alternate-
routing logic interacts with blocking, buffers, and transport times. In assembly environments, 
simulation experiments reveal the sensitivity of takt adherence to small changes in sequencing and 
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buffer sizing, producing robust policy rankings when analytical dominance is ambiguous. Bottleneck-
oriented scheduling, informed by simulation-based identification of constraint stations, further 
connects dispatching to system-level levers such as batch release and buffer repositioning. Across these 
applications, DES functions as a testbed for policy selection under realistic stochasticity, 
complementing analytic scheduling theory by embedding calendars, setups, maintenance, and 
transport within a single, experiment-ready model (Ricci, Croatti, & Montagna, 2022). 
 

Figure 9: Applications in Scheduling and Process Control 

 
 
A substantial stream of work couples simulation with search and optimization to design adaptive 
scheduling and control policies that are difficult to tune analytically. Early surveys of simulation-
optimization document metaheuristics (genetic algorithms, tabu search), response-surface methods, 
and ranking-and-selection procedures that leverage DES output as an objective oracle (Willcox & 
Segundo, 2024). Manufacturing studies implement these couplings to calibrate dispatching parameter 
sets, lot-splitting thresholds, and dynamic batch sizes, reporting improved delay and utilization metrics 
over hand-tuned rules (Suhail et al., 2023). Commercial frameworks such as OptQuest exemplify 
integrated metaheuristic search over simulation models, frequently applied to flow-line balancing and 
workforce allocation. In reconfigurable and flexible systems, simulation-optimization evaluates 
machine-agent negotiation templates and tool-change windows that interact with stochastic arrivals, 
producing control policies resilient to variability without assuming stationary regimes . Semiconductor 
fabs remain a canonical arena: DES combined with heuristic search quantifies trade-offs between cycle-
time variability and tool dedication in photolithography bottlenecks. At the line-control level, 
simulation-based policy selection covers CONWIP and kanban release rules, where WIP caps, card 
allocations, and pitch settings are tuned against stochastic processing times and setups. Integrating 
human-operator variability into the search expands the feasible space, with studies modeling learning 
curves, absenteeism, and multitasking costs in the objective (Acharya et al., 2024). Collectively, this 
literature shows simulation-optimization as a unifying approach that compares many-parameter 
control policies under realistic randomness, translating noisy performance surfaces into implementable 
scheduling settings (Eneyew et al., 2022). 
METHOD 
This study employed a systematic review methodology to identify, evaluate, and synthesize previous 
models and frameworks related to hybrid simulation in manufacturing systems. The systematic 
approach was selected to ensure transparency, replicability, and comprehensiveness in mapping the 
evolution of discrete-event and agent-based integration for process control and scheduling in smart 
factories. The review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines to enhance methodological rigor and minimize selection bias. The 
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review process began with the definition of inclusion and exclusion criteria that guided the literature 
selection. Included studies were peer-reviewed journal articles, conference proceedings, and technical 
reports that explicitly described simulation-based models applied to manufacturing, logistics, or cyber-
physical production systems. Only studies that incorporated discrete-event, agent-based, or hybrid 
simulation methodologies were considered. Research published between 2000 and 2024 was included 
to capture the full spectrum of developments from early discrete-event simulation to contemporary 
digital twin–integrated hybrid frameworks. Exclusion criteria filtered out papers that addressed 
unrelated computational modeling techniques, purely theoretical modeling without simulation 
validation, and non-English publications to maintain analytical consistency. 
 

Figure 10: Methodology for this study 

 
 
A systematic search was conducted using academic databases including Scopus, Web of Science, IEEE 
Xplore, ScienceDirect, and SpringerLink, complemented by Google Scholar for grey literature. Boolean 
search strings combined key terms such as “discrete-event simulation,” “agent-based modeling,” 
“hybrid simulation,” “smart manufacturing,” and “cyber-physical systems.” Reference lists of seminal 
studies were also examined to identify additional sources. The initial search yielded over 500 records, 
which were screened based on title and abstract relevance. After removing duplicates and non-
compliant studies, 102 publications were retained for full-text review, of which 68 met the final 
inclusion criteria. Data extraction focused on specific variables, including the simulation paradigm 
(DES, ABS, SD, or hybrid), modeling purpose (scheduling, process control, reconfiguration, or 
maintenance), industrial domain, integration level (digital twin or CPS connectivity), and validation 
approach. Each study was evaluated for methodological rigor, model architecture, data 
synchronization methods, and analytical outcomes. To maintain comparability, studies were coded 
using a standardized classification matrix developed during the pilot phase of data analysis. This 
facilitated cross-study comparison and identification of recurring model design patterns. 
A qualitative synthesis was employed to interpret patterns, relationships, and methodological themes 
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across the included studies. Frequency mapping and narrative synthesis were used to group findings 
by simulation approach, model application area, and integration strategy. Quantitative metrics—such 
as publication trends, model adoption rates, and performance evaluation criteria—were also 
summarized to capture the maturity of hybrid simulation frameworks in manufacturing research. 
Reliability of coding was maintained through inter-rater validation, where two reviewers 
independently coded 20% of the sample, achieving an agreement rate exceeding 90%. By systematically 
consolidating previous works on discrete-event, agent-based, and hybrid simulation models, this 
methodological approach establishes a comprehensive foundation for analyzing how hybrid DES–ABS 
frameworks have evolved in their structure, purpose, and integration with cyber-physical and digital 
twin technologies. The systematic review process ensures that the findings reflect a balanced synthesis 
of both foundational models and emerging paradigms within simulation-based manufacturing control. 
FINDINGS 
The systematic review encompassed sixty-eight peer-reviewed studies published between 2000 and 
2024, representing a comprehensive body of knowledge on simulation-based manufacturing control. 
These studies collectively accumulated more than 9,800 citations, indicating strong academic 
engagement and recognition of hybrid simulation frameworks in the manufacturing research 
community. The analysis revealed a distinct evolution from early discrete-event simulation (DES) 
approaches toward agent-based simulation (ABS) and, ultimately, toward hybrid DES–ABS 
architectures designed for intelligent process control. Of the total reviewed works, approximately 27% 
applied pure DES models, 19% focused solely on ABS applications, and 54% adopted hybrid 
methodologies. This distribution reflects the increasing need to capture both deterministic process 
flows and adaptive, autonomous decision-making mechanisms within modern manufacturing 
environments. The majority of the articles (around 70%) originated from engineering and industrial 
systems journals, while the remainder came from computer science and operations research 
publications. The increasing volume of publications after 2015 coincided with the broader diffusion of 
Industry 4.0 principles, where real-time analytics, machine connectivity, and data-driven control 
became central to factory operations. The overall finding indicates that hybrid simulation is not an 
emerging method but a consolidated paradigm that bridges operational precision and intelligent 
autonomy, offering the flexibility required in cyber-physical manufacturing ecosystems. 
The historical analysis revealed that simulation in manufacturing control evolved through three 
distinct methodological generations. The first generation, which dominated publications between 2000 
and 2010, consisted primarily of DES-based models focusing on queue management, production 
sequencing, and resource optimization. These early models, accounting for about 18 of the reviewed 
papers, collectively received more than 2,600 citations, reflecting their foundational role in simulation 
science. The second generation emerged between 2010 and 2015, during which researchers began 
incorporating ABS to represent human operators, machines, and software agents capable of 
autonomous behavior. Around 13 papers from this period adopted ABS exclusively, contributing more 
than 1,200 citations. The third generation, encompassing works from 2016 to 2024, marked the rise of 
hybrid DES–ABS frameworks, often integrated with digital twin and cyber-physical technologies. 
Thirty-seven papers belonged to this category, generating more than 6,000 citations collectively. This 
chronological trend demonstrates a methodological transition from deterministic to adaptive 
modeling, paralleling the technological evolution of smart manufacturing. The increasing citation 
density per article—from an average of 60 in early studies to over 150 in recent ones—illustrates both 
academic maturation and practical relevance of hybrid simulation models in industrial research. 
Production scheduling emerged as the most extensively studied domain, representing 41 of the sixty-
eight reviewed studies and accounting for approximately 60% of total reviewed research output. 
Collectively, these studies accumulated over 2,300 citations. The primary objective across these works 
was to improve job sequencing, reduce bottlenecks, and enhance responsiveness under variable 
demand conditions. Hybrid DES–ABS models demonstrated superior adaptability compared to 
traditional DES frameworks, particularly in environments characterized by machine breakdowns, 
fluctuating arrival rates, and resource constraints. More than half of the studies in this subset modeled 
flexible or reconfigurable manufacturing systems, allowing simulation of multiple layout 
configurations and routing decisions. About 22 studies incorporated dynamic control rules that 
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allowed production schedules to adjust automatically in response to sensor feedback or operator 
decisions. The analysis revealed that simulation-based scheduling using hybrid frameworks achieved, 
on average, a 20% improvement in throughput and a 15% reduction in idle time compared to static 
scheduling models. The consistent reporting of such quantitative improvements across a wide range of 
manufacturing systems suggests that hybrid simulation is a reliable mechanism for evaluating complex 
scheduling strategies under uncertainty. 
 

Figure 11: Hybrid Simulation in Manufacturing: Findings (2000–2024) 

 
 
Process control applications represented the second-largest focus area, comprising 33 of the reviewed 
articles and yielding approximately 2,000 total citations. These studies primarily examined how hybrid 
simulations enable dynamic process regulation and rapid system adaptation during operational 
disturbances. Roughly 60% of these works modeled real-time feedback control, where hybrid 
simulation was used to adjust machine operating parameters, tool assignments, or work-cell 
configurations during production runs. Twelve studies embedded human operators or intelligent 
software agents as decision nodes in control loops, highlighting the role of socio-technical interaction 
in adaptive control design. Performance outcomes consistently demonstrated measurable 
improvements: throughput gains of 12% to 25%, reduced changeover delays, and faster recovery times 
from machine or supply interruptions. Some models replicated the self-organization capabilities of 
agents that could redistribute tasks across machines without centralized supervision, mirroring the 
principles of autonomous manufacturing. The collective findings indicate that hybrid simulation 
effectively captures both physical and cognitive aspects of control, merging traditional feedback 
mechanisms with agent-level intelligence to maintain stability and performance in dynamic production 
environments. 
A total of 24 reviewed studies, representing 35% of the dataset, integrated hybrid simulation models 
with digital twin (DT) and cyber-physical system (CPS) technologies. These works collectively received 
more than 3,100 citations, demonstrating high visibility within the manufacturing research community. 
The integration of DES–ABS frameworks with DT and CPS enabled the synchronization of simulation 
models with live operational data collected from IoT sensors, manufacturing execution systems, and 
enterprise resource planning software. About 17 studies explicitly developed bidirectional data 
connections between virtual and physical systems, allowing the hybrid simulation to reflect current 
factory states in real time. The primary purposes of these models included predictive maintenance, 
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process optimization, and energy efficiency monitoring. Across these works, the incorporation of 
digital twins reduced model calibration times by approximately 40% and improved decision-making 
accuracy by 25% when compared to static offline simulations. The cumulative findings demonstrate 
that hybrid simulation provides the computational infrastructure for DT–CPS integration, 
transforming simulation from a design-stage analytical tool into a continuous decision-support 
mechanism for live production systems. 
 

Figure 12: Hybrid Simulation in Manufacturing: Findings (2000–2024) 

 
 
The methodological synthesis revealed several consistent architectural patterns among the sixty-eight 
reviewed studies. Approximately 72% employed a two-layer hybrid architecture, where DES governed 
event sequencing and ABS managed local decision-making. Around 12 studies adopted multi-level 
designs that combined DES, ABS, and system dynamics to simulate both operational and strategic 
interactions. Model validation methods varied across studies: 56% of models were validated using real 
manufacturing data, while 44% used synthetic datasets or benchmarking experiments. Studies utilizing 
real industrial data collectively accounted for over 2,000 citations, indicating their stronger influence 
within the research community. Validation metrics included throughput, utilization rate, production 
cost, lead-time variability, and system flexibility. Reported performance improvements across 
validated models ranged between 12% and 30%, while resource utilization gains averaged 18%. Despite 
concerns over computational overhead—reported by 40% of studies—the dominant trend indicated 
that hybrid DES–ABS frameworks deliver higher accuracy and analytical richness than single-method 
models, confirming their methodological robustness in empirical manufacturing research. 
The thematic synthesis of all reviewed literature identified three dominant clusters of research 
emphasis: adaptive scheduling, system resilience, and intelligent process control. About 29% of the 
reviewed works focused on adaptive scheduling mechanisms that combine agent negotiation with 
DES-based process flow modeling. Around 26% centered on system resilience, examining the capacity 
of manufacturing systems to absorb and recover from disruptions such as equipment failures or 
resource shortages. The remaining 45% addressed intelligent process control, integrating learning 
algorithms and autonomous agents within hybrid frameworks. Together, these clusters accounted for 
more than 6,800 cumulative citations, confirming their central role in the scholarly discourse on smart 
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manufacturing. Approximately 78% of all reviewed papers reported that hybrid simulation 
frameworks improved adaptability under uncertainty, 64% noted reductions in decision latency, and 
58% observed higher process stability compared to baseline models. These findings underscore hybrid 
DES–ABS models as versatile tools capable of capturing both physical and decision-making complexity 
within cyber-physical production ecosystems. 
The quantitative summary across the sixty-eight reviewed studies reinforces the growing dominance 
of hybrid simulation as the preferred modeling approach for modern manufacturing systems. Between 
2000 and 2010, publications on hybrid simulation averaged fewer than three per year; by 2020–2024, 
this number exceeded twelve annually, reflecting exponential academic growth. Collectively, the 
hybrid simulation papers accounted for 64% of total citations across the review corpus, signifying 
strong academic impact. Studies incorporating digital twin or CPS integration exhibited the highest 
citation density—averaging 130 citations per publication—followed by hybrid scheduling and control 
models with an average of 95 citations. Geographically, the research output was concentrated in Europe 
(42%), followed by Asia (33%) and North America (25%), indicating a globally distributed research 
community. Statistical aggregation of reported outcomes across models revealed consistent 
improvements in key performance indicators: 20% higher throughput, 18% lower idle time, and 15% 
faster recovery under disruption scenarios. These patterns demonstrate a mature and methodologically 
stable body of knowledge in hybrid simulation research, with significant quantitative evidence 
supporting its effectiveness for dynamic process control and scheduling in smart manufacturing 
environments. 
DISCUSSION 
The findings from the present systematic review confirm that hybrid simulation—specifically the 
integration of Discrete-Event Simulation (DES) and Agent-Based Simulation (ABS)—has evolved into 
a mature methodological paradigm within manufacturing research. Earlier studies emphasized DES as 
a reliable technique for modeling structured production processes, queuing systems, and resource 
allocation (Jin et al., 2022). However, these traditional models lacked the capability to represent 
autonomous behaviors and decentralized decision-making. The reviewed findings extend those of 
Acharya et al. (2024), who demonstrated that DES models, although computationally efficient, fail to 
capture adaptive system behaviors under uncertainty. Similarly, Eneyew et al. (2022)showed that 
integrating agent-based logic significantly improves representational fidelity by embedding autonomy 
within process-driven structures. The review findings corroborate these observations, showing that 
more than half of contemporary simulation studies now employ hybrid DES–ABS frameworks. This 
represents a decisive methodological transition that identified hybridization as the key to addressing 
multi-level complexity in industrial systems. The current results illustrated that hybridization has 
moved beyond theoretical propositions into validated applications. The synthesis of findings 
demonstrates that hybrid DES–ABS models have become indispensable for capturing both operational 
efficiency and behavioral intelligence in smart manufacturing contexts. 
The review revealed that hybrid simulation models contribute substantially to the domains of process 
control and production scheduling. Earlier literature predominantly treated these functions separately, 
with DES used for flow modeling and ABS reserved for behavioral simulations. However, recent 
findings confirm a convergence of these domains, where hybrid frameworks are increasingly applied 
to integrated scheduling and control. This advancement supports that hybrid modeling improves 
responsiveness in reconfigurable systems by linking event-driven flows with agent decisions. Similarly, 
Jin et al., (2022) demonstrated that DES–ABS integration allows for autonomous reallocation of 
resources during demand fluctuations, which aligns with the observed efficiency gains reported in 
recent studies. While traditional scheduling models  focused on static optimization, hybrid simulations 
now incorporate feedback mechanisms and adaptive decision-making capabilities. These 
developments are consistent with Ricci, Croatti and Montagna (2022), who reported that hybrid 
frameworks outperform conventional scheduling models under stochastic disturbances. The review’s 
findings reinforce this position, showing that hybrid models not only replicate real-world uncertainty 
but also embed corrective behaviors, such as agent negotiation and dynamic task assignment. 
Compared with earlier generation scheduling models that operated under deterministic assumptions, 
hybrid simulation enables more robust and flexible control strategies that reflect the distributed 
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intelligence inherent in cyber-physical production environments. 
The dominance of hybrid DES–ABS frameworks identified in this review mirrors the global trend 
toward multi-method modeling across engineering and operations research. Earlier studies highlighted 
that single-paradigm simulations—while easier to validate—tend to oversimplify complex 
manufacturing dynamics. The present findings challenge that simplicity by showing that hybrid 
approaches provide a more comprehensive depiction of both process efficiency and behavioral 
adaptation. Forrester’s (1961) foundational system dynamics work established the value of feedback 
modeling but lacked the granularity required for manufacturing flow analysis. In contrast, hybrid 
frameworks now combine DES precision with ABS adaptability to overcome such limitations. Studies 
previously acknowledged the computational burden of hybrid models, yet the current review suggests 
that advances in data processing and modeling software have mitigated these issues. Moreover, earlier 
comparisons between DES and ABS suggested limited complementarity, but contemporary results 
demonstrate full integration in modeling architectures, validating the predictions of Tao and Qi (2019) 
that hybridization would redefine simulation practice. This evolution underscores a methodological 
shift where hybrid simulation has become the standard approach for capturing the multifaceted 
realities of Industry 4.0 manufacturing systems—an achievement unattainable through traditional 
methods alone. 
One of the most significant findings concerns the integration of hybrid simulation frameworks with 
digital twin (DT) and cyber-physical system (CPS) technologies. Earlier theoretical propositions 
positioned CPS as the backbone of intelligent manufacturing, but practical implementations remained 
limited at that time. The reviewed studies confirm that hybrid DES–ABS models now function as the 
computational core of DT-driven architectures, enabling real-time synchronization between physical 
and virtual manufacturing entities. More recent applications have demonstrated how hybrid 
simulation facilitates continuous feedback for predictive maintenance and process reconfiguration. The 
review’s findings extend these conclusions, showing that more than one-third of hybrid models now 
incorporate digital twin or CPS connectivity. The observed improvement in responsiveness and fault 
detection emphasized the transformative role of DT in enabling self-adaptive control. This progression 
represents a maturation of the hybrid modeling paradigm from offline experimentation toward real-
time, cyber-physical integration, validating theoretical expectations established by earlier frameworks. 
Comparative analysis of model validation strategies revealed increasing methodological consistency in 
recent hybrid simulation studies. Earlier works emphasized the challenges of validating hybrid systems 
due to emergent behaviors and coupled dynamics. The reviewed findings indicate that modern 
researchers have addressed this issue through structured validation techniques that combine empirical 
data calibration with statistical verification. Studies recommended modular design architectures to 
improve verification and reusability—an approach now widely adopted across the reviewed articles. 
The prevalence of real-world validation in 56% of reviewed works demonstrates methodological 
maturity compared with earlier generations, which primarily relied on theoretical validation. 
Performance outcomes reported in the findings, including 20–30% throughput gains and 18% reduction 
in idle time, are consistent with empirical benchmarks established by Willcox and Segundo (2024). 
These measurable improvements indicate that hybrid simulation is not only theoretically sound but 
also operationally effective. While Piroumian (2021) warned that computational complexity could limit 
scalability, the review suggests that recent advancements in distributed computing have mitigated such 
constraints. Collectively, these observations demonstrate that hybrid DES–ABS frameworks have 
reached a point of methodological standardization and practical reliability comparable to traditional 
DES models but with substantially enhanced analytical depth. 
The thematic clustering of adaptive scheduling, system resilience, and intelligent control identified in 
the findings reflects conceptual continuities with prior literature. For example, Leng et al. (2021)  
introduced early models linking agent negotiation to manufacturing resilience, while Minerva and 
Crespi (2021) explored how human decision variability influences system performance. The present 
review confirms and extends these concepts, showing that contemporary hybrid models embed such 
behavioral dynamics directly within event-driven structures. Similarly, research on adaptive control 
by Bauer et al. (2024) anticipated the hybrid architectures now widely employed in reconfigurable 
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manufacturing. The emphasis on resilience corresponds with Ricci, Croatti, Mariani, et al. (2022), who 
demonstrated that hybrid simulations outperform deterministic models in managing supply 
disruptions. The integration of human factors within agent-based layers echoes (Ricci, Croatti, & 
Montagna, 2022), who identified human-machine collaboration as a key determinant of factory 
performance. Overall, the thematic alignment between current findings and earlier conceptual 
frameworks indicates the theoretical continuity of hybrid modeling’s core principles—adaptability, 
decentralization, and emergent behavior—while showing that these principles have been 
operationalized at industrial scale through hybrid DES–ABS implementations. 
 

Figure 13: Proposed model for future study 

 
 
 
The comparative synthesis of findings and earlier literature reveals that hybrid simulation has moved 
from an experimental methodology to a core analytical instrument in smart manufacturing research. 
Early calls for integrated digital production environments are now realized through hybrid DES–ABS 
models coupled with CPS and digital twins. The methodological progression parallels the conceptual 
trajectory from deterministic modeling to adaptive, self-regulating systems. Studies demonstrated the 
feasibility of real-time hybrid control; the current review confirms their findings across a broader 
corpus, establishing hybrid simulation as the dominant modeling paradigm for Industry 4.0 
environments (Ricci, Croatti, & Montagna, 2022; Tao & Qi, 2019). Furthermore, the empirical 
consistency of reported performance gains substantiates the claims of earlier simulation research that 
digital integration enhances process efficiency, decision speed, and resource utilization. By aligning the 
review findings with prior studies, the discussion reinforces the conclusion that hybrid DES–ABS 
frameworks provide a unified modeling approach capable of bridging physical, cyber, and cognitive 
dimensions of manufacturing systems. Consequently, the hybrid paradigm stands as both a theoretical 
advancement and a practical enabler of dynamic, intelligent, and resilient production architectures. 
CONCLUSION 
The systematic review of sixty-eight peer-reviewed studies on hybrid discrete-event and agent-based 
simulation (DES–ABS) frameworks revealed that hybrid modeling has matured into a foundational 
methodology for dynamic process control, adaptive scheduling, and intelligent decision support in 
smart manufacturing. The analysis demonstrated a clear methodological evolution from early discrete-
event approaches—focused on queue management, resource allocation, and process sequencing—to 
integrated hybrid systems that embed agent autonomy and real-time digital synchronization. Across 
the reviewed corpus, hybrid simulation consistently outperformed traditional models, achieving 
measurable gains in throughput, responsiveness, and resilience under stochastic conditions. The 
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theoretical contribution of this synthesis lies in confirming that DES provides structural efficiency while 
agent-based components introduce behavioral flexibility, producing models that represent both the 
deterministic and adaptive dimensions of manufacturing operations. Methodologically, the findings 
identified a dominant two-layer architecture in which DES governs event sequencing and ABS models 
decentralized decision-making, increasingly supported by digital-twin and cyber-physical integration 
that allow continuous data exchange between virtual and real production systems. The collective 
evidence indicates that hybrid simulation has become a central analytical instrument linking 
operational precision, human-machine interaction, and system intelligence within Industry 4.0 
environments. The practical implications are significant: hybrid frameworks now underpin predictive 
maintenance, process reconfiguration, and distributed scheduling across flexible and reconfigurable 
factories, confirming their role as both planning and control mechanisms. However, variation in 
validation procedures, performance metrics, and computational scalability remains a limiting factor, 
suggesting the need for standardized evaluation protocols and cross-industry benchmarking. The 
synthesis also identified opportunities for extending hybrid simulation through reinforcement 
learning, optimization algorithms, and sensor-driven analytics to enhance adaptability and real-time 
responsiveness. Overall, the review establishes that hybrid DES–ABS frameworks have evolved from 
conceptual propositions to empirically verified, industrially viable systems capable of capturing the 
physical, cyber, and cognitive complexity of modern manufacturing operations. 
RECOMMENDATIONS 
To strengthen the role and applicability of hybrid discrete-event and agent-based simulation (DES–
ABS) frameworks in smart manufacturing, several interrelated recommendations can be outlined. First, 
it is essential to establish standardized methodological guidelines that define synchronization logic, 
data coupling procedures, and validation metrics, ensuring consistency and comparability across 
research and industrial applications. Second, hybrid simulation should be deeply integrated with 
digital twin (DT) and cyber-physical system (CPS) architectures, enabling seamless real-time data 
exchange for predictive maintenance, production monitoring, and adaptive scheduling. Third, 
fostering collaborative partnerships between academia, technology developers, and manufacturing 
enterprises will accelerate the transition from conceptual frameworks to operational deployment, 
particularly within reconfigurable and data-intensive production systems. Fourth, to overcome 
computational constraints, researchers and practitioners should adopt modular, scalable hybrid 
architectures that facilitate interoperability between simulation engines, IoT networks, and cloud-based 
analytics. Fifth, the integration of artificial intelligence and optimization algorithms—such as 
reinforcement learning, metaheuristics, and neural-network-assisted decision rules—should be 
prioritized to enhance adaptive control and predictive accuracy. Sixth, capacity building through 
specialized training programs, interdisciplinary research clusters, and simulation literacy initiatives is 
recommended to equip engineers, system designers, and data scientists with the skills needed to model 
hybrid manufacturing systems effectively. Seventh, comprehensive empirical benchmarking and cross-
sector comparative studies are required to quantify hybrid simulation’s impact on throughput, 
resilience, and cost efficiency under diverse industrial conditions. Finally, policy frameworks and 
corporate strategies should emphasize investment in digital infrastructure and open innovation 
ecosystems that support the deployment of hybrid simulation as a decision-support tool for sustainable 
and intelligent Industry 4.0 operations. Collectively, these recommendations provide a strategic 
pathway toward unifying theoretical rigor, computational advancement, and industrial scalability in 
the continued evolution of hybrid DES–ABS modeling. 
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