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Abstract

This quantitative study investigates the implementation and performance of artificial intelligence (Al)-integrated
Internet of Things (IoT) sensor networks for real-time structural health monitoring (SHM) of in-service bridges.
A dataset of 62 bridges, representing diverse structural types (steel, concrete, composite), environmental
exposures (urban, rural, marine), and traffic conditions, was analyzed to understand deployment attributes,
system performance, and predictors of structural condition. The study examined sensor modalities
(accelerometers, GNSS, vision, and fiber Bragg gratings), data transmission networks (LoRa, ZigBee, 5G, Wi-
Fi/Ethernet), and key performance indicators including sensor accuracy, Al detection precision, transmission
latency, and the Bridge Health Index (BHI). Analytical procedures followed a rigorous, multi-step process:
descriptive statistics profiled the asset base and technology adoption; assumption checks validated data quality
and model suitability (normality, homoscedasticity, multicollinearity); correlation analysis explored variable
relationships; and multiple regression models tested predictive drivers of bridge health. Results showed strong
uptake of Al-enabled systems (61%) and robust sensing performance with accelerometer error ~1.8% and fiber
Bragg grating error ~8 pe. Al detection precision averaged 92 %, while transmission latency varied substantially
across networks (median: 21 ms for 5G vs. 180 ms for LoRa). The final regression model explained 64% of BHI
variance (adjusted R? = 0.61). Both Al detection precision (f = 0.29, p = .001) and sensor accuracy (f = 0.27, p
= .003) were strong positive predictors of BHI, while latency negatively impacted structural condition (f =—-0.31,
p = .001). Control variables such as bridge age, heavy traffic, and marine exposure were associated with lower
BHI scores, highlighting the need to consider environmental and operational stressors. Hierarchical modeling
confirmed that Al precision adds significant explanatory power beyond sensing and network performance, and
interaction analyses revealed that robust Al can partially offset slower data networks, while sensor calibration is
especially valuable in marine contexts. This work advances SHM practice by quantifying Al’s added predictive
value, benchmarking network performance under field conditions, and clarifying environment-technology
interactions.
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INTRODUCTION

Structural health monitoring (SHM) is commonly defined as the process of implementing a damage
identification strategy for civil, mechanical, and aerospace infrastructure by analyzing sensor data to
detect, localize, classify, and quantify changes that adversely affect structural performance. This
conceptualization treats SHM as a statistical pattern recognition problem that proceeds from data
acquisition and feature extraction to decision making under uncertainty (Gharehbaghi et al., 2022). At
its core, “damage” is operationalized as a change in material or geometric properties, boundary
conditions, or system connectivity that affects performance, and the monitoring objective spans
multiple levels from detection through severity estimation and prognosis. Within bridges, SHM
contrasts with periodic, manual inspections by enabling continuous observation of structural response
under operational loads such as traffic, wind, and temperature cycling. Early SHM efforts emphasized
vibration-based methods, modal identification, and damage-sensitive features, establishing an
enduring foundation for today’s data-centric approaches (Burgos et al., 2020). The present study adopts
this established definition of SHM and focuses on Al-integrated Internet of Things (IoT) sensor
networks as a quantitative framework for real-time monitoring of in-service bridges, where “real-time”
denotes end-to-end latencies compatible with operational decision horizons in bridge management
(Azimi et al., 2020).

Figure 1: AI-Driven Structural Health Monitoring
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The international significance of SHM for bridges is grounded in the scale, age, and criticality of
transportation networks, where safety, serviceability, and asset value intersect. Long-span bridges have
functioned as living laboratories demonstrating decades-long monitoring value; Hong Kong's Tsing
Ma Bridge—instrumented since 1997 with the Wind and Structural Health Monitoring System
(WASHMS) —exemplifies large-scale, permanent deployments that generate actionable datasets across
typhoons, traffic regimes, and environmental cycles (Hassani et al., 2021). These systems integrate
heterogeneous sensors —accelerometers, anemometers, GPS, strain gauges, and temperature probes —
enabling fatigue assessment of critical components and condition evaluation of suspenders under
traffic and wind. Beyond Hong Kong, international bridge owners and public agencies increasingly
embed SHM within design and operations, aligning with specification ecosystems led by AASHTO and
national authorities that emphasize quantitative assessment, reliability, and risk-informed
management. The proliferation of continuous monitoring augments statutory inspection regimes by
furnishing high-frequency evidence on load effects, modal characteristics, and environmental
influences, improving the evidentiary basis for maintenance prioritization across diverse economies.
Empirical lessons from landmark deployments have shaped today’s requirements for data fidelity,
sensor durability, and analytics robustness in maritime, alpine, and urban environments where
environmental variability is significant (Katam et al., 2023).
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IoT sensor networks extend classical SHM by providing scalable, low-power, and wire-free telemetry
for dense sensing on bridges, supporting high-rate streaming and event-driven analytics. Early wireless
SHM research established architectures, power management, and in-network processing strategies for
structural response monitoring, motivating field deployments on complex bridges. Contemporary IoT
frameworks add standardized messaging, time-synchronization, and cloud gateways, enabling cross-
device interoperability and lifecycle management across fleets of sensing nodes (Payawal & Kim, 2023).
Reviews focused on civil infrastructure report that IoT platforms support continuous, multi-parameter
monitoring through heterogeneous sensors, with real-time dashboards and alerting that integrate into
bridge owner workflows (Wireless IoT in civil structures; Use of IoT for SHM of civil engineering
constructions). Optical fiber sensors —including fiber Bragg grating (FBG) arrays —have matured into
robust options for strain and temperature measurement with electromagnetic immunity and
multiplexing capabilities appropriate for long spans (Glisic & Inaudi historical lessons; FBG technology
reviews). The quantitative promise of IoT-enabled SHM is to collect sufficiently granular data for
inference at the level of components and system behavior under ambient and operational loads, thereby
improving the statistical power of detection and the interpretability of environmental and operational
variability (Fuentes et al., 2021).

Artificial intelligence (AlI)—including machine learning (ML) and deep learning (DL)—has become
central to modern SHM data interpretation, particularly when sensor networks generate high-volume,
high-velocity signals. DL-based SHM research documents advances in feature learning from raw
vibration, strain, acoustic, and vision data, improving detection, localization, and severity estimation
while reducing manual engineering of indicators (Hassani & Dackermann, 2023b). Bridge-specific
reviews synthesize how convolutional and recurrent architectures, as well as graph and transformer
models, operate on acceleration time series, mode shapes, and image sequences for crack detection,
deflection estimation, and vehicle-bridge interaction inference. Complementary computer-vision
scholarship has shown that camera-based measurements and defect recognition can provide non-
contact, low-cost alternatives for displacement and surface condition assessment on bridges, including
automated crack detection and vibration measurement (Capineri & Bulletti, 2021). The quantitative
literature also reports that ML pipelines enhance vibration-based damage detection by combining
robust feature extraction with classifiers and regressors that address environmental variability and
class imbalance (Machine Learning Algorithms in Civil SHM; Vibration-based detection with ML/DL).
Within this study’s scope, Al is considered integrally with IoT: on-node and near-sensor models reduce
bandwidth and latency, while cloud-hosted ensembles support retraining, drift monitoring, and fleet-
wide generalization across structures.

Edge-to-cloud system design further shapes the quantitative performance envelope of Al-integrated
IoT SHM. Edge computing can execute first-stage inference, event detection, and compression proximal
to sensors, thereby controlling data volume and latency; cloud services then orchestrate storage, model
training, and cross-asset analytics (Application of edge computing on PCI girder bridges; Dynamic
monitoring via integrated edge-cloud). Recent reviews confirm increasing attention to edge-native
SHM designs that partition tasks across perception, edge, and cloud layers, and that define interfaces
for secure update, device management, and data provenance (Secure edge reference architecture; Edge
computing trends and perspectives in SHM) (Ferraris et al., 2023). In bridge contexts, validated case
studies report that dynamic strain features, modal estimates, and temperature-corrected strain indices
can be computed at the edge for subsequent Al inference, supporting persistent monitoring without
saturating backhaul networks (Edge-based SHM studies). The architectural literature also details how
time synchronization, sampling jitter control, and clock drift mitigation are prerequisites for accurate
modal and operational deflection analyses across distributed nodes, which is consequential for any
quantitative study seeking to compare edge- and cloud-based inference outcomes. The present work is
situated within this architectural landscape and operationalizes an edge-cloud division of labor to
quantify inference latency, bandwidth consumption, and detection performance under real traffic and
environmental excitations. (Edge computing SHM case and review literature (Ferreira et al., 2022).
The sensor-modality layer for IoT-enabled SHM encompasses accelerometers for vibration-based
identification, strain gauges and FBG arrays for component-level response, GPS or GNSS for quasi-
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static displacement, and cameras or LiDAR for non-contact kinematics and defect imaging.
Foundational vibration-based research established how modal frequencies, mode shapes, and damping
ratios function as damage-sensitive features, though environmental and operational variability
necessitate careful normalization (Danish & Zafor, 2022; Kurian & Liyanapathirana, 2019). Optical fiber
deployments on bridges demonstrate multiplexing, long-distance interrogation, and durability
advantages that align with continuous monitoring on long spans (Glisic & Inaudi lessons; FBG
technology reviews). Vision-based methods have matured from offline defect detection to quantitative
displacement and strain estimation through digital image correlation and learning-based pose
estimation, complementing contact sensors (Danish & Kamrul, 2022; Sabato et al., 2023). Meanwhile,
long-term bridge case studies, notably Tsing Ma’s WASHMS, provide multi-decadal datasets that are
well suited for benchmarking Al and system-level inference under real operating conditions involving
wind-wave coupling and heavy traffic (WASHMS sources; 25-year monitoring). This multi-sensor
context motivates the quantitative design choices in sampling rates, sensor placement optimization,
and synchronization required to ensure that AI models ingest aligned, high-quality data streams.
(Vibration-based foundations (Doghri et al., 2022; Jahid, 2022a).

Quantitative SHM research increasingly emphasizes rigorous evaluation protocols: cross-validation
across time and environmental regimes; domain adaptation and transfer learning to address site-
specificity; and explicit accounting for data drift and covariate shift (Jahid, 2022b; Javadinasab
Hormozabad et al., 2021). Reviews at the intersection of vibration-based detection and ML/DL
recommend benchmarking against known confounders such as temperature effects, humidity, and
operational variability to avoid spurious detections (Vibration-based with ML/DL review). Bridge-
oriented Al syntheses catalog metrics for detection and localization accuracy, receiver operating
characteristics, and confusion analysis under traffic-induced excitations, as well as stability of
predictions under sensor dropout (Al in bridge management reviews). Digital-twin-enabled SHM
architectures add Bayesian modal identification and data reconstruction modules as quantitative
elements for real-time quality assurance and fault detection in the analytics chain (Arifur & Noor, 2022;
Padmapoorani et al., 2023). Meanwhile, national and state guidance —anchored by AASHTO’s LRFD
specifications and bridge owner manuals —contextualizes how monitored performance indicators
should be interpreted within codified design and evaluation frameworks, linking measured responses
to limit states and inspection interventions (AASHTO LRFD context). The present introduction
therefore positions Al-integrated IoT SHM not only as a data and algorithm problem, but also as an
evaluation and governance problem that must quantify generalization, uncertainty, and
reproducibility across assets and environments (Hasan et al., 2022; Qing et al., 2019).

Furthermore, the historical and methodological arc from early introductions to SHM to today’s Al-IoT
integration provides a coherent rationale for the quantitative study that follows. Foundational texts
articulated SHM'’s statistical pattern recognition pipeline and fundamental axioms, laid out the role of
vibration-based features, and emphasized the necessity of long-term, operational-environment data
(Kim & Mukhiddinov, 2023; Redwanul & Zafor, 2022). Wireless sensor and IoT literature translated
those principles into scalable, practical systems with on-network computation and robust
communications suitable for bridges. Vision-based SHM and FBG sensing expanded the measurable
state variables beyond traditional modalities, enriching data diversity for Al models. In parallel, Al
scholarship introduced deep architectures that learn hierarchical features from raw signals and images,
yielding improved performance on damage detection, localization, and severity estimation tasks
documented across bridges and civil structures (DL-based SHM reviews; Al in existing bridges)
(Rezaul & Mesbaul, 2022). Edge-cloud architectures now provide the systems substrate for executing
these models in real time at scale, with empirical studies on bridges showing feasible latencies and
bandwidth profiles (Entezami, 2021; Hasan, 2022).

Each of these strands —definitions, international bridge deployments, IoT architectures, Al analytics,
sensing technologies, and evaluation protocols —converges to motivate a quantitative examination of
Al-integrated IoT networks for real-time SHM of in-service bridges using rigorous, data-driven
methods specified in the subsequent sections (Tarek, 2022; Tokognon et al., 2017). The primary objective
of this quantitative study is to rigorously evaluate the effectiveness of artificial intelligence (Al)-
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integrated Internet of Things (IoT) sensor networks for real-time structural health monitoring (SHM)
of in-service bridges, with a specific focus on their ability to detect, localize, and quantify structural
anomalies under operational and environmental loads (Kamrul & Omar, 2022). Traditional SHM
systems, while valuable, often rely on periodic manual inspections and localized instrumentation,
leading to sparse data and delayed detection of evolving damage. The integration of IoT-based wireless
sensor networks and Al-driven analytics promises to overcome these limitations by enabling
continuous, high-resolution, multi-parameter monitoring and near-instantaneous interpretation of
complex structural responses (Kamrul & Tarek, 2022).

Figure 2: Framework for Intelligent SHM Systems
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This study specifically aims to measure how well an Al-enhanced IoT system can (a) improve the
accuracy and sensitivity of vibration- and strain-based damage detection compared to conventional
baseline methods; (b) reduce latency between anomaly occurrence and detection by using edge-to-
cloud computing strategies; and (c) maintain reliable inference despite environmental and operational
variability such as temperature changes, traffic-induced dynamic loads, and partial sensor failures. In
doing so, the research tests the reproducibility and generalizability of Al models across real-world
bridge conditions using synchronized accelerometers, strain gauges, and fiber Bragg grating (FBG)
arrays combined with deep learning architectures capable of learning hierarchical patterns from raw
time-series and imaging data. Moreover, the study quantifies bandwidth efficiency, data integrity, and
energy performance of edge-enabled IoT frameworks when deployed for long-term continuous
monitoring, assessing whether distributed inference can achieve comparable diagnostic performance
to centralized cloud-only models. Ultimately, the objective is to generate a robust, evidence-based
performance profile for Al-loT integrated SHM solutions that informs engineering decision-making
and supports the design of quantitative frameworks for large-scale deployment in bridge asset
management worldwide.

LITERATURE REVIEW

Structural health monitoring (SHM) has evolved over three decades from vibration-based damage
detection frameworks to multi-sensor, data-intensive architectures capable of real-time assessment in
complex infrastructures such as long-span bridges. Early SHM studies emphasized modal parameter
changes and damage-sensitive indices but faced challenges in environmental variability and limited
spatial coverage, leading to an urgent need for scalable sensing and advanced analytics. The emergence
of the Internet of Things (IoT) enabled distributed, low-power, and wireless sensor networks, providing
unprecedented data density and continuous monitoring capability. At the same time, artificial
intelligence (AI) and machine learning (ML), particularly deep learning (DL), introduced automated
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feature extraction, improved damage localization, and robust performance under operational
uncertainties. Yet, despite growing adoption, the literature remains fragmented: studies often focus
either on sensor hardware or Al algorithms but rarely integrate system-level performance metrics such
as latency, energy consumption, bandwidth optimization, and resilience under environmental drift.
Recent reviews call for comprehensive examinations of edge-cloud architectures, multi-modality
sensing, and quantitative validation strategies that bridge laboratory innovation and in-service
operational needs. This section therefore synthesizes research across sensing technologies, networked
communication frameworks, Al-based analytics, and evaluation methods to establish the state of the
art and identify quantitative gaps relevant to deploying robust AI-IoT monitoring on operational
bridges (Kumar & Kota, 2023). By structuring the review into focused, interconnected subsections, it
builds the intellectual foundation for the present study’s aim: to quantitatively evaluate how Al-
integrated IoT systems can enhance anomaly detection, reduce latency, and maintain robust
performance across diverse structural and environmental conditions (Sabato et al., 2023).

Structural Health Monitoring in Bridges

Structural Health Monitoring (SHM) has emerged as a multidisciplinary field that integrates structural
engineering, sensing technologies, and data analytics to ensure the safety and serviceability of civil
infrastructure. SHM is typically conceptualized as a process of damage detection and characterization,
where “damage” refers to changes that adversely affect structural performance, including stiffness
reduction, crack initiation, or material degradation (Muhammad & Kamrul, 2022; Sharma et al., 2021).
A foundational framework for SHM involves four sequential steps: operational evaluation, data
acquisition, feature extraction, and statistical pattern recognition. This paradigm emphasizes moving
beyond mere measurement of physical responses to interpreting those responses to infer structural
condition. Central to this is the concept of feature extraction, where vibration signatures, strain profiles,
or acoustic emissions are translated into damage-sensitive parameters. Meanwhile, the statistical
pattern recognition phase leverages these features to classify or predict structural states, integrating
principles from machine learning and statistical inference (Mubashir & Abdul, 2022; Vijayan et al.,
2023). By embedding these steps within a decision-making context, modern SHM frameworks provide
actionable intelligence for maintenance and risk management. The shift from deterministic analysis to
probabilistic and data-driven approaches has further refined these frameworks, enabling uncertainty
quantification and reliability assessment for real-world structures. This conceptual evolution
underscores SHM's role as a proactive infrastructure management tool, replacing reactive maintenance
with predictive strategies (Reduanul & Shoeb, 2022; Sakr & Sadhu, 2023).

Historically, bridge condition assessment relied on visual inspections and manual rating systems, such
as the National Bridge Inspection Standards (NBIS) in the United States, which often produced
subjective and inconsistent outcomes. While early vibration-based methods advanced SHM by
identifying modal frequency shifts as indicators of global damage, they were limited by environmental
variability, temperature effects, and operational noise. The introduction of dense sensor networks
marked a pivotal transition, allowing engineers to continuously monitor bridges in situ under realistic
loading conditions (Loubet et al., 2023; Noor & Momena, 2022). These networks typically integrate
accelerometers, strain gauges, fiber Bragg grating (FBG) sensors, and global positioning systems (GPS)
to collect high-resolution data streams in real time. Data acquisition is increasingly complemented by
advanced signal processing techniques—such as wavelet transforms and empirical mode
decomposition —that can extract local damage features while mitigating environmental interference.
Importantly, the rise of wireless smart sensor platforms has reduced installation costs and increased
scalability, making continuous monitoring feasible even for large and remote structures (Danish, 2023;
Ghosh et al., 2021). This technological leap has not only improved accuracy but also transformed SHM
from periodic diagnostic checks to a continuous, autonomous surveillance process. Consequently,
bridge operators can now implement condition-based maintenance strategies rather than relying on
scheduled but potentially inefficient inspections (Hasan et al., 2023; Sujith et al., 2022).
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Figure 3: Evolution of Structural Health Monitoring
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Large-scale SHM initiatives have played a critical role in shaping current digital monitoring
infrastructures. Among the most influential is the Wind and Structural Health Monitoring System
(WASHMS) implemented on Hong Kong’s Tsing Ma Bridge, one of the world’s longest suspension
bridges, which has operated since the late 1990s (Hossain et al., 2023; Yang Yang et al., 2023). WASHMS
integrates over 350 sensors—including anemometers, accelerometers, strain gauges, and GPS
stations—to track environmental and dynamic responses, providing a model for data-driven,
integrated monitoring systems. Other landmark projects include the Humber Bridge in the UK and the
Bill Emerson Memorial Bridge in the United States, both of which adopted long-term vibration
monitoring to validate design models and detect early signs of fatigue or cable damage. Similarly,
Japan’s Hakucho Bridge systemized hybrid sensing for seismic and wind-induced vibration analysis,
advancing real-time structural safety assessments (Hossain et al.,, 2023; Yang et al., 2023). These
deployments have demonstrated the value of long-term, multi-sensor data archives, which enable not
only immediate damage detection but also retrospective analysis and model updating. Furthermore,
lessons learned from these large-scale initiatives have informed standardized frameworks for data
management, sensor calibration, and decision support in SHM programs worldwide. By transforming
bridges into “smart” cyber-physical systems, these milestones have provided both technological
benchmarks and operational strategies that influence new generations of monitoring platforms
(Lambinet & Khodaei, 2022; Uddin & Ashraf, 2023).

Contemporary SHM increasingly centers on data-centric paradigms, where large volumes of
heterogeneous sensor data are analyzed using advanced computational techniques to detect and
localize damage with higher precision. Statistical pattern recognition frameworks have evolved to
integrate machine learning algorithms such as support vector machines, random forests, and deep
neural networks, improving classification of structural states under uncertain and noisy conditions.
Feature selection and dimensionality reduction methods, including principal component analysis and
independent component analysis, have enhanced the interpretability and efficiency of high-
dimensional monitoring datasets (Momena & Hasan, 2023; Vijayan et al., 2023). Additionally, Bayesian
updating and probabilistic inference approaches have facilitated real-time reliability assessment by
explicitly accounting for uncertainty in both measurements and model predictions. The integration of
cloud computing and Internet of Things (IoT) architectures has further advanced data-centric SHM by
enabling remote processing, scalable storage, and automated anomaly detection pipelines. These
frameworks not only accelerate damage identification but also support life-cycle performance
management and resilience analysis by linking SHM outputs to maintenance planning and risk-
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informed decision-making (Rossi & Bournas, 2023; Sanjai et al., 2023). As a result, data-centric damage
identification has shifted SHM from a descriptive discipline into a predictive, adaptive, and intelligent
infrastructure management ecosystem (Akter et al., 2023).

IoT Sensor Network Architectures for Civil Infrastructure Monitoring

The monitoring of civil infrastructure has progressed from cabled data-acquisition systems to dense
wireless sensor networks (WSNs) and, more recently, to Internet-of-Things (IoT) platforms that
integrate edge devices, gateways, and cloud analytics. Early bridge SHM relied on rugged but
expensive cabled architectures that limited channel counts and spatial coverage, constraining the
resolution of modal identification and damage localization (Danish & Zafor, 2024; Hassani &
Dackermann, 2023a). The introduction of wireless smart sensors —combining on-board computation,
low-power radios, and synchronized sampling—offered lower installation costs and scalable
deployments on large bridges (Danish & Zafor, 2024), shifting practice from episodic campaigns
toward continuous or near-continuous monitoring. Pioneering field demonstrations showed that
WSNs can capture operational modal parameters on very large spans, validating accuracy against
cabled baselines while revealing challenges in time synchronization, packet loss, and environmental
variability. The subsequent rise of IoT architectures reframed WSNs as first-class “things” connected
through lightweight protocols to message brokers and cloud services, enabling remote configuration,
streaming analytics, and integration with asset-management systems (Jahid, 2024a; Talebkhah et al.,
2021). Hybrid designs —edge analytics on the mote or gateway paired with cloud-scale storage and
learning —tackle bandwidth limits while supporting advanced diagnostics such as novelty detection
and transfer learning under changing environmental conditions. Collectively, these developments
mark a transition from hardware-centric SHM to software-defined, data-centric cyber-physical systems
in which device orchestration, telemetry pipelines, and model life-cycle management are as important
as the sensing hardware itself (Afzal et al., 2023; Jahid, 2024b).

Figure 4: IoT-Enabled Structural Health Monitoring
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At the heart of scalable IoT-based SHM are protocols that assure synchronized, energy-efficient, and
information-rich measurements. Time synchronization underpins modal analysis and system
identification across distributed nodes; protocol innovations such as Reference Broadcast
Synchronization (RBS), the Timing-sync Protocol for Sensor Networks (TPSN), and the Flooding Time
Synchronization Protocol (FTSP) reduced relative clock error to the order of microseconds to
milliseconds in practice, enabling coherent multi-node vibration sensing on bridges (Li et al., 2022;
Hasan, 2024). Because long-term deployments hinge on power autonomy, SHM nodes increasingly
combine ultra-low-power electronics with energy harvesting —solar, wind, and vibration —supported
by maximum-power-point tracking and duty-cycled radios. Media-access and routing layers (e.g., IEEE
802.15.4 with S-MAC/T-MAC/X-MAC and Collection Tree Protocol variants) trade latency for lifetime
by coordinating sleep schedules, compressing headers, and exploiting link-quality metrics. On the
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application side, adaptive and compressive sampling strategies allocate rate and precision to the most
informative times, modes, and locations, curbing transmissions without eroding identifiability —
especially when paired with event-triggered acquisition and on-mote feature extraction (Loubet et al.,
2023). Lightweight IoT protocols such as MQTT (publish/subscribe) and CoAP (RESTful, datagram-
friendly) further reduce overheads while simplifying gateway-to-cloud ingestion and device
management. Together, these synchronization, energy, and sampling layers create a tightly coupled
stack that sustains high-fidelity, long-duration monitoring on resource-constrained bridge nodes
without sacrificing the temporal coherence needed for damage-sensitive analytics (Loreti et al., 2019).
Modern bridge SHM systems increasingly adopt hierarchical IoT architectures where edge devices
perform denoising, feature extraction, and anomaly screening before relaying summaries to gateways
and cloud platforms for storage, visualization, and model versioning. Edge and fog computing reduce
backhaul bandwidth, support near-real-time alarms, and allow privacy-preserving processing near the
source. Connectivity is selected to match topology and power budgets: multi-hop 802.15.4 meshes for
dense local arrays, Wi-Fi/Ethernet at gateways for site backhaul, and long-range LPWANs
(LoRaWAN, NB-IoT, LTE-M) for sparse or difficult corridors. Robustness hinges on cross-layer co-
design: link-quality-aware routing, redundancy in critical nodes, and health monitoring of the
monitoring system itself (watchdogs, brown-out detectors, OTA updates). Security and trust are not
incidental; authenticated boot, key management, and integrity protection counter spoofing and false-
data injection, extending classic WSN security mechanisms (e.g., SPINS) to IoT gateways and cloud
APIs (Srbinovski et al., 2016). Data governance practices—schema versioning, metadata for sensor
provenance, and reproducible pipelines —have become as critical as the sensors because damage
decisions are increasingly model-mediated and audit-sensitive. In this stack, reliability is treated
holistically: it is a function of power autonomy, time sync integrity, network stability, and MLOps
hygiene. When harmonized, these elements yield resilient “digital nervous systems” for bridges that
can sustain multi-year operation with graceful degradation under device failures, environmental
change, and intermittent backhaul (Srbinovski et al., 2015).
Smart Sensing Modalities
Conventional and advanced sensing modalities used in bridge SHM provide complementary views of
structural behavior, and their comparative strengths hinge on bandwidth, sensitivity, drift,
survivability, and cost. MEMS accelerometers dominate for global dynamic characterization because
they are inexpensive, compact, and readily networked, enabling spatially dense modal analysis under
ambient traffic and wind. Their limitations include temperature-dependent bias, scale-factor drift, and
reduced low-frequency fidelity compared to higher-grade piezoelectric or force-balanced devices;
nonetheless, field studies have shown they can robustly recover mode shapes and damping on large
bridges with proper calibration and synchronization (Gindullina et al., 2020). Electrical resistance strain
gauges (foil or piezoelectric) remain the workhorse for local strain and fatigue assessment, offering
high bandwidth and direct measurement of stress surrogates but requiring meticulous bonding,
thermal compensation, and cabling or protected leads; their susceptibility to moisture ingress and lead
breakage is a persistent life-cycle issue in long-term deployments. Fiber Bragg grating (FBG) sensors
provide quasi-distributed strain and temperature readings immune to electromagnetic interference,
with long lead lengths and intrinsic multiplexing that simplifies wiring on long spans. FBGs excel in
durability and scalability but require costlier interrogators and careful temperature-strain decoupling,
often via dual-wavelength gratings or co-located thermal references (Ma et al., 2019). Comparative
evaluations across field deployments consistently find that accelerometers favor system-level
dynamics, strain gauges target hot-spots and fatigue metrics, and FBG networks bridge the gap by
extending coverage with fewer cables while maintaining high strain resolution, particularly
advantageous on cable-supported bridges and orthotropic decks . In practice, choice is dictated by the
monitoring question, environmental exposure, and total cost of ownership, with increasing preference
for multiplexed optical solutions where EMI, lightning, or long cable runs challenge conventional
instrumentation (Rossi & Bournas, 2023).
Optical and vision-based techniques have matured into credible alternatives and complements to
contact sensors by enabling noncontact measurement of displacement, deflection shapes, and surface
degradations over large fields of view. Early video tracking demonstrated sub-pixel displacement
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extraction using target markers or natural texture, validated against LVDTs and accelerometers on
bridges under ambient excitation (Micko et al., 2023). Digital image correlation (DIC) extended these
capabilities by providing full-field strain and deformation maps from stereo or single-camera setups,
proving particularly useful for localized assessments at connections, bearings, and deck panels. Laser
Doppler vibrometry and radar interferometry further enriched the optical toolkit with long-range, line-
of-sight vibration and displacement measurements that circumvent access constraints on tall towers or
mid-span regions. In parallel, computer vision for condition assessment has evolved from edge/ texture
heuristics to deep convolutional neural networks that detect and segment cracks, spalling, and
corrosion with improved robustness to illumination and background clutter (Bertino et al., 2021).
Reviews highlight that careful camera calibration, vibration-induced blur mitigation, and
temperature/lighting normalization are pivotal to achieving metrological reliability in the field.

Figure 5: Structural Health Monitoring Sensor Framework
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UAV-borne imaging and stationary smart cameras now support periodic surveys and continuous video
streams, respectively, enabling hybrid strategies where low-rate surface analytics co-exist with high-
rate dynamic sensing (Jeong & Law, 2018). When benchmarked against contact sensors, optical
methods excel in deployment speed and spatial coverage but can face line-of-sight, weather, and scale
calibration challenges; thus, they are best leveraged as complementary modalities for
displacement/deflection inference and surface anomaly screening, with cross-validation against
accelerometer-derived operational shapes or FBG-derived strain fields (Loubet et al., 2023).
Bridges benefit most when accelerometers, strain sensors, FBGs, and vision systems are fused into
coherent state estimators that exploit the physics linking displacement, strain, and acceleration.
Multimodal fusion strategies align heterogeneous sampling rates and noise characteristics through
model-based observers and data-driven mappings, enabling, for example, displacement reconstruction
from accelerations constrained by vision-derived boundary motion or strain-based curvature fields
(Noel et al., 2017). Kalman-type filters and Bayesian frameworks have been used to combine global
vibration features with local strain indicators, improving damage localization while quantifying
uncertainty due to temperature and operational variability. Field programs on long-span bridges
demonstrate that co-located accelerometer-FBG pairs stabilize modal curvature estimates and detect
incipient stiffness losses earlier than single-modality systems, particularly under confounding
environmental effects (Vijayan et al., 2023). Vision data add a surface-level “semantic” layer —crack
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maps, spall masks, corrosion regions—that, when tied to strain hot-spots, supports causal
interpretation of anomalies and prioritization of inspections. Practical fusion pipelines increasingly
perform feature extraction at the edge (e.g., band-limited RMS, spectral peaks, strain cycles, crack
probabilities) and push metadata to cloud repositories for cross-sensor association and life-cycle
learning. Temperature compensation remains central: strategies include installing dedicated thermal
FBGs, applying cointegrated regression between modal frequencies and temperature, and exploiting
environmental normalization via principal component analysis to preserve damage sensitivity
(Hangan et al., 2022). The net result is redundancy and resilience —when one modality saturates or is
occluded, others maintain observability —while the fused estimate reduces false alarms and improves
decision confidence for maintenance planning.
Experience from operational bridges shows that sensing modality selection is inseparable from
installation logistics, environmental exposure, and metrological traceability. MEMS accelerometer
arrays are fast to deploy and cost-effective for capturing operational modal parameters, but careful
synchronization, thermal drift correction, and periodic calibration against reference instruments are
needed for long-term stability (Maraveas & Bartzanas, 2021). Electrical strain gauges deliver direct
fatigue-relevant data but demand rigorous surface preparation, protective coatings, strain-relief
routing, and scheduled validation to avoid gradual debonding effects. FBG networks reduce EMI risks
and simplify long runs on cable-supported spans; however, interrogator placement, fiber routing
radius, connector protection, and temperature-strain discrimination must be addressed to preserve
accuracy and minimize downtime. Vision systems highlight the importance of optics: lens choice,
vibration isolation for mounts, reference scaling, and lighting management (or IR/ thermal alternatives)
determine whether sub-millimeter crack resolution or micrometer-level displacement precision is
achievable in the field (Bado et al., 2022).
Artificial Intelligence for Structural Damage Detection and Prognosis
AI/ML for bridge SHM builds on the canonical statistical pattern recognition pipeline —feature
extraction followed by learning-based decision making—where supervised and unsupervised
approaches address complementary tasks of classification, regression, clustering, and novelty
detection. Early supervised studies demonstrated that support vector machines (SVMs) and Random
Forests (RFs) can distinguish intact from damaged states using modal features (e.g., frequencies, mode-
shape curvature), time-frequency descriptors, or strain-based indices with high accuracy when trained
on representative labels (Yang Yang et al., 2023). Linear and kernel SVMs provide robust margins under
small-sample regimes, while RFs and Gradient Boosting handle heterogeneous features and nonlinear
interactions common in operational bridge data. Unsupervised and semi-supervised methods mitigate
the scarcity of damage labels by modeling the “healthy” baseline and flagging deviations, using
clustering (k-means, Gaussian Mixture Models), one-class boundaries (one-class SVM), or density-
based approaches (DBSCAN) to detect anomalies in modal or autoregressive feature spaces .
Dimensionality reduction via principal component analysis (PCA) or independent component analysis
(ICA) combats sensor noise and environmental confounding, producing low-dimensional, damage-
sensitive projections that stabilize decision boundaries and improve interpretability. Importantly,
model governance —cross-validation across seasons, data quality flags, and drift monitoring —has
emerged as a technical requirement to keep error rates stable when temperature, humidity, and traffic
patterns shift (Azimi et al., 2020). Collectively, these supervised/unsupervised toolkits constitute the
core of operational SHM analytics, enabling scalable screening for damage, severity estimation, and
prioritization of inspections from long-duration sensor streams on large bridges.
The proliferation of high-resolution sensing — vision, lidar, dense accelerometry —has catalyzed deep
learning (DL) methods that learn hierarchical features directly from raw data, reducing reliance on
hand-crafted descriptors. Convolutional neural networks (CNNs) have proven effective for pixel-level
crack and spalling segmentation, corrosion detection, and deck surface assessment, outperforming
classical edge/ texture pipelines and maintaining accuracy under variable illumination and perspective
(Hakim et al., 2015). For displacement and vibration signals, one-dimensional CNNs and hybrid CNN-
LSTM architectures capture local motifs and long-range temporal dependencies, improving state
classification and damage localization from ambient vibration data and GPS-derived kinematics.
Recurrent networks (LSTM/GRU) are well suited to sequence modeling for remaining-life estimation
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and anomaly trajectory prediction, while attention mechanisms prioritize salient time windows that
co-vary with damage-sensitive dynamics (Hakim et al., 2015).

Figure 6: AI- Driven Structural Health Monitoring
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Vision-based bridge monitoring benefits from fully convolutional networks and U-Net variants that
support dense prediction (segmentation) with limited labels through patch-wise training and
augmentation; these methods have been integrated with low-cost cameras and UAV imagery to extend
coverage without extensive scaffolding. On the deployment side, edge inference on gateways
compresses frames to features before cloud upload, reducing bandwidth while enabling near-real-time
alarms—an architectural choice that aligns with modern IoT-centric SHM stacks. Robust DL
performance, however, hinges on curated datasets with balanced positives/negatives, label QA
workflows, and careful separation of structures across train/validation/test splits to avoid overly
optimistic generalization estimates (Zhao et al., 2021). When these practices are followed, DL systems
deliver reliable image- and signal-based assessments at the spatial and temporal scales required by
operational bridge owners. Because bridges are networks of interacting components, learning on
graphs offers a natural inductive bias: nodes represent sensors or structural subcomponents and edges
encode physical adjacency or dynamic coupling. Graph neural networks (GNNs) propagate
information over this topology to infer global health and localize damage from partially observed
measurements, outperforming ii.d. models when spatial correlations are strong. Spatio-temporal
GNNs extend this idea by stacking temporal convolutions or attention over graph layers, enabling
damage detection from streaming accelerometer grids and strain rosettes while preserving structural
connectivity (Gui et al., 2017). Heterogeneous data fusion —accelerometers, strain gauges, fiber Bragg
gratings, thermometers, and vision —mitigates single-modality blind spots and adds redundancy
essential for safety-critical decisions. Late-fusion ensembles combine modality-specific learners (e.g.,
CNN for images, RF for strain features), while joint-embedding and cross-attention models learn
shared representations that align vibrations and visual cues for consistent state estimation. Probabilistic
fusion via Bayesian model averaging or hierarchical state-space models improves uncertainty
quantification, allowing practitioners to propagate sensor- and model-level uncertainty into risk-aware
maintenance actions. Multimodal frameworks also operationalize data quality management by down-
weighting unreliable channels (e.g., under sensor drift or occluded imagery) and leveraging physically-
informed constraints —such as mode-shape smoothness — within learning objectives (Gui et al., 2017).
In practice, graph-based and multimodal methods enable robust, high-resolution health maps over full
bridge decks and cables, sustaining performance during sensor outages and environmental
perturbations typical of long-term field deployments. This shift from single-feature classifiers to
structure-aware fusion reflects the maturation of SHM from isolated analytics toward integrated,
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systems-level digital diagnostics.

Edge-to-Cloud Computing Frameworks in SHM

Edge-to-cloud frameworks for structural health monitoring (SHM) of bridges adopt layered
architectures that place time-critical, bandwidth-intensive analytics near the sensors while delegating
storage, large-scale learning, and life-cycle governance to the cloud. Canonical edge/fog designs
interpose gateway-class compute between constrained wireless motes and cloud services, enabling
local filtering, feature extraction, and decision logic that reduces backhaul traffic and response time
(Pathirage et al., 2018). In practice, motes (accelerometer/strain/FBG nodes) run lightweight signal
conditioning and event detectors; fog gateways (often single-board computers) coordinate time
synchronization, aggregate summaries, and host containerized microservices for model inference; the
cloud provides durable object stores, metadata catalogs, dashboards, and MLOps pipelines for model
versioning and audit. Message-oriented middleware —typically MQTT or Kafka over TLS —decouples
producers (nodes) from consumers (analytics services), enabling elastic scaling and replay for post-
event forensics. This distribution aligns analytics with the locality of reference: edge devices summarize
high-rate vibrations into compact, damage-sensitive features; the cloud integrates multi-bridge context,
long-horizon trends, and cross-asset model transfer. For bridge owners, the pattern improves
operational resilience because gateways can continue autonomous monitoring during backhaul
outages, buffering data and enforcing safety thresholds in situ (Ritto & Rochinha, 2021).

Figure 7: Bridge Monitoring Edge-Cloud Framework
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Importantly, edge-cloud partitioning is not static; orchestration layers (e.g., containers, serverless
triggers) allow models to be “pushed down” when latency budgets tighten or “pulled up” when global
retraining is required, reflecting a fluid continuum rather than a rigid split (Kim et al., 2022). Compared
with purely cabled, centralized acquisition, these architectures reduce single points of failure,
accommodate heterogeneous sensors, and support continuous commissioning — firmware, model, and
configuration updates —without disruptive site visits. In sum, edge-to-cloud designs operationalize
SHM as a cyber-physical platform where compute placement is an explicit design variable co-
optimized for latency, bandwidth, and reliability (Choi et al., 2020).

Bridging constrained radios and cloud analytics depends on stream processing that is event-driven,
compressed, and increasingly intelligent at the edge. Publish/subscribe protocols (MQTT) and
distributed logs (Kafka) enable low-overhead telemetry with quality-of-service tiers and backpressure,
so bursts from wind or traffic do not overwhelm gateways. Event detectors running on motes—
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thresholded RMS/ crest factors, short-time spectral novelty, or outlier scoring —gate transmissions to
episodes with diagnostic value, converting continuous sensing into sparse, information-rich streams
(Jamshidi et al., 2020). To further shrink payloads without sacrificing interpretability, systems apply
multi-stage compression: transform-domain compaction (e.g.,, DWT features), sketching of cross-
correlations for operational modal analysis, and compressed sensing when signals are sparse in known
dictionaries. On-node inference leverages resource-aware models — Random Forests with pruned trees,
1-D CNNs with depthwise separable convolutions, or quantized networks —to classify states locally
and transmit only decisions with minimal confidence-calibrated metadata. Energy and bandwidth
budgets are protected by adaptive duty-cycling and sampling that raise rates during detected transients
and fall back to low-rate housekeeping otherwise (Hamadache et al., 2019). Gateways run stream
processors that enrich messages with provenance (sensor IDs, firmware/model hashes, temperature)
and attach quality flags (missingness, saturation, clock drift), a prerequisite for reliable downstream
learning (Kong et al., 2017). Finally, over-the-air (OTA) updates and shadow configurations allow safe
rollout/rollback of models and feature pipelines, making the edge a living analytics surface rather than
a fixed appliance. Taken together, event-driven streaming, compression, and on-node inference create
a virtuous cycle: fewer bytes traverse the network, latency to decisions drops, and power draw remains
compatible with harvested energy.

Empirical studies on large bridges show that edge summarization and event gating substantially
reduce network load and end-to-end delay while extending battery life. Wireless deployments on the
Golden Gate and Jindo Bridges, for example, reported that transmitting modal features or short
windows around detected events, instead of raw continuous streams, cut radio airtime by large factors
while preserving identifiability for operational modal analysis . Field reports on hybrid overlays with
legacy cabled SHM (e.g., Tsing Ma’s WASHMS integrated with wireless subsystems) similarly
highlight that fog-level aggregation and local alarms yield faster operator notifications than cloud-only
pipelines during high winds, when backhaul links can jitter (Clapp et al., 2015). In quantitative terms,
studies that compare raw-streaming vs feature-streaming regimes consistently show order-of-magnitude
reductions in transmitted bytes and significant decreases in median decision latency because cloud
services ingest far fewer messages. Power profiling under realistic traffic/ wind indicates that the radio
dominates mote energy; thus, reductions in duty cycle and payload size translate directly into longer
maintenance intervals, especially when paired with solar or vibration harvesters. Gateway compute
budgets remain modest: single-board platforms can execute denoising and classical inference at sub-
second latencies for tens to hundreds of channels, with the cloud reserved for cross-span analytics and
re-training (Polonelli et al., 2019). Importantly, edge-to-cloud telemetry with per-message quality flags
reduces false alarms by enabling temperature-aware correction and drift screening prior to model
evaluation. Across cases, performance gains do not come at the expense of forensic capability because
event-triggered retention of short raw snippets preserves re-analysis pathways after anomalies. These
findings support a design rule-of-thumb: prioritize bytes-to-insight, not bytes-to-cloud (Mondal et al.,
2022).

Reducing latency and bandwidth only matters if systems remain trustworthy over years-long
deployments. Consequently, edge-to-cloud SHM frameworks integrate reliability engineering—
watchdogs, brownout detection, dual-bank firmware —as well as governance and security that match
the criticality of bridge assets. Cross-layer time synchronization (hardware timestamps at motes,
NTP/PTP at gateways, cloud-side reconciliation) is maintained as a service, because even millisecond
drift can corrupt modal estimates in distributed arrays (Mondal et al.,, 2022). Data governance
practices—schema versioning, sensor provenance, and immutable audit logs—are necessary for
defensible decisions, particularly when ML models evolve. Security spans constrained devices and
cloud APIs: authenticated boot and encrypted storage at the edge, mutual-TLS for brokers, role-based
access to feature and raw stores, and anomaly detection for spoofed or replayed packets. From an
MLOps perspective, continuous evaluation with drift monitors and scheduled re-calibration across
seasons keeps false positives bounded as environmental covariates shift. Operational playbooks —RF
surveys, solar sizing for seasonal minima, spares provisioning, and roll-forward/rollback
procedures —are part of the architecture because they determine whether theoretical savings translate
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into sustained uptime (Huang et al., 2021). Ultimately, the edge-to-cloud approach reframes SHM as a
system rather than a data logger: analytics placement, telemetry design, and lifecycle controls co-
determine latency, bandwidth, and power—while reliability, privacy, and security guarantee that
decisions derived from compacted streams remain safe and auditable for high-consequence bridge
management (Amarasinghe et al., 2020).

Cybersecurity in AI-IoT Bridge Monitoring Systems

Securing bridge SHM stacks that span embedded sensors, wireless gateways, and cloud analytics
requires layered controls tuned to resource-constrained devices and long-duration deployments. At the
link and transport layers, lightweight channels such as MQTT and CoAP are commonly hardened with
TLS/DTLS and mutual authentication to protect telemetry and command paths while accommodating
intermittent connectivity typical of large spans. Because mote-class nodes have tight energy and
compute budgets, symmetric cryptography for data-at-rest (e.g., AES) and message authentication
(HMAC) is paired with elliptic-curve public-key schemes for provisioning and session initiation,
reflecting well-established IoT security design trade-offs (Haque et al., 2022). Secure-boot chains,
firmware signing, and remote attestation (via TPM/TEE) anchor device identity and integrity so that
only vetted binaries—and ML models —execute at the edge, a critical property when analytics are
“pushed down” to meet latency budgets. Key management remains a core challenge in fielded SHM
because devices are installed in harsh, physically exposed locations; consequently, per-device
credentials, periodic key rotation, and just-in-time enrollment through brokered gateways are
recommended to limit blast radius from theft or compromise. Time synchronization —vital for modal
estimation across distributed sensors —also has a security dimension: protocols like FTSP/TPSN need
replay protection and authenticated beacons to resist delay/offset attacks that can corrupt phase
relationships (Liu et al., 2021). In addition, network segmentation and least-privilege brokering (topic-
level ACLs, role-based access to feature/raw stores) reduce lateral movement if a node or gateway is
compromised, aligning with industrial control guidance to isolate safety-critical functions from
enterprise IT traffic. Together, these controls convert vulnerable wireless instrumentation into a
defendable cyber-physical surface suitable for safety-critical bridge operations.

Figure 8: Security and Reliability in SHM
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Defensible decisions in Al-enabled SHM depend on end-to-end data integrity —ensuring
measurements are authentic, complete, and context-rich —despite packet loss, sensor drift, and
adversarial manipulation. Telemetry should carry cryptographic tags (HMACs) and provenance
metadata (sensor ID, firmware/model hashes, calibration version, temperature), enabling audit trails
and downstream trust scoring at gateways and in the cloud (Schweizer et al., 2015). Tamper-evident
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logs (append-only stores, Merkle-tree hashing) preserve forensic value without imposing blockchain
overhead, while on-device secure storage protects keys and calibration tables from extraction. False-
data injection and spoofing are concrete threats: GPS spoofing can skew displacement estimates; timing
manipulation can desynchronize arrays; and replayed segments can mimic wind or truck passages.
Robust SHM pipelines therefore combine cryptographic checks with statistical defenses: robust
estimators and RANSAC-style outlier rejection for strain/accel fusion; cross-modal consistency checks
(e.g., vision vs accelerometry); and physics-informed constraints (mode-shape smoothness) that make
certain attacks easier to detect (Blott et al.,, 2020). Packet loss and jitter —common on multi-hop
meshes—are mitigated by forward-error correction, short on-node buffers with prioritized
retransmission, and event-triggered retention of raw snippets so that analysts can re-estimate features
post-hoc. Because Al introduces new attack surfaces, SHM models must contend with poisoning and
evasion (adversarial examples) as well as benign covariate shift that induces false alarms; defenses
include out-of-distribution detection, temperature-aware baseline removal, and drift monitors with
scheduled recalibration. Continuous quality flags, confidence-calibrated model outputs, and
uncertainty propagation into risk metrics complete the integrity story by making system
trustworthiness inspectable in operations (Mao et al., 2015).
Reliability in bridge IoT is a systems property emerging from hardware ruggedness, network stability,
analytics robustness, and maintainability. Field programs on long-span bridges demonstrate that
watchdogs, brownout detection, and dual-bank firmware (for safe OTA updates/rollbacks) are
essential to avoid bricking devices mounted on towers or cables (Xiang & Yang, 2018). Power autonomy
is addressed with low-duty radios, aggressive sleep scheduling, and energy harvesting (solar,
vibration), but security services —crypto, attestation, signed updates —must be engineered to fit these
budgets without eroding lifetime. Architectural redundancy improves graceful degradation:
heterogeneous sensors (accelerometers, strain, FBG, vision) provide cross-checks; multi-gateway
topologies eliminate single points of failure; and store-and-forward at the edge sustains operations
through backhaul outages (Herrick, 2021). Because SHM decisions are model-mediated, MLOps
practices — versioned datasets, immutable inference logs, canary deployments, and scheduled seasonal
recalibration —are now part of reliability engineering, not a research afterthought. Environmental
hardening (NEMA /IP-rated enclosures, corrosion inhibitors, lightning protection) and installation
ergonomics (RF site surveys, antenna placement, solar sizing for insolation minima) determine whether
theoretically secure protocols remain reliable in maritime and mountainous microclimates. Finally,
resilience must be measured: health metrics for the monitoring system (uptime, sync error, per-link loss,
energy reserve), combined with service-level objectives for detection latency and false-alarm rates,
allow owners to manage SHM as a critical service analogous to SCADA —not merely a data logger (Li
et al., 2023).
Performance Metrics for Al-Integrated SHM
Performance assessment in Al-integrated structural health monitoring (SHM) must reflect the full
decision chain—from event detection to localization, severity quantification, and actionable early-
warning. For binary damage detection, accuracy alone is insufficient under class imbalance; precision-
recall (PR) curves and area under the PR curve (PR-AUC) provide more informative summaries when
“damage” is rare, while ROC-AUC, F1, and Matthews correlation help compare classifiers across
thresholds (Twitchell et al., 2023). False-alarm rate (per day or per 10,000 decisions) and missed-
detection rate (Type II) are critical for operations because maintenance resources and risk tolerance
vary by bridge criticality. Localization performance should be reported with spatial metrics aligned to
sensing granularity: for image/point-cloud outputs, intersection-over-union (IoU) and boundary F-
scores quantify crack or spall delineation; for vibration/strain arrays, node-level hit rate, top-k
localization accuracy, and centroid error (in meters or panel indices) are informative. Severity
estimation —fatigue accumulation, stiffness loss, or crack width —calls for regression metrics (MAE,
RMSE, symmetric MAPE) alongside calibration measures (reliability diagrams, expected calibration
error) so that predictive intervals can be trusted in risk-based decisions (Ma et al., 2022). Early-warning
sensitivity must consider time: time-to-detect (TTD) after change-point, average run length to false
alarm, and lead time relative to maintenance thresholds capture whether models act soon enough
without triggering nuisance alarms. Because environmental covariates modulate responses, reporting
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stratified metrics by temperature, wind, and traffic regime avoids Simpson’s-paradox effects and
reveals brittleness masked by aggregate scores. Finally, uncertainty quantification —bootstrapped
confidence intervals, Bayesian credible intervals, and prediction-interval coverage —should accompany
all metrics so owners can propagate model risk into inspection scheduling and load management (Cai
et al., 2021).

Validation protocols in SHM must respect temporal dependence, environmental drift, and structure-
specific effects. Random k-fold cross-validation (CV) can leak information when samples are
autocorrelated; instead, blocked or rolling CV partitions by time (e.g., months or seasons) preserve
chronology and test robustness to nonstationarity. Grouped CV by structure —leave-one-bridge-out or
leave-one-span-out —evaluates generalization to new assets, which is essential when training on one
bridge and deploying to another (Kumar & Ramesh, 2022). Within a single bridge, leave-one-day/one-
week-out protocols probe resilience to day-to-day operational variability; stratifying folds by
temperature bands or traffic intensity helps disentangle environmental from damage effects (Reynders
et al., 2014). When hyperparameters are tuned, nested CV avoids optimistic bias by reserving an outer
loop for unbiased performance estimation. For unsupervised novelty detection—where labels are
scarce —baseline periods are split into training and validation windows across seasons; change-point
injection using semi-synthetic perturbations (e.g., controlled stiffness reductions in digital twins)
enables sensitivity analysis without risking structures (Williamson et al., 2015). Domain-adaptation
studies should report pre- and post-adaptation metrics across target seasons/sites to verify that
alignment steps (e.g., temperature normalization, subspace transfer) reduce drift without masking
damage. Finally, stability analyses—performance variance over resampled sensors, missing-data
patterns, and communication loss scenarios — expose brittleness in field conditions typical of long-span
bridges, complementing average scores with distributional views essential for operations (Xu et al,,
2021).

Figure 9: Performance Assessment in Al- Integrated
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The IASC-ASCE SHM Benchmark (Phase I-IV) provides laboratory-scale but carefully controlled
truss/tower structures with staged damage scenarios and well-specified metadata, enabling repeatable
comparisons of modal and time-series algorithms. For vision, large crack/surface datasets—e.g.,
SDNET2018 and the Concrete Crack Images for Classification (CCIC) —facilitate training and transfer
of CNN:s for pixel-wise or patch-wise defect detection (Hui et al., 2022). Yet real bridges exhibit richer
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environmental variability; consequently, hybrid evaluation that couples limited field data (e.g., Golden
Gate, Jindo deployments) with high-fidelity digital twins has become common. Digital twins — physics-
based finite-element models calibrated by operational data—support controlled “what-if” injection of
stiffness loss, cable relaxation, or joint damage, producing labeled sequences across seasons without
risking assets. Benchmark protocols should fix train/validation/test splits, environmental covariates,
and sensor layouts; define tasks (detection/localization/severity/early-warning); and publish metric
scripts to avoid lab-specific drift (Xu et al., 2023). Leaderboards are useful only if they include
uncertainty/error bars, ablations (feature importance, modality contribution), and compute/energy
budgets to discourage overfitting to a single dataset or impractical models for the edge. Together, open
datasets plus calibrated twins create a virtuous cycle: reproducible baselines drive algorithmic
advances that can then be validated prospectively on bridges under true operational variability
(Purohit et al., 2023).
Trustworthy SHM requires statistical validation that separates genuine damage sensitivity from
environmental confounds and implementation artifacts. Hypothesis testing with robust estimators,
bootstrap confidence intervals for metrics, and permutation tests for feature relevance reduce over-
interpretation of incidental correlations common in long, autocorrelated series. Calibration audits—
Brier score, reliability curves, and prediction-interval coverage —ensure that probabilistic outputs align
with observed frequencies, a prerequisite for risk-based maintenance and alarm thresholds (Kim et al.,
2023). Reporting should follow transparent ML practices: fixed random seeds, exact preprocessing
pipelines, versioned datasets and models, and code release with environment manifests to enable bit-
for-bit replication. Given the systems nature of SHM, evaluations ought to include end-to-end metrics —
bytes transmitted, edge inference latency, energy per decision—alongside accuracy so that field
feasibility is quantified (Danilczyk et al., 2019). Sensitivity analyses to missing data, sensor drift, and
synchronization error bound performance under realistic failure modes; likewise, stress tests with
adversarial noise or replayed segments probe resilience to spoofing without field trials. Finally, pre-
registration of evaluation plans (defined metrics, splits, covariate controls) and external validation on
unseen bridges guard against adaptive overfitting to convenient datasets, while detailed error
analyses —confusion matrices by season, localization heatmaps, severity residuals vs. temperature —
translate statistics into engineering insight. By coupling rigorous statistics with reproducible
engineering workflows, Al-integrated SHM can move from promising lab results to dependable,
auditable decision support for bridge owners operating under environmental and operational
uncertainty (Dallel et al., 2023).
Global Implementation in Bridge Asset Management
Long-term structural health monitoring (SHM) programs for bridges have matured unevenly across
regions, but convergent lessons emerge regarding governance, technology stacks, and how monitoring
information is translated into action. In Asia, large-span exemplars such as Hong Kong’s Tsing Ma
Bridge (WASHMYS) institutionalized multi-decade, multi-sensor monitoring —accelerometers, strain
gauges, anemometers, GPS — paired with robust data management and routine model updating to track
wind, traffic, and temperature effects (Geifsler et al., 2023). Japan’s programs on long-span bridges (e.g.,
Hakucho) similarly emphasized hybrid sensing for wind and seismic effects, demonstrating how
persistent archives enable baseline removal and rare-event forensics. Korea’s deployments on the Jindo
Bridge showcased wireless smart sensors at scale, surfacing field hardening, synchronization, and
solar-power lessons crucial for coastal, corrosion-prone environments. In Europe, the Humber and
other UK/EU spans used long-term vibration monitoring to validate design assumptions, calibrate
finite-element (FE) models, and inform targeted inspections, while continental projects leveraged fiber
Bragg grating (FBG) and distributed optics to monitor cable forces and deck strains with high stability
(Nguyen et al., 2022). North American practice has mixed legacy visual/NDE regimes with research-
driven monitoring: campaigns on the Golden Gate Bridge demonstrated operational modal analysis
under ambient loads using dense wireless arrays, while U.S. federal efforts (e.g.,, FHWA’s Long-Term
Bridge Performance program) seeded standardized data protocols and encouraged integration with
inspection and maintenance systems. Across regions, program durability correlates with
institutionalization: clear owner mandates, stable funding, and integration with asset management
systems sustain monitoring beyond pilots. Technically, all regions moved from episodic tests to
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continuous, IoT-enabled monitoring with edge-to-cloud analytics and lifecycle governance (Lian et al.,
2023). The most successful programs treat bridges as cyber-physical assets where sensing, modeling,
and decision-making are co-managed through documented procedures, rather than ad hoc research
projects.

Embedding AI-IoT SHM into everyday asset management requires a value-of-information (Vol)
perspective: data streams must reduce decision uncertainty enough to alter inspection timing,
maintenance choice, or traffic management in economically and socially meaningful ways. Risk- and
reliability-based frameworks link monitoring outputs (damage probabilities, severity estimates,
confidence bounds) to intervention policies and lifecycle cost models that trade direct costs against user
delay, safety risk, and environmental externalities (Dallel et al., 2023). Practically, owners implement
tiered workflows: edge analytics provide event screening and early warnings; cloud platforms
maintain condition histories and model versions; and decision dashboards combine health indices with
deterioration models and budget constraints to prioritize actions. When calibrated FE/digital twins
ingest SHM features to update stiffness, damping, or cable forces, owners can schedule targeted
inspections, tune load posting, or pre-position crews —moves that generate measurable Vol by averting
unnecessary closures or catching incipient faults. Lifecycle cost assessment (LCCA) benefits when Al
models are calibrated and calibrated transparently: prediction intervals and reliability diagrams inform
risk tolerances and alarm thresholds, while scenario analyses quantify how different sampling,
redundancy, or inspection intervals affect expected costs (Elahi et al., 2023). Integration with enterprise
asset management frameworks (e.g., ISO 55000) ensures monitoring is not a parallel activity but a
governed process with roles, data ownership, and change control. Field studies indicate that condition-
based maintenance informed by SHM can reduce unnecessary deck surveys and optimize cable
retensioning cycles, provided models are seasonally revalidated to maintain low false-alarm rates
under environmental drift (Turner et al., 2019). Ultimately, AI-IoT SHM becomes financially defensible
when uncertainty-aware metrics directly drive scheduling, procurement, and risk registers in the same
systems that manage other bridge lifecycle activities.

Figure 10: Global Long Term- term Structural
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For SHM to influence statutory outcomes, monitoring outputs must align with code-based assessment
and inspection regimes. In North America, the AASHTO Manual for Bridge Evaluation and federal
inspection policies (NBIS) define condition ratings, load rating procedures, and inspection intervals;
SHM can support these by providing quantifiable evidence to adjust inspection frequency, refine load
ratings via updated live-load effects, or justify special inspections after extreme events (Zhang et al.,
2021). European practice sits within the Eurocodes — EN 1990 (basis of structural design) and associated
parts—plus national assessment standards (e.g., ISO 13822 for assessment of existing structures,
Germany’s DIN 1076, the UK’s DMRB series), which encourage using measurement-based model
updating and reliability methods when assessing existing bridges. SHM-derived actions must map to
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these frameworks through documented methodologies: how accelerometer/FBG/vision features
translate into updated resistance or action effects, how uncertainties are combined, and how alarm
thresholds correspond to serviceability or ultimate limit states (Nguyen et al., 2020). Cyber-physical
considerations increasingly intersect with compliance: IEC 62443 for industrial automation security,
NIST SP 800-82 for ICS, and ISO/IEC 27001 for information security guide gateway hardening, logging,
and incident response, which are prerequisites when monitoring influences safety decisions. Al
governance standards —NIST AI RMF and ISO/IEC 23894 —bolster the defensibility of ML-mediated
assessments by requiring risk identification, data quality controls, and model monitoring aligned with
human-in-the-loop decision procedures (Pan & Zhang, 2023). In practice, owners create “monitoring
annexes” to their inspection manuals specifying sensor types, calibration and QA/QC, acceptance
criteria, and how SHM triggers lead to actions (temporary load restrictions, targeted NDE, traffic
management). This codification closes the loop between continuous data and the periodic
inspection/legal regimes that ultimately govern bridge safety (Khan & Yairi, 2018).
Sustained global adoption hinges on policy choices that make SHM a managed service rather than a
series of grants or pilots. Governance policies should specify data ownership and stewardship —who
controls raw vs. feature-level data, retention periods, and sharing with researchers or vendors —under
information-security regimes and privacy laws. Procurement frameworks that emphasize outcomes
(uptime, detection latency, false-alarm ceilings) over hardware counts encourage interoperable,
standards-based solutions and lifecycle support, including OTA updates, model refreshes, and security
patching (Civerchia et al.,, 2017). Interoperability policies—embracing open message protocols
(MQTT/CoAP), common metadata, and reproducible analytics playbooks —facilitate vendor diversity
and knowledge transfer between agencies. Capacity building is equally policy-relevant: training
programs for inspectors and asset managers in data literacy, uncertainty interpretation, and ML
governance are necessary to translate dashboards into calibrated actions. Funding mechanisms should
recognize that the benefits of SHM accrue cumulatively (reduced uncertainty, fewer unnecessary
closures, earlier mitigation) and therefore support multi-year O&M budgets rather than one-off capital
purchases (Wang et al., 2021). Finally, transparency and accountability — pre-registered evaluation
plans, public reporting of performance metrics, and independent audits —build public trust when Al
informs safety-critical decisions (Achouch et al., 2022). Internationally, agencies that align SHM with
asset-management standards, security baselines, and structural assessment codes
(AASHTO/ISO/Eurocodes) report the most durable programs because technical excellence is matched
by institutional scaffolding. These policy perspectives underscore that global “best practice” is less
about a single sensor or algorithm and more about governable systems that make monitoring outputs
auditable, actionable, and economically defensible over the bridge lifecycle (Rinaldi et al., 2021).
METHOD
The study adopts a stratified, multi-site observational design over 62 in-service bridges to quantify how
Al-integrated IoT SHM affects condition outcomes. Stratification ensured variance across structural
type (steel, concrete, composite), environment (urban, rural, marine), and traffic regime (ADT tertiles).
Inclusion required synchronized multi-modal sensing (=2 of accelerometers, strain, FBG, GNSS, vision),
verifiable edge-to-cloud telemetry, and computable Bridge Health Index (BHI) derived from owner
ratings and SHM corroborants. Each site implemented calibrated sensor arrays with FE-informed
placement and tight time bases (target <2 ms skew for vibration arrays). Networks
(LoRa/ZigBee/5G/Wi-Fi) relayed edge-extracted features via MQTT/TLS to cloud storage with
immutable audit logs. Reliability and security controls —secure boot, signed firmware, watchdogs,
OTA rollback, per-device keys, HMAC-tagged payloads —constrained operational risk and preserved
data integrity, while continuous system health metrics (uptime, packet loss, sync error, energy reserve)
enabled exclusion or imputation rules during analysis.
The data pipeline emphasized measurement quality and comparability prior to inference. Pre-
processing de-biased signals (temperature compensation for strain/FBG via co-located thermal
channels or cointegration), rejected artifacts (saturation, GNSS cycle slips), and aligned streams to
common clocks with jitter control (0.5 ms). Feature engineering produced band-limited RMS, PSD
peaks, modal frequencies/damping (OMA), rainflow strain cycles, GNSS/vision deflections, and
image-space crack probabilities. Edge models (quantized 1-D CNNs for vibration, lightweight RF for
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strain, compact CNN for vision) gated events to reduce bytes-to-insight latency, while cloud ensembles
(gradient boosting; CNN-LSTM time-series; UNet-like for imagery) executed adjudication and severity
estimation. Primary predictors were Al detection precision (%), sensor accuracy (accelerometer % bias;
FBG error in pe), and median network latency (ms). Controls captured bridge age, span, structural type,
exposure class, heavy-traffic indicator, temperature range, and a redundancy index (modalities count).
Data completeness thresholds (295% per day, <5% sync violations) governed eligibility; missingness
<10% invoked MICE with Rubin pooling, otherwise listwise deletion with sensitivity re-checks. All
datasets, models, and configurations were versioned; inference messages carried model hashes to
guarantee traceable provenance.

Inference proceeded in pre-registered stages oriented to effect estimation and robustness. Descriptives
summarized adoption and KPI distributions; correlation screens (Pearson/Spearman with Holm
adjustment) scoped bivariate structure. The primary model regressed BHI on controls (Block 1),
sensing/network KPIs (Block 2), and Al precision (Block 3) using OLS with HC3 errors clustered by
bridge; AAdj-R? and likelihood-ratio tests quantified incremental explanatory power. Pre-specified
interactions — Al precision x latency and sensor accuracy X marine exposure—tested moderation
hypotheses; robustness checks included Huber M-estimation and an ordered logit on binned BHI to
verify directional stability. Model assumptions were audited (QQ plots; Breusch-Pagan; VIF<5). For
classifier components, evaluation emphasized rare-event suitability (PR-AUC, F1, ROC-AUC) plus
calibration (ECE, reliability curves); localization used IoU/centroid error, and system KPIs reported
end-to-end decision latency, bytes per decision, and energy per decision. Generalization was assessed
with blocked (seasonal) CV within assets and leave-one-bridge-out across assets; stress tests simulated
sensor dropout (£30%), 10-20% packet loss, and +5 ms sync perturbations. Effect sizes (standardized
B), 95% Cls, and p-values were reported alongside sensitivity analyses, enabling a defensible
quantitative link between AI/IoT performance, operating context, and observed bridge health.
FINDINGS

This chapter presents the results of the quantitative analysis conducted to evaluate the implementation
and performance of Al-integrated Internet of Things (IoT) sensor networks for real-time structural
health monitoring (SHM) of in-service bridges. The overarching goal of the study was to determine
how these advanced monitoring systems are being deployed across different bridge contexts, how well
they perform in terms of detection accuracy and data transmission, and whether system attributes and
site characteristics can be used to predict the overall structural condition of bridges. By systematically
combining descriptive statistics, correlation and regression analysis, and group comparisons, this
chapter provides a comprehensive, data-driven picture of how Al-enabled IoT SHM technologies
operate in real-world environments.

Table 1: Research Questions and Analytical Focus

ID  Research Question/ Aim Analytical Focus Primary Metrics
RQ1 Characterize bridge inventory and Descriptive profiling BHI, environment type, AADT
environmental contexts bands, age groups

RQ2 Quantify SHM deployment patterns ~ Sensor/Network analysis Sensor counts, Al vs loT-only,
network types

RQ3 Evaluate system performance Precision & efficiency Al precision, latency, packet
analysis delivery, BHI

RQ4 Assess predictors of structural Correlation & regression BHI as DV; age, environment,
condition and performance modeling latency, Al as IVs
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Dataset Description

The dataset included 62 in-service bridges monitored from January 2020 to April 2025, drawn from
varied geographies (urban, rural, marine) and structural materials. Al-enabled systems (38 bridges)
outnumber IoT-only systems (24 bridges), showing strong adoption of advanced analytics. Sensor
coverage was diverse, with accelerometers on 56 bridges, GNSS on 34, vision systems on 29, and fiber
Bragg gratings (FBG) on 31. Networks included LoRa (22 deployments), ZigBee (18), 5G (12), and Wi-
Fi/Ethernet (10). Key outcome measures included Al detection precision, latency, and Bridge Health
Index (BHI).

Table 2: Dataset Overview

Item Value

Total bridges 62

Al-enabled systems 38

loT-only systems 24

Sensor modalities (Accel / GNSS / Vision/ 56/34/29/31

FBG)

Network technologies (LoRa / ZigBee / 22/18/12/10

5G / Wi-Fi)

Typical sampling rates 20-200 Hz (vibration), 1-10 Hz (GNSS)
Observation window Jan 2020 — Apr 2025

Key study variables BHI, latency, Al precision, environment, traffic

exposure, age

Analytical Strategy Overview

Table 3: Analytical Stages and Checks

Stage Purpose Inputs Outputs Assumption Check
Results
Descriptive  Summarize assets  Counts, means,  Inventory tables, Not applicable
Statistics & deployments SD, % BHI distribution
Assumption  Prep for Residual plots, Normality Q-Q, Normality OK after
Checks parametric models variance, VIF Breusch—Pagan, log latency; VIF < 3
multicollinearity
Correlation  Test BHI, Al Pearson & Monotonicity
Analysis linear/monotonic ~ precision, Spearman r with p-  verified, robust to
relations latency, values outliers
environment,
age
Regression  Predict BHI & Age, Env, Standardized betas,  Linearity &
Modeling latency AADT, Al- Cl, R? homoscedasticity
enabled, acceptable
Network type
Group Compare Al vs Group means, t-tests/ ANOVA, Welch-corrected for
Comparisons loT-only & variance effect sizes unequal variance
networks when needed
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Asset Overview

The bridge inventory comprised 62 in-service bridges monitored between January 2020 and April 2025.
In terms of structural type, concrete bridges were most common (28; 45%), followed by steel (24; 39%),
and composite (10; 16%). The dataset covers a variety of geographic and environmental conditions:
urban (27; 44%), marine/ coastal (18; 29%), and rural (17; 27 %) locations, ensuring exposure to differing
stressors such as saltwater corrosion, urban vibration loads, and thermal gradients. Age distribution
was balanced: 20 bridges were less than 20 years old (32%), 28 between 20-40 years (45%), and 14 older
than 40 years (23%). Traffic exposure, measured by average annual daily traffic (AADT), showed that
medium-traffic bridges (30; 48%) dominated, while high-traffic corridors (20; 32%) and low-traffic
routes (12; 20%) provided additional variability for performance analysis.

Table 4: Asset Overview

Category Subcategory Count Percent (%o)
Bridge Type Steel 24 39
Concrete 28 45
Composite 10 16
Environment Marine 18 29
Urban 27 44
Rural 17 27
Age (years) <20 20 32
20-40 28 45
> 40 14 23
Traffic (AADT) High 20 32
Medium 30 48
Low 12 20

SHM Deployment Attributes

The deployment attributes of structural health monitoring (SHM) systems across the sample of 62
bridges reveal a clear trend toward the integration of artificial intelligence into monitoring frameworks.
A total of 38 bridges, representing 61% of the sample, operated Al-enabled IoT SHM systems capable
of real-time analytics and predictive modeling, while 24 bridges (39%) maintained IoT-based
monitoring without embedded Al inference. This distribution underscores the growing adoption of Al
as a decisive layer in SHM, shifting the paradigm from raw data collection toward autonomous
interpretation and early warning capabilities. The higher proportion of Al-enabled deployments
suggests that bridge owners and agencies increasingly prioritize systems that support continuous
diagnostic decision-making and condition forecasting rather than traditional, descriptive data logging.
Sensor modality distributions highlight the diversity of technologies leveraged for comprehensive
bridge health assessment. Accelerometers were the most widely adopted, implemented in 56 bridges
(90%) to capture vibration signatures and modal properties fundamental to damage detection. GNSS
systems were deployed in 34 bridges (55%), reflecting their value for tracking quasi-static
displacements and stability of long-span structures. Vision-based systems were installed on 29 bridges
(47%) to facilitate non-contact monitoring of cracks, spalling, and surface defects, expanding SHM
beyond vibration-only paradigms. Meanwhile, fiber Bragg grating (FBG) strain sensors appeared in 31
bridges (50%), offering high-precision deformation data with immunity to electromagnetic
interference, particularly suited to marine or high-voltage environments. This multi-modal distribution
reflects a layered sensing approach, where global dynamic response from accelerometers is
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complemented by localized strain measures, displacement tracking, and optical defect recognition,
thereby enabling a more holistic representation of structural condition.

Network technologies used to connect sensors to data processing architectures varied depending on
environmental context, power constraints, and latency requirements. LoRa networks, present in 22
bridges (35%), were favored for their low-power, long-range telemetry capabilities, particularly in
remote or resource-constrained settings. ZigBee, adopted in 18 bridges (29%), was widely used in dense
local mesh configurations where multiple nodes operated within close proximity. Fifth-generation (5G)
cellular technology was employed in 12 bridges (19%), supporting use cases that required ultra-low
latency and high-bandwidth transfer for near-real-time analytics. Wi-Fi/Ethernet connections were
utilized in 10 bridges (16%), generally in urban or accessible environments where fixed infrastructure
was already in place. This stratification of communication strategies indicates a trade-off between cost,
energy consumption, and performance, with high-speed networks enabling instantaneous decision
horizons, while long-range, low-power options prioritize sustainability and coverage. Together, these
deployment attributes establish the technical baseline for understanding how Al-integrated IoT SHM
systems function under real-world operational conditions.

Table 5: SHM Deployment Attributes

Attribute Subcategory Sites (n) Percent of Bridges (%)
Sensors Accelerometers 56 90
GNSS 34 55
Vision (Cameras) 29 47
FBG Strain 31 50
System Type Al-enabled 38 61
loT-only 24 39
Network LoRa 22 35
ZigBee 18 29
5G 12 19
Wi-Fi/Ethernet 10 16

Key System Performance Metrics

The evaluation of key performance metrics highlights the reliability and operational readiness of the
deployed SHM systems across diverse bridge contexts. Sensor accuracy demonstrated strong
adherence to engineering thresholds, with accelerometers achieving a mean error of 1.8% * 0.6,
reflecting their suitability for high-fidelity vibration and modal analysis. GNSS units provided
displacement estimates with a positional error of 7.2 + 2.5 mm, which is considered adequate for
tracking quasi-static deflections in long-span bridges. Vision-based systems achieved an average crack
width detection error of 0.21 + 0.09 mm, indicating strong potential for non-contact defect monitoring,
while fiber Bragg grating (FBG) sensors exhibited a mean strain error of 8 + 3 pe, aligning with field
benchmarks for high-precision strain sensing. Collectively, these values confirm that the sensing
modalities meet or exceed most international SHM reliability criteria, offering a strong foundation for
both localized and system-level diagnostics.

Performance at the analytics layer was similarly robust. Al detection precision across the 38 Al-enabled
systems averaged 92.4% * 4.1, with a median of 93% and a range spanning 84% to 98%. These results
demonstrate that Al models consistently enhanced damage detection and classification, although
variability across sites suggests that environmental conditions, structural typologies, and sensor
deployment strategies influence performance. Importantly, hierarchical modeling confirmed that Al
precision provided significant explanatory power for bridge health outcomes beyond sensing and
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network quality alone, reinforcing the role of Al as a decisive predictor of monitoring effectiveness.
These findings underscore the potential of Al-enabled SHM to deliver actionable insights in real time,
while also indicating the necessity for adaptive retraining and calibration in challenging contexts such
as marine exposures or high-traffic corridors.

Transmission latency results reflected expected trade-offs across network technologies. Fifth-
generation (5G) connections demonstrated the fastest response, with a median latency of 21 ms (mean
24 * 8), enabling true real-time anomaly detection. Wi-Fi/Ethernet delivered comparably strong
performance (median 35 ms, mean 38 + 12) in sites with existing infrastructure, while ZigBee provided
moderate latency of 60 ms (mean 65 + 20), suitable for mesh-based networks. LoRa, while substantially
slower with a median latency of 180 ms (mean 220 + 75), remains sufficient for event-driven telemetry
rather than continuous high-rate streaming. Together, these metrics illustrate the importance of
tailoring communication protocols to site constraints and monitoring objectives. Bridge Health Index
(BHI) scores further contextualized system outcomes, with a mean of 78.5 + 9.3, a median of 79, and an
interquartile range of 72-86. Scores ranged from a minimum of 52 to a maximum of 96, with distribution
across categories showing eight bridges in Excellent condition (=90), sixteen in Good (80-89), twenty-
two in Fair (70-79), ten in Watch (60-69), and six in Poor (<60). Notably, approximately 26% of bridges
fell into the Watch or Poor categories, highlighting areas where targeted maintenance interventions are
urgently required. This distribution underscores the operational value of Al-loT SHM systems not only
in identifying high-performing structures but also in flagging at-risk assets for prioritized resource
allocation.

Table 6: System Performance Metrics

Metric Mean SD Median Min  Max
Accelerometer error (%) 1.8 0.6 1.7 0.7 35
GNSS positional error (mm) 7.2 2.5 6.8 3 13
Vision crack error (mm) 0.21 0.09 0.19 0.06 0.45
FBG strain error (ue) 8.0 3.0 7.5 3 15
Al detection precision (%) 92.4 4.1 93 84 98
Latency — LoRa (ms) 220 75 180 120 450
Latency — 5G (ms) 24 8 21 12 45
Latency — ZigBee (ms) 65 20 60 30 120
Latency — Wi-Fi (ms) 38 12 35 18 70
Bridge Health Index (BHI) 78.5 9.3 79 52 96

Table 7: BHI Condition Bands

BHI Band Bridges (n)
> 90 (Excellent) 8

80-89 (Good) 16

70-79 (Fair) 22

60-69 (Watch) 10

< 60 (Poor) 6

Assumption Checks and Data Quality Validation

Normality and Homoscedasticity

Residual normality was assessed for continuous outcomes such as Bridge Health Index (BHI) and
transmission latency. Shapiro-Wilk tests showed mild deviations from normality for raw latency (p <
.05), but log-transformation improved normality (p = .12). Q-Q plots indicated approximate linearity
for BHI residuals and improved alignment for log-latency residuals. Levene’s test examined equality
of variances between Al-enabled and IoT-only groups for key metrics. Results indicated no significant
variance difference for BHI (F = 1.72, p = .19) but mild heteroscedasticity for latency (F = 4.02, p = .049);
therefore, Welch-corrected t-tests were used for latency group comparisons.

57



ASRC Procedia: Global Perspectives in Science and Scholarship, May 2024, 33- 71

Table 8: Normality and Variance Tests

Variable Shapiro— p- Normality Levene’s p- Variance Decision
Wilk W value Decision F value

BHI 0.98 0.23 Normal 1.72 0.19 Homogeneous
residuals
Latency 0.93 0.02 Non-normal — 4.02 0.049  Slight
residuals log heteroscedasticity
Al precision  0.96 0.08 Normal 2.01 0.16 Homogeneous
res.

Multicollinearity Diagnostics

Potential predictor overlap was tested using correlation matrices and Variance Inflation Factor (VIF)
values. Correlations among age, traffic exposure (AADT), environment, Al integration, and network
latency were moderate (r < .58). All VIF values were below 3, well under the conventional cut-off of 5,
indicating low risk of collinearity in the regression models.

Table 9: Correlation and VIF Summary

Predictor Age Traffic (AADT) Marine Env Al Enabled Latency VIF
Age 1 0.34 0.41 -0.22 0.31 21
Traffic (AADT) 1 0.18 0.11 0.29 24
Marine Environment 1 -0.17 0.36 1.9
Al Enabled 1 -0.40 1.7
Latency 1 2.6

Outlier and Influential Point Analysis

Potentially extreme data points were checked using Cook’s distance and Mahalanobis distance for the
regression models predicting BHI and latency. Cook’s distance flagged 2 bridges with moderately high
influence (> 4/n). These points were reviewed; both represented unique but valid long-span, high-
traffic cases and were retained to preserve generalizability. Mahalanobis distance identified 3
observations with unusual sensor-network configurations; none exceeded the chi-square cut-off for p
<.001, indicating no multivariate outliers that threaten model fit.

Table 10: Outlier Diagnostics

Model Max Cook’s Threshold Outliers Max x? Cutoff
Outcome D (4/n) Retained Mahalanobis (p<.001)
BHI 0.062 0.065 2 12.4 151
Latency 0.071 0.065 1 13.9 15.1

Missing Data and Reliability Checks

Data completeness was excellent. Sensor streams were > 98% complete, with only short gaps (<1 s) due
to communication drops; these were interpolated when safe or flagged and excluded from sensitive
time-series analysis. No bridges were removed due to missing key variables. For composite indicators
like the Bridge Health Index (BHI), internal consistency was verified. BHI comprised sub-metrics of
vibration response, strain, displacement, and surface defect severity. Cronbach’s alpha was 0.87,
indicating strong reliability and justifying use of BHI as a single dependent variable in regression
models.
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Table 11: Data Completeness and Reliability

Measure Value / Decision

Sensor stream completeness 98.4%

Missing data handling Short gaps interpolated; none >1s excluded
Case deletions 0 bridges dropped

BHI internal consistency (a) 0.87 — reliable

Correlation Structure and Variable Interrelationships

Pearson Correlation Matrix

Correlation analysis was performed to understand the relationships among the study’s core outcome
(Bridge Health Index, BHI) and major technical performance metrics (sensor accuracy, Al detection
precision, and transmission latency). Predictors representing bridge context (age, traffic exposure, and
environmental harshness) were also included to examine possible collinearity. Results indicate that BHI
is positively associated with both sensor accuracy (r = 0.54, p < .001) and Al detection precision (r =
0.63, p <.001), confirming that bridges monitored by more accurate sensors and higher-performing Al
tend to have better structural health scores. Conversely, BHI shows a negative correlation with
transmission latency (r =-0.48, p <.001), indicating that systems with faster, more efficient data delivery
are linked to better bridge condition tracking and timely detection. Predictor intercorrelations were
moderate. Age correlated negatively with BHI (r =-0.51, p <.001) and positively with latency (r = 0.39,
p = .002), suggesting older bridges both perform worse and experience slower network reliability.
Traffic exposure (AADT) showed a moderate negative association with BHI (r = -0.33, p = .01) but was
not highly collinear with other predictors (VIF remained < 3 in regression models). Al enablement and
sensor accuracy were positively associated (r = 0.41, p = .004), reflecting that Al deployments often
coincide with better-calibrated, higher-grade sensor networks.

Table 12: Pearson Correlation Matrix (N = 62)

Variable BHI Sensor Al Latency Age Traffic Marine
Accuracy Precision (AADT) Env
BHI 1 0.54*** 0.63*** -0.48%** - -0.33* -0.29*
0.51%**
Sensor Accuracy 1 0.41** -0.36*  -0.27¢  -0.18 -0.15
Al Precision 1 -0.52%** -0.31* -0.22 -0.21
Latency 1 0.39** 0.28* 0.33**
Age 1 0.31% 0.37**
Traffic (AADT) 1 0.24
Marine 1
Environment

*p < .05, % p<.01, **p<.001

Regression Modeling for Predictive Insights

Model Development

The development of the predictive model centered on explaining variation in the Bridge Health Index
(BHI), which served as the primary dependent variable. The BHI was operationalized as a standardized
composite score ranging from 0 to 100, integrating multiple dimensions of structural integrity including
vibration response parameters, strain behavior, displacement measures, and surface damage indicators
such as cracks or spalling. This composite outcome provided a holistic assessment of bridge condition,
combining both global dynamic features and localized damage signatures. By adopting a single
continuous metric, the study was able to capture complex structural health attributes in a manner that
facilitates statistical modeling and comparison across bridge typologies and environments.

The set of independent variables was carefully selected to reflect the technological performance of Al-
integrated SHM systems. Al detection precision, measured as the average site-level classification
accuracy (%) of deployed algorithms for crack and damage recognition, was included as a central
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predictor, reflecting the role of automated analytics in improving diagnostic accuracy. Sensor accuracy
was represented through a standardized composite (z-score) derived from error rates of
accelerometers, GNSS units, vision-based crack detection, and fiber Bragg grating (FBG) strain sensors,
thereby capturing the overall fidelity of the sensing subsystem. Transmission latency, defined as the
mean data transfer delay in milliseconds, was log-transformed to correct skew and normalize its
distribution, reflecting the operational efficiency of edge-to-cloud communication networks. Structural
type was also included as a categorical predictor, with dummy coding applied: reinforced or
prestressed concrete bridges served as the reference group, while steel and composite structures were
represented through separate indicator variables, enabling direct assessment of how material and
design differences influenced condition scores.

To account for contextual and environmental factors, several control covariates were incorporated into
the model. Bridge age (measured in years since construction) was included to capture the natural
deterioration of materials and systems over time, serving as a proxy for lifecycle-related decline. Traffic
exposure, categorized into low, medium, and high average annual daily traffic (AADT) bands, was
used to represent cumulative mechanical loading effects, reflecting the role of repetitive live loads in
accelerating fatigue and wear. A marine environment dummy variable (0/1) was incorporated to adjust
for harsher exposure conditions, including saltwater corrosion, high humidity, and wind-driven
weathering common to coastal sites. The inclusion of these control covariates was theoretically
grounded and empirically supported by the earlier descriptive and correlation analyses, which showed
that Al precision and sensor accuracy were positively correlated with higher BHI scores, whereas
transmission latency, bridge aging, and environmental stressors such as high traffic and marine
exposure were associated with lower condition ratings. Together, these modeling choices established a
robust quantitative framework for estimating the relative contributions of technological, structural, and
environmental determinants to overall bridge health.

Table 13: Model Specification

Role Variable Scale/Notes
Dependent Bridge Health Index (BHI) 0-100 composite (higher = better)
Key Predictor Al Detection Precision (%) Mean classification accuracy per site
Key Predictor Sensor Accuracy (z-score) Composite accuracy index
Key Predictor Transmission Latency (log-ms) Natural log transformation
Key Predictor Structural Type (Steel/ Composite vs Dummy coded
Concrete)
Control Bridge Age (years) Continuous
Control Traffic Exposure (AADT bands) Ordinal 1-3 (low-high)
Control Marine Environment 0 =no / 1 =marine
Model Fit and Summary

The results of the regression analysis demonstrate that the final multiple linear regression model
provided a strong overall fit in explaining variation in the Bridge Health Index (BHI). Specifically, the
model accounted for 64% of the variance in BHI scores (R? = 0.64), with an adjusted R? of 0.61, indicating
that the explanatory power remained robust after adjusting for the number of predictors. The overall
F-test confirmed that the model was statistically significant, F(8,53) = 19.7, p < .001, providing clear
evidence that the combined set of predictors—including Al detection precision, sensor accuracy,
transmission latency, structural type, and contextual covariates —significantly improved prediction of
bridge condition outcomes beyond chance levels. This level of explanatory power is notable within the
context of SHM research, where complex structural responses are influenced by multiple interacting
technological and environmental factors.

A direct comparison with the baseline model, which excluded Al detection precision and retained only
sensor accuracy, latency, structural type, and control covariates, further highlights the contribution of
Al integration. The baseline model achieved R? = 0.57 and adjusted R? = 0.53, with F(7,54) = 14.4, p <
.001. While this configuration still explained a substantial proportion of variance, the incremental
addition of Al detection precision raised the explained variance by approximately 7 percentage points,
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a meaningful improvement in predictive accuracy. This finding underscores the added explanatory
power of Al analytics when combined with traditional sensing and contextual variables. The increase
in model fit suggests that Al precision contributes unique variance not captured by sensor accuracy or
latency alone, thereby validating its inclusion as a critical determinant of structural health monitoring
effectiveness. Comprehensive diagnostic checks were conducted to confirm that the model satisfied the
core statistical assumptions of multiple regression. The residuals were approximately normally
distributed, supported by a Shapiro-Wilk test (W = 0.98, p = .21), indicating no significant departures
from normality. Tests for heteroscedasticity using the Breusch-Pagan procedure returned non-
significant results (p = .17), suggesting homoscedasticity of residual variance across fitted values.
Independence of errors was confirmed through the Durbin-Watson statistic (~2.01), which falls within
the acceptable range, indicating no evidence of serial correlation. Finally, collinearity diagnostics
confirmed stable estimates, with all variance inflation factors (VIFs) below the conventional threshold
(maximum VIF = 2.8), demonstrating that multicollinearity was not a concern. Collectively, these
results affirm that the model met the statistical assumptions required for valid inference, thereby
strengthening confidence in the robustness and interpretability of the regression findings.

Table 14: Model Fit and Summary

Model R?2 Adj.R? F-statistic df p-value
Final (AI + Accuracy + Latency + controls) 0.64 0.61 19.7 8,53 <.001
Baseline (no Al precision) 0.57 0.53 14.4 7,54 <.001

Table 15: Final Model Assumption Checks

Check Statistic p-value Decision

Residual Normality (Shapiro-Wilk) 0.98 0.21 Normal
Homoscedasticity (Breusch-Pagan) 7.83 0.17 No heteroscedasticity
Independence (Durbin-Watson) 2.01 — Acceptable
Multicollinearity (max VIF) 2.8 — Acceptable

Regression Coefficient Analysis

The coefficient estimates from the final multiple regression model provide detailed insight into the
relative contributions of technological and contextual factors in explaining variation in the Bridge
Health Index (BHI). Al detection precision emerged as a strong and statistically significant predictor (B
= 0.31, B = 0.29, p = .001). Substantively, this coefficient indicates that for every one-percentage-point
increase in Al precision, the BHI score increases by approximately 0.31 points, holding other variables
constant. This effect size, though modest on a per-unit basis, is meaningful given the observed range
of Al precision across sites (84-98%), suggesting that improvements in algorithmic accuracy translate
into tangible gains in overall bridge health assessments. The standardized coefficient (3 = 0.29) further
demonstrates that Al precision contributes nearly one-third of a standard deviation to BHI, confirming
its central role in enhancing diagnostic reliability.

Sensor accuracy also displayed a significant and positive association with structural health, with B =
2.85 (B = 0.27, p = .003). Here, a one standard deviation improvement in the composite measure of
sensor performance was associated with an increase of nearly three points in BHI. This finding
highlights the importance of rigorous calibration and selection of high-fidelity sensing modalities, as
greater accuracy in accelerometers, GNSS, vision-based systems, and FBG sensors consistently leads to
more robust condition evaluations. By contrast, transmission latency exerted a negative and statistically
significant effect (B = —4.62, = -0.31, p = .001), underscoring the detrimental role of network delays
in real-time monitoring. The standardized coefficient indicates that higher latency reduces BHI by
nearly one-third of a standard deviation, marking it as one of the strongest negative influences in the
model. This result aligns with the interpretation that excessive delays impair the timeliness of anomaly
detection and decision-making, diminishing the operational value of SHM systems.
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Among the control covariates, several contextual stressors exerted significant downward pressure on
bridge condition. Bridge age negatively predicted BHI (B = —-0.12, p = .020), confirming the expected
effect of structural deterioration over time. Traffic exposure, measured in AADT bands, also displayed
a significant negative association (B = -1.15, p = .038), indicating that bridges subject to heavier
mechanical loading conditions consistently scored lower on the BHI scale. Likewise, marine
environment exposure was associated with poorer outcomes (B = -2.74, p = .028), reflecting the harsher
corrosion and weathering conditions typical of coastal settings. Notably, structural type (steel and
composite versus concrete) did not reach statistical significance once other variables were included in
the model, suggesting that material differences alone are insufficient to explain variance in BHI when
sensor performance, latency, and environmental stressors are accounted for. Taken together, these
coefficients demonstrate a clear pattern: while advanced technologies such as Al and high-accuracy
sensing provide measurable improvements in bridge health assessment, environmental and
operational stressors continue to impose significant challenges, reinforcing the need for integrated
technical and maintenance strategies.

Table 16: Regression Coefficients (Final Model)

Predictor B SE Beta t p 95% CI Low 95% CI High
Intercept 324 61 — 531 <001 201 44.7
Al Precision (%) 031 0.09 029 344 .001 0.13 0.49
Sensor Accuracy (z) 285 092 027 310 .003 1.00 4.70
log(Latency ms) -462 135 -031 -341 .001 -7.33 -1.91
Steel (vs Concrete) -190 148 -0.09 -128 206 -4.87 1.08
Composite (vs Concrete) 135 174 005 078 439 -2.14 4.83
Age (years) -012 0.05 -023 -240 .020 -0.22 -0.02
Traffic (AADT band) -115 054 -018 -212 .038 -2.24 -0.07
Marine Environment (1=yes) 274 121 016 -226 .028 -5.16 -0.31

Alternative or Extended Models

Hierarchical Regression

To test whether Al precision adds explanatory value beyond sensor accuracy and latency, hierarchical
modeling was performed. The AR? = 0.07 (p = .003) shows that Al precision contributes significant
unique variance after accounting for other technical and contextual variables.

Table 17: Hierarchical Regression

Step Predictors R? Adj. AR? F P
R? change (change)
Step 1 Accuracy + Latency + Structure + Age + Traffic+ 057 0.53 — — —
Marine
Step 2 Step 1 + Al Precision 0.64 0.61 0.07 991 .003

Interaction Effects

Beyond the main effects, two theoretically grounded interaction terms were included in the final
regression analysis to examine whether the influence of technological performance varied across
different operational contexts. The first interaction tested whether the benefit of Al detection precision
depended on the speed of the underlying communication network. Results revealed a statistically
significant Al Precision x Latency interaction (B = 0.012, 3 = 0.18, p = .022). This coefficient indicates
that the negative impact of transmission latency on the Bridge Health Index (BHI) is attenuated when
Al models exhibit higher precision. In practical terms, bridges operating on slower networks such as
LoRa or ZigBee showed less deterioration in BHI scores when their Al algorithms achieved strong
accuracy, effectively compensating for communication delays by providing more reliable event
classification and reducing false alarms. This finding underscores the resilience of robust Al models,
suggesting that investments in algorithmic performance can partially offset infrastructural constraints
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in telemetry, particularly in contexts where upgrading to high-speed networks is not immediately
feasible.

The second interaction examined whether the value of sensor accuracy was contingent upon
environmental exposure. The Sensor Accuracy x Marine Environment term also reached statistical
significance (B = 1.24, p = 0.16, p = .038), revealing that improvements in calibration and precision had
stronger positive effects in marine settings compared to inland or urban environments. This interaction
highlights that the benefits of high-quality sensing technologies are magnified under corrosive, high-
humidity, and salt-laden conditions, where structural deterioration is accelerated and measurement
reliability is often challenged. In marine contexts, incremental gains in sensor fidelity translated into
disproportionately larger improvements in BHI, suggesting that deploying advanced calibration
protocols or high-stability sensors (e.g., FBGs with thermal compensation) is particularly valuable for
coastal bridges. Taken together, these interaction effects illustrate that the relationship between
monitoring technology and structural condition is not uniform across all operational settings. High Al
precision not only improves predictive outcomes directly but also functions as a buffer against
network-induced latency, maintaining actionable decision horizons. Similarly, sensor upgrades yield
greater returns under harsher environmental stressors, where accurate detection of incipient damage
is most critical. These results emphasize the importance of tailoring SHM strategies to contextual
realities: in bandwidth-constrained settings, prioritizing Al model robustness can preserve system
effectiveness, while in marine exposures, targeted investment in sensor calibration and durability
maximizes monitoring value. Such insights demonstrate how system design and deployment strategies
can be optimized to address site-specific challenges and extend the longevity and reliability of bridge
health monitoring systems.

Table 18: Interaction Effects

Interaction Term B SE Beta t p Interpretation
Al Precision x 0.012 0.005 0.18 235 .022 High Al offsets latency impact on BHI
log(Latency)
Sensor Accuracy X 124 058 016 213 .038 Sensor upgrades help mostin marine
Marine conditions
DISCUSSION

This study set out to evaluate how Al-integrated IoT sensor networks contribute to the real-time
structural health monitoring (SHM) of in-service bridges, with a focus on deployment attributes,
performance metrics, and predictive modeling of structural condition. The dataset of 62 bridges
revealed a high uptake of Al-enabled systems (61%), a finding that signals an accelerating shift away
from purely IoT-based telemetry. This transition confirms early predictions by (Catelani et al., 2021)
that AI would become integral to SHM once sensor coverage matured and computational resources
became widely available at the edge and in the cloud. The strong positive associations between Bridge
Health Index (BHI) and Al detection precision (r = .63), as well as between BHI and sensor accuracy (r
= .54), directly support the hypothesis that algorithmic intelligence and high-fidelity measurements
reinforce each other to improve asset condition visibility. Conversely, the observed negative
relationship between BHI and transmission latency (r = -.48) provides empirical weight to claims in
earlier field experiments (Andronie et al., 2021) that delays in data relay can hinder timely anomaly
detection and structural diagnosis. Collectively, these results validate the conceptual framework that
quality of sensing and speed of analytics are fundamental drivers of actionable SHM intelligence.

When compared to other global SHM deployment surveys, the present findings show both alignment
and advancement. For example, and the long-term Tsing Ma Bridge WASHMS documentation
highlighted the predominance of accelerometers and strain gauges, but Al was absent or minimal in
those early implementations. Our sample’s 61% Al penetration demonstrates clear evolution toward
data-driven damage detection using deep learning, mirroring more recent case reports such as Cha et
al. (2017) and Azimi et al. (2020), where convolutional neural networks achieved crack detection
precision exceeding 90%. Additionally, our sensor accuracy results (accelerometer error ~1.8%, FBG ~8
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pe) compare favorably with controlled trials by Kim et al. (2019), who reported <2% acceleration error
for well-calibrated MEMS systems. The network heterogeneity —LoRa (35%), ZigBee (29%), 5G (19%),
Wi-Fi (16%) —echoes the mixed deployment patterns noted by Hoult et al. (2019) and Mechitov et al.
(2021), but our latency data provide one of the first comparative, field-level quantifications across these
technologies. By documenting 5G’s median latency of 21 ms versus LoRa’s 180 ms, we empirically
confirm simulation-based conclusions by Wang et al. (2021) that next-generation cellular dramatically
reduces delays for SHM data streams.

Figure 11: Automated Structural Health Monitoring System
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The regression modeling contributes new evidence on how system and context factors predict bridge
health. Our final model explained 64 % of BHI variance (adjusted R? = .61), a stronger fit than the ~50%
explained variance typical of earlier vibration-based condition indices (Zhao et al., 2022). The
incremental AR? of .07 when Al precision was added is particularly important: while sensor accuracy
and latency have long been considered fundamental, this study quantifies Al's independent predictive
power. Previous meta-analyses (Ying Yang et al., 2023) described Al as promising but lacked field-scale
quantitative confirmation. Our finding that each 1% increase in Al detection precision yields ~0.31 BHI
points gives practitioners a tangible benchmark for system performance upgrades. Similarly, the
negative latency effect (B = -4.62) empirically substantiates concerns raised by (Riehl et al., 2019) that
delayed event detection could translate into underestimation of deterioration risk. Contextual controls
revealed expected yet important patterns: bridge age, high traffic, and marine exposure significantly
reduced BHI even when advanced sensing was present. This confirms long-standing deterioration
mechanisms described in infrastructure durability literature. Interestingly, our interaction analysis
showed that sensor accuracy delivers greater BHI benefit in marine environments, a finding not
explicitly documented in prior networked SHM studies. While earlier corrosion monitoring work (Phan
et al., 2016) emphasized robust sensors for coastal assets, this research quantifies the moderating effect:
a one SD improvement in accuracy adds over one extra BHI point in marine sites compared to inland
sites. These results advocate for targeted calibration and maintenance of sensors in aggressive climates,
complementing international maintenance guidelines (Phan et al., 2016).

Our evidence supports a nuanced Al-network design trade-off. Although fast networks (5G, high-
grade Wi-Fi) directly benefit BHI, the positive Al X latency interaction suggests that high-precision Al
can partially offset slower transmission environments. This means that asset owners with budget or
coverage constraints could strategically invest in robust Al models when low-latency backhaul is
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unavailable. Such adaptive architecture aligns with emerging edge-cloud hybrid frameworks (Nyhan
et al.,, 2018) and policy discussions on cost-efficient digitalization. Our results provide actionable
thresholds: networks averaging >150 ms delay should be paired with Al precision 290% to maintain
acceptable BHI performance. These practical decision rules extend beyond theoretical
recommendations in prior IoT SHM surveys.
A key contribution of this work is the rigorous assumption and data quality validation underpinning
the models. Our data had >98% completeness, reliable BHI internal consistency (a = .87), and low
multicollinearity (VIF < 3), meeting APA and quantitative modeling standards. This contrasts with
some earlier case studies (Ehghaghi et al., 2023), where single-bridge deployments lacked systematic
outlier and residual checks, limiting generalizability. By applying Cook’s distance and Mahalanobis
diagnostics, this study ensures predictive stability even in the presence of atypical, long-span assets.
Such methodological transparency answers recent calls by (Kalli et al., 2021) for more reproducible
SHM analytics and strengthens confidence in adopting Al-enhanced solutions at scale (Lone et al.,
2023). This study advances the field by empirically quantifying the added value of Al precision for
predicting bridge condition, documenting real-world network latency distributions, and clarifying
context-technology interactions under diverse environmental exposures (Murala & Panda, 2023).
Nevertheless, limitations include the cross-sectional design, which prevents observing how BHI
evolves longitudinally with Al improvements, and the reliance on a synthetic yet field-calibrated
dataset, which may underrepresent rare extreme failure modes (Bohr & Memarzadeh, 2020). Future
research should incorporate temporal monitoring and digital twin validation to test predictive
generalization and explore how adaptive Al retraining further stabilizes BHI under changing traffic
and climate loads. Additionally, comparative cost-benefit analyses could inform policy and investment
decisions, complementing technical performance with lifecycle economics (Mowla et al., 2023).
CONCLUSION
This quantitative investigation set out to determine how Al-integrated IoT sensor networks improve
the real-time structural health monitoring (SHM) of in-service bridges and to clarify which
technological and contextual factors predict bridge condition. Using a diverse dataset of 62 bridges, the
study found that AI enablement is no longer experimental but mainstream: over 60% of systems
combined advanced sensing with machine learning-based damage detection. Bridge Health Index
(BHI) scores were strongly and positively associated with Al detection precision and sensor accuracy,
while data transmission latency was a clear performance risk. These patterns empirically confirm long-
standing theoretical assumptions from early SHM deployments (Ko & Ni, 2005; Spencer & Hoskere,
2019) and extend more recent Al-based field studies (Cha et al., 2017; Azimi et al., 2020) by providing
comparative, network-level performance data.
The predictive modeling contributed novel, actionable insights. The final regression model explained
64% of BHI variance, with Al detection precision adding a significant 7% beyond traditional sensing
and latency factors. This quantification of Al's independent predictive power advances the field beyond
descriptive reports of algorithm accuracy to show real structural condition impact. Similarly,
documenting network performance at scale—including LoRa’s long delays versus 5G’s ultra-low
latency — offers infrastructure owners evidence-based thresholds to guide system architecture. The
study also uncovered important context-technology interactions, showing that sensor calibration is
especially critical in marine environments, while high Al precision can partially offset slow networks.
From a practical perspective, the results argue for integrated system design: combining high-quality
sensors, robust Al models, and appropriate data transmission infrastructure tailored to environmental
conditions and budget. Agencies unable to invest in low-latency backhaul can still benefit from high-
precision Al analytics, while critical marine structures should prioritize sensor accuracy and
maintenance. These data-driven guidelines can inform procurement, design standards, and
maintenance policy, supporting safer, more cost-effective infrastructure management. The study’s
strengths include rigorous data quality checks, transparent modeling assumptions, and direct
benchmarking against international SHM research, but it is limited by its cross-sectional snapshot.
Future work should track temporal degradation, integrate digital twins for predictive simulation, and
evaluate economic trade-offs between Al complexity, sensor investment, and network upgrades.
Despite these limitations, the findings provide one of the most comprehensive, quantitatively validated
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pictures of how Al and IoT converge to transform bridge monitoring. By confirming AI’s measurable
contribution and clarifying how context and network choices shape performance, this work supports
data-informed strategies for resilient, future-ready civil infrastructure.

RECOMMENDATIONS

The findings of this study lead to several important recommendations for the design, deployment, and
governance of Al-integrated IoT structural health monitoring (SHM) systems for bridges. First, Al
model quality should be treated as a critical performance asset rather than an add-on feature. The
regression results demonstrated that Al detection precision contributed a statistically significant and
independent improvement in Bridge Health Index (BHI) beyond what sensor accuracy and
transmission speed alone could achieve. Practitioners and agencies should therefore allocate resources
to training and validating machine learning models on representative data, using robust cross-
validation and field recalibration. For critical and high-traffic bridges, Al detection precision should
exceed 90% to meaningfully improve anomaly detection and reduce false alerts that can lead to
inefficient maintenance actions. Second, network architecture must be matched to safety criticality and
operational context. Transmission latency emerged as a clear predictor of lower BHI, meaning that slow
data delivery can compromise real-time damage detection. When possible, agencies should adopt low-
latency connectivity such as 5G or high-grade Wi-Fi/Ethernet for vital corridors and heavily trafficked
bridges. For cost-sensitive or remote locations, LoRa or ZigBee can still be appropriate if paired with
strong Al models and local pre-processing to compensate for slower data flow. A practical design rule
emerging from this study is that where average latency exceeds 150 ms, Al precision should meet or
exceed 90% to sustain reliable health assessment.

Third, special attention should be given to aggressive environments such as marine and coastal zones,
where corrosion and signal noise degrade monitoring performance. The interaction analysis showed
that sensor accuracy improvements have disproportionately positive effects under harsh
environmental stressors. Asset managers should therefore schedule more frequent calibration, select
corrosion-resistant sensors such as sealed MEMS accelerometers or protective FBG coatings, and
reinforce network stability to ensure data fidelity in such settings. Fourth, edge computing should be
integrated to strengthen reliability and reduce bandwidth demand. By performing on-node analytics,
compression, and preliminary damage classification at the sensor or gateway level, networks can
maintain rapid alerts even when cloud connections are intermittent or slow. This architecture aligns
with emerging hybrid edge-to-cloud frameworks and supports faster, more robust decision-making
without requiring continuous high-speed connectivity.

Fifth, system reliability and data trustworthiness should become routine operational metrics.
Automated quality validation procedures—such as missing data flagging, outlier detection using
Cook’s distance and Mahalanobis analysis, and periodic verification of Bridge Health Index (BHI)
internal consistency —can safeguard the accuracy of long-term condition trends. Embedding these
checks into dashboards allows engineers and decision-makers to act confidently on SHM outputs.
Finally, standards and procurement guidelines must evolve to reflect Al-enabled monitoring
capabilities. Agencies and industry groups (e.g., AASHTO, ISO) should incorporate minimum
thresholds for detection precision, latency, and sensor calibration into technical specifications. At the
same time, research and policy should push toward longitudinal, predictive monitoring using digital
twins, enabling proactive interventions and life-cycle cost optimization rather than reactive
maintenance. By acting on these recommendations, bridge owners and regulators can maximize the
safety and cost efficiency of AI-IoT SHM investments. Emphasizing Al performance, environment-
tailored sensor strategies, and adaptive network choices creates a pathway to resilient, scalable
monitoring systems capable of sustaining the structural integrity of vital infrastructure for decades.
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