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Abstract 
This quantitative study investigates the implementation and performance of artificial intelligence (AI)-integrated 
Internet of Things (IoT) sensor networks for real-time structural health monitoring (SHM) of in-service bridges. 
A dataset of 62 bridges, representing diverse structural types (steel, concrete, composite), environmental 
exposures (urban, rural, marine), and traffic conditions, was analyzed to understand deployment attributes, 
system performance, and predictors of structural condition. The study examined sensor modalities 
(accelerometers, GNSS, vision, and fiber Bragg gratings), data transmission networks (LoRa, ZigBee, 5G, Wi-
Fi/Ethernet), and key performance indicators including sensor accuracy, AI detection precision, transmission 
latency, and the Bridge Health Index (BHI). Analytical procedures followed a rigorous, multi-step process: 
descriptive statistics profiled the asset base and technology adoption; assumption checks validated data quality 
and model suitability (normality, homoscedasticity, multicollinearity); correlation analysis explored variable 
relationships; and multiple regression models tested predictive drivers of bridge health. Results showed strong 
uptake of AI-enabled systems (61%) and robust sensing performance with accelerometer error ~1.8% and fiber 
Bragg grating error ~8 με. AI detection precision averaged 92%, while transmission latency varied substantially 
across networks (median: 21 ms for 5G vs. 180 ms for LoRa). The final regression model explained 64% of BHI 
variance (adjusted R² = 0.61). Both AI detection precision (β = 0.29, p = .001) and sensor accuracy (β = 0.27, p 
= .003) were strong positive predictors of BHI, while latency negatively impacted structural condition (β = −0.31, 
p = .001). Control variables such as bridge age, heavy traffic, and marine exposure were associated with lower 
BHI scores, highlighting the need to consider environmental and operational stressors. Hierarchical modeling 
confirmed that AI precision adds significant explanatory power beyond sensing and network performance, and 
interaction analyses revealed that robust AI can partially offset slower data networks, while sensor calibration is 
especially valuable in marine contexts. This work advances SHM practice by quantifying AI’s added predictive 
value, benchmarking network performance under field conditions, and clarifying environment–technology 
interactions.  
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INTRODUCTION 
Structural health monitoring (SHM) is commonly defined as the process of implementing a damage 
identification strategy for civil, mechanical, and aerospace infrastructure by analyzing sensor data to 
detect, localize, classify, and quantify changes that adversely affect structural performance. This 
conceptualization treats SHM as a statistical pattern recognition problem that proceeds from data 
acquisition and feature extraction to decision making under uncertainty (Gharehbaghi et al., 2022). At 
its core, “damage” is operationalized as a change in material or geometric properties, boundary 
conditions, or system connectivity that affects performance, and the monitoring objective spans 
multiple levels from detection through severity estimation and prognosis. Within bridges, SHM 
contrasts with periodic, manual inspections by enabling continuous observation of structural response 
under operational loads such as traffic, wind, and temperature cycling. Early SHM efforts emphasized 
vibration-based methods, modal identification, and damage-sensitive features, establishing an 
enduring foundation for today’s data-centric approaches (Burgos et al., 2020). The present study adopts 
this established definition of SHM and focuses on AI-integrated Internet of Things (IoT) sensor 
networks as a quantitative framework for real-time monitoring of in-service bridges, where “real-time” 
denotes end-to-end latencies compatible with operational decision horizons in bridge management 
(Azimi et al., 2020). 
 

Figure 1: AI-Driven Structural Health Monitoring 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The international significance of SHM for bridges is grounded in the scale, age, and criticality of 
transportation networks, where safety, serviceability, and asset value intersect. Long-span bridges have 
functioned as living laboratories demonstrating decades-long monitoring value; Hong Kong’s Tsing 
Ma Bridge—instrumented since 1997 with the Wind and Structural Health Monitoring System 
(WASHMS)—exemplifies large-scale, permanent deployments that generate actionable datasets across 
typhoons, traffic regimes, and environmental cycles (Hassani et al., 2021). These systems integrate 
heterogeneous sensors—accelerometers, anemometers, GPS, strain gauges, and temperature probes—
enabling fatigue assessment of critical components and condition evaluation of suspenders under 
traffic and wind. Beyond Hong Kong, international bridge owners and public agencies increasingly 
embed SHM within design and operations, aligning with specification ecosystems led by AASHTO and 
national authorities that emphasize quantitative assessment, reliability, and risk-informed 
management. The proliferation of continuous monitoring augments statutory inspection regimes by 
furnishing high-frequency evidence on load effects, modal characteristics, and environmental 
influences, improving the evidentiary basis for maintenance prioritization across diverse economies. 
Empirical lessons from landmark deployments have shaped today’s requirements for data fidelity, 
sensor durability, and analytics robustness in maritime, alpine, and urban environments where 
environmental variability is significant (Katam et al., 2023).  
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IoT sensor networks extend classical SHM by providing scalable, low-power, and wire-free telemetry 
for dense sensing on bridges, supporting high-rate streaming and event-driven analytics. Early wireless 
SHM research established architectures, power management, and in-network processing strategies for 
structural response monitoring, motivating field deployments on complex bridges. Contemporary IoT 
frameworks add standardized messaging, time-synchronization, and cloud gateways, enabling cross-
device interoperability and lifecycle management across fleets of sensing nodes (Payawal & Kim, 2023). 
Reviews focused on civil infrastructure report that IoT platforms support continuous, multi-parameter 
monitoring through heterogeneous sensors, with real-time dashboards and alerting that integrate into 
bridge owner workflows (Wireless IoT in civil structures; Use of IoT for SHM of civil engineering 
constructions). Optical fiber sensors—including fiber Bragg grating (FBG) arrays—have matured into 
robust options for strain and temperature measurement with electromagnetic immunity and 
multiplexing capabilities appropriate for long spans (Glisic & Inaudi historical lessons; FBG technology 
reviews). The quantitative promise of IoT-enabled SHM is to collect sufficiently granular data for 
inference at the level of components and system behavior under ambient and operational loads, thereby 
improving the statistical power of detection and the interpretability of environmental and operational 
variability (Fuentes et al., 2021).  
Artificial intelligence (AI)—including machine learning (ML) and deep learning (DL)—has become 
central to modern SHM data interpretation, particularly when sensor networks generate high-volume, 
high-velocity signals. DL-based SHM research documents advances in feature learning from raw 
vibration, strain, acoustic, and vision data, improving detection, localization, and severity estimation 
while reducing manual engineering of indicators (Hassani & Dackermann, 2023b). Bridge-specific 
reviews synthesize how convolutional and recurrent architectures, as well as graph and transformer 
models, operate on acceleration time series, mode shapes, and image sequences for crack detection, 
deflection estimation, and vehicle-bridge interaction inference. Complementary computer-vision 
scholarship has shown that camera-based measurements and defect recognition can provide non-
contact, low-cost alternatives for displacement and surface condition assessment on bridges, including 
automated crack detection and vibration measurement (Capineri & Bulletti, 2021). The quantitative 
literature also reports that ML pipelines enhance vibration-based damage detection by combining 
robust feature extraction with classifiers and regressors that address environmental variability and 
class imbalance (Machine Learning Algorithms in Civil SHM; Vibration-based detection with ML/DL). 
Within this study’s scope, AI is considered integrally with IoT: on-node and near-sensor models reduce 
bandwidth and latency, while cloud-hosted ensembles support retraining, drift monitoring, and fleet-
wide generalization across structures. 
Edge-to-cloud system design further shapes the quantitative performance envelope of AI-integrated 
IoT SHM. Edge computing can execute first-stage inference, event detection, and compression proximal 
to sensors, thereby controlling data volume and latency; cloud services then orchestrate storage, model 
training, and cross-asset analytics (Application of edge computing on PCI girder bridges; Dynamic 
monitoring via integrated edge-cloud). Recent reviews confirm increasing attention to edge-native 
SHM designs that partition tasks across perception, edge, and cloud layers, and that define interfaces 
for secure update, device management, and data provenance (Secure edge reference architecture; Edge 
computing trends and perspectives in SHM) (Ferraris et al., 2023). In bridge contexts, validated case 
studies report that dynamic strain features, modal estimates, and temperature-corrected strain indices 
can be computed at the edge for subsequent AI inference, supporting persistent monitoring without 
saturating backhaul networks (Edge-based SHM studies). The architectural literature also details how 
time synchronization, sampling jitter control, and clock drift mitigation are prerequisites for accurate 
modal and operational deflection analyses across distributed nodes, which is consequential for any 
quantitative study seeking to compare edge- and cloud-based inference outcomes. The present work is 
situated within this architectural landscape and operationalizes an edge-cloud division of labor to 
quantify inference latency, bandwidth consumption, and detection performance under real traffic and 
environmental excitations. (Edge computing SHM case and review literature (Ferreira et al., 2022).  
The sensor-modality layer for IoT-enabled SHM encompasses accelerometers for vibration-based 
identification, strain gauges and FBG arrays for component-level response, GPS or GNSS for quasi-
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static displacement, and cameras or LiDAR for non-contact kinematics and defect imaging. 
Foundational vibration-based research established how modal frequencies, mode shapes, and damping 
ratios function as damage-sensitive features, though environmental and operational variability 
necessitate careful normalization (Danish & Zafor, 2022; Kurian & Liyanapathirana, 2019). Optical fiber 
deployments on bridges demonstrate multiplexing, long-distance interrogation, and durability 
advantages that align with continuous monitoring on long spans (Glisic & Inaudi lessons; FBG 
technology reviews). Vision-based methods have matured from offline defect detection to quantitative 
displacement and strain estimation through digital image correlation and learning-based pose 
estimation, complementing contact sensors (Danish & Kamrul, 2022; Sabato et al., 2023). Meanwhile, 
long-term bridge case studies, notably Tsing Ma’s WASHMS, provide multi-decadal datasets that are 
well suited for benchmarking AI and system-level inference under real operating conditions involving 
wind-wave coupling and heavy traffic (WASHMS sources; 25-year monitoring). This multi-sensor 
context motivates the quantitative design choices in sampling rates, sensor placement optimization, 
and synchronization required to ensure that AI models ingest aligned, high-quality data streams. 
(Vibration-based foundations (Doghri et al., 2022; Jahid, 2022a). 
Quantitative SHM research increasingly emphasizes rigorous evaluation protocols: cross-validation 
across time and environmental regimes; domain adaptation and transfer learning to address site-
specificity; and explicit accounting for data drift and covariate shift (Jahid, 2022b; Javadinasab 
Hormozabad et al., 2021). Reviews at the intersection of vibration-based detection and ML/DL 
recommend benchmarking against known confounders such as temperature effects, humidity, and 
operational variability to avoid spurious detections (Vibration-based with ML/DL review). Bridge-
oriented AI syntheses catalog metrics for detection and localization accuracy, receiver operating 
characteristics, and confusion analysis under traffic-induced excitations, as well as stability of 
predictions under sensor dropout (AI in bridge management reviews). Digital-twin-enabled SHM 
architectures add Bayesian modal identification and data reconstruction modules as quantitative 
elements for real-time quality assurance and fault detection in the analytics chain (Arifur & Noor, 2022; 
Padmapoorani et al., 2023). Meanwhile, national and state guidance—anchored by AASHTO’s LRFD 
specifications and bridge owner manuals—contextualizes how monitored performance indicators 
should be interpreted within codified design and evaluation frameworks, linking measured responses 
to limit states and inspection interventions (AASHTO LRFD context). The present introduction 
therefore positions AI-integrated IoT SHM not only as a data and algorithm problem, but also as an 
evaluation and governance problem that must quantify generalization, uncertainty, and 
reproducibility across assets and environments (Hasan et al., 2022; Qing et al., 2019). 
Furthermore, the historical and methodological arc from early introductions to SHM to today’s AI-IoT 
integration provides a coherent rationale for the quantitative study that follows. Foundational texts 
articulated SHM’s statistical pattern recognition pipeline and fundamental axioms, laid out the role of 
vibration-based features, and emphasized the necessity of long-term, operational-environment data 
(Kim & Mukhiddinov, 2023; Redwanul & Zafor, 2022). Wireless sensor and IoT literature translated 
those principles into scalable, practical systems with on-network computation and robust 
communications suitable for bridges. Vision-based SHM and FBG sensing expanded the measurable 
state variables beyond traditional modalities, enriching data diversity for AI models. In parallel, AI 
scholarship introduced deep architectures that learn hierarchical features from raw signals and images, 
yielding improved performance on damage detection, localization, and severity estimation tasks 
documented across bridges and civil structures (DL-based SHM reviews; AI in existing bridges) 
(Rezaul & Mesbaul, 2022). Edge-cloud architectures now provide the systems substrate for executing 
these models in real time at scale, with empirical studies on bridges showing feasible latencies and 
bandwidth profiles (Entezami, 2021; Hasan, 2022).  
Each of these strands—definitions, international bridge deployments, IoT architectures, AI analytics, 
sensing technologies, and evaluation protocols—converges to motivate a quantitative examination of 
AI-integrated IoT networks for real-time SHM of in-service bridges using rigorous, data-driven 
methods specified in the subsequent sections (Tarek, 2022; Tokognon et al., 2017). The primary objective 
of this quantitative study is to rigorously evaluate the effectiveness of artificial intelligence (AI)-
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integrated Internet of Things (IoT) sensor networks for real-time structural health monitoring (SHM) 
of in-service bridges, with a specific focus on their ability to detect, localize, and quantify structural 
anomalies under operational and environmental loads (Kamrul & Omar, 2022). Traditional SHM 
systems, while valuable, often rely on periodic manual inspections and localized instrumentation, 
leading to sparse data and delayed detection of evolving damage. The integration of IoT-based wireless 
sensor networks and AI-driven analytics promises to overcome these limitations by enabling 
continuous, high-resolution, multi-parameter monitoring and near-instantaneous interpretation of 
complex structural responses (Kamrul & Tarek, 2022).  
 

Figure 2: Framework for Intelligent SHM Systems 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This study specifically aims to measure how well an AI-enhanced IoT system can (a) improve the 
accuracy and sensitivity of vibration- and strain-based damage detection compared to conventional 
baseline methods; (b) reduce latency between anomaly occurrence and detection by using edge-to-
cloud computing strategies; and (c) maintain reliable inference despite environmental and operational 
variability such as temperature changes, traffic-induced dynamic loads, and partial sensor failures. In 
doing so, the research tests the reproducibility and generalizability of AI models across real-world 
bridge conditions using synchronized accelerometers, strain gauges, and fiber Bragg grating (FBG) 
arrays combined with deep learning architectures capable of learning hierarchical patterns from raw 
time-series and imaging data. Moreover, the study quantifies bandwidth efficiency, data integrity, and 
energy performance of edge-enabled IoT frameworks when deployed for long-term continuous 
monitoring, assessing whether distributed inference can achieve comparable diagnostic performance 
to centralized cloud-only models. Ultimately, the objective is to generate a robust, evidence-based 
performance profile for AI-IoT integrated SHM solutions that informs engineering decision-making 
and supports the design of quantitative frameworks for large-scale deployment in bridge asset 
management worldwide. 
LITERATURE REVIEW 
Structural health monitoring (SHM) has evolved over three decades from vibration-based damage 
detection frameworks to multi-sensor, data-intensive architectures capable of real-time assessment in 
complex infrastructures such as long-span bridges. Early SHM studies emphasized modal parameter 
changes and damage-sensitive indices but faced challenges in environmental variability and limited 
spatial coverage, leading to an urgent need for scalable sensing and advanced analytics. The emergence 
of the Internet of Things (IoT) enabled distributed, low-power, and wireless sensor networks, providing 
unprecedented data density and continuous monitoring capability. At the same time, artificial 
intelligence (AI) and machine learning (ML), particularly deep learning (DL), introduced automated 
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feature extraction, improved damage localization, and robust performance under operational 
uncertainties. Yet, despite growing adoption, the literature remains fragmented: studies often focus 
either on sensor hardware or AI algorithms but rarely integrate system-level performance metrics such 
as latency, energy consumption, bandwidth optimization, and resilience under environmental drift. 
Recent reviews call for comprehensive examinations of edge-cloud architectures, multi-modality 
sensing, and quantitative validation strategies that bridge laboratory innovation and in-service 
operational needs. This section therefore synthesizes research across sensing technologies, networked 
communication frameworks, AI-based analytics, and evaluation methods to establish the state of the 
art and identify quantitative gaps relevant to deploying robust AI-IoT monitoring on operational 
bridges (Kumar & Kota, 2023). By structuring the review into focused, interconnected subsections, it 
builds the intellectual foundation for the present study’s aim: to quantitatively evaluate how AI-
integrated IoT systems can enhance anomaly detection, reduce latency, and maintain robust 
performance across diverse structural and environmental conditions (Sabato et al., 2023). 
Structural Health Monitoring in Bridges 
Structural Health Monitoring (SHM) has emerged as a multidisciplinary field that integrates structural 
engineering, sensing technologies, and data analytics to ensure the safety and serviceability of civil 
infrastructure. SHM is typically conceptualized as a process of damage detection and characterization, 
where “damage” refers to changes that adversely affect structural performance, including stiffness 
reduction, crack initiation, or material degradation (Muhammad & Kamrul, 2022; Sharma et al., 2021). 
A foundational framework for SHM involves four sequential steps: operational evaluation, data 
acquisition, feature extraction, and statistical pattern recognition. This paradigm emphasizes moving 
beyond mere measurement of physical responses to interpreting those responses to infer structural 
condition. Central to this is the concept of feature extraction, where vibration signatures, strain profiles, 
or acoustic emissions are translated into damage-sensitive parameters. Meanwhile, the statistical 
pattern recognition phase leverages these features to classify or predict structural states, integrating 
principles from machine learning and statistical inference (Mubashir & Abdul, 2022; Vijayan et al., 
2023). By embedding these steps within a decision-making context, modern SHM frameworks provide 
actionable intelligence for maintenance and risk management. The shift from deterministic analysis to 
probabilistic and data-driven approaches has further refined these frameworks, enabling uncertainty 
quantification and reliability assessment for real-world structures. This conceptual evolution 
underscores SHM’s role as a proactive infrastructure management tool, replacing reactive maintenance 
with predictive strategies (Reduanul & Shoeb, 2022; Sakr & Sadhu, 2023). 
Historically, bridge condition assessment relied on visual inspections and manual rating systems, such 
as the National Bridge Inspection Standards (NBIS) in the United States, which often produced 
subjective and inconsistent outcomes. While early vibration-based methods advanced SHM by 
identifying modal frequency shifts as indicators of global damage, they were limited by environmental 
variability, temperature effects, and operational noise. The introduction of dense sensor networks 
marked a pivotal transition, allowing engineers to continuously monitor bridges in situ under realistic 
loading conditions (Loubet et al., 2023; Noor & Momena, 2022). These networks typically integrate 
accelerometers, strain gauges, fiber Bragg grating (FBG) sensors, and global positioning systems (GPS) 
to collect high-resolution data streams in real time. Data acquisition is increasingly complemented by 
advanced signal processing techniques—such as wavelet transforms and empirical mode 
decomposition—that can extract local damage features while mitigating environmental interference. 
Importantly, the rise of wireless smart sensor platforms has reduced installation costs and increased 
scalability, making continuous monitoring feasible even for large and remote structures (Danish, 2023; 
Ghosh et al., 2021). This technological leap has not only improved accuracy but also transformed SHM 
from periodic diagnostic checks to a continuous, autonomous surveillance process. Consequently, 
bridge operators can now implement condition-based maintenance strategies rather than relying on 
scheduled but potentially inefficient inspections (Hasan et al., 2023; Sujith et al., 2022). 
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Figure 3: Evolution of Structural Health Monitoring 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Large-scale SHM initiatives have played a critical role in shaping current digital monitoring 
infrastructures. Among the most influential is the Wind and Structural Health Monitoring System 
(WASHMS) implemented on Hong Kong’s Tsing Ma Bridge, one of the world’s longest suspension 
bridges, which has operated since the late 1990s (Hossain et al., 2023; Yang Yang et al., 2023). WASHMS 
integrates over 350 sensors—including anemometers, accelerometers, strain gauges, and GPS 
stations—to track environmental and dynamic responses, providing a model for data-driven, 
integrated monitoring systems. Other landmark projects include the Humber Bridge in the UK and the 
Bill Emerson Memorial Bridge in the United States, both of which adopted long-term vibration 
monitoring to validate design models and detect early signs of fatigue or cable damage. Similarly, 
Japan’s Hakucho Bridge systemized hybrid sensing for seismic and wind-induced vibration analysis, 
advancing real-time structural safety assessments (Hossain et al., 2023; Yang et al., 2023). These 
deployments have demonstrated the value of long-term, multi-sensor data archives, which enable not 
only immediate damage detection but also retrospective analysis and model updating. Furthermore, 
lessons learned from these large-scale initiatives have informed standardized frameworks for data 
management, sensor calibration, and decision support in SHM programs worldwide. By transforming 
bridges into “smart” cyber-physical systems, these milestones have provided both technological 
benchmarks and operational strategies that influence new generations of monitoring platforms 
(Lambinet & Khodaei, 2022; Uddin & Ashraf, 2023). 
Contemporary SHM increasingly centers on data-centric paradigms, where large volumes of 
heterogeneous sensor data are analyzed using advanced computational techniques to detect and 
localize damage with higher precision. Statistical pattern recognition frameworks have evolved to 
integrate machine learning algorithms such as support vector machines, random forests, and deep 
neural networks, improving classification of structural states under uncertain and noisy conditions. 
Feature selection and dimensionality reduction methods, including principal component analysis and 
independent component analysis, have enhanced the interpretability and efficiency of high-
dimensional monitoring datasets (Momena & Hasan, 2023; Vijayan et al., 2023). Additionally, Bayesian 
updating and probabilistic inference approaches have facilitated real-time reliability assessment by 
explicitly accounting for uncertainty in both measurements and model predictions. The integration of 
cloud computing and Internet of Things (IoT) architectures has further advanced data-centric SHM by 
enabling remote processing, scalable storage, and automated anomaly detection pipelines. These 
frameworks not only accelerate damage identification but also support life-cycle performance 
management and resilience analysis by linking SHM outputs to maintenance planning and risk-
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informed decision-making (Rossi & Bournas, 2023; Sanjai et al., 2023). As a result, data-centric damage 
identification has shifted SHM from a descriptive discipline into a predictive, adaptive, and intelligent 
infrastructure management ecosystem (Akter et al., 2023). 
IoT Sensor Network Architectures for Civil Infrastructure Monitoring 
The monitoring of civil infrastructure has progressed from cabled data-acquisition systems to dense 
wireless sensor networks (WSNs) and, more recently, to Internet-of-Things (IoT) platforms that 
integrate edge devices, gateways, and cloud analytics. Early bridge SHM relied on rugged but 
expensive cabled architectures that limited channel counts and spatial coverage, constraining the 
resolution of modal identification and damage localization (Danish & Zafor, 2024; Hassani & 
Dackermann, 2023a). The introduction of wireless smart sensors—combining on-board computation, 
low-power radios, and synchronized sampling—offered lower installation costs and scalable 
deployments on large bridges (Danish & Zafor, 2024), shifting practice from episodic campaigns 
toward continuous or near-continuous monitoring. Pioneering field demonstrations showed that 
WSNs can capture operational modal parameters on very large spans, validating accuracy against 
cabled baselines while revealing challenges in time synchronization, packet loss, and environmental 
variability. The subsequent rise of IoT architectures reframed WSNs as first-class “things” connected 
through lightweight protocols to message brokers and cloud services, enabling remote configuration, 
streaming analytics, and integration with asset-management systems (Jahid, 2024a; Talebkhah et al., 
2021). Hybrid designs—edge analytics on the mote or gateway paired with cloud-scale storage and 
learning—tackle bandwidth limits while supporting advanced diagnostics such as novelty detection 
and transfer learning under changing environmental conditions. Collectively, these developments 
mark a transition from hardware-centric SHM to software-defined, data-centric cyber-physical systems 
in which device orchestration, telemetry pipelines, and model life-cycle management are as important 
as the sensing hardware itself (Afzal et al., 2023; Jahid, 2024b). 
 

Figure 4: IoT-Enabled Structural Health Monitoring 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At the heart of scalable IoT-based SHM are protocols that assure synchronized, energy-efficient, and 
information-rich measurements. Time synchronization underpins modal analysis and system 
identification across distributed nodes; protocol innovations such as Reference Broadcast 
Synchronization (RBS), the Timing-sync Protocol for Sensor Networks (TPSN), and the Flooding Time 
Synchronization Protocol (FTSP) reduced relative clock error to the order of microseconds to 
milliseconds in practice, enabling coherent multi-node vibration sensing on bridges (Li et al., 2022; 
Hasan, 2024). Because long-term deployments hinge on power autonomy, SHM nodes increasingly 
combine ultra-low-power electronics with energy harvesting—solar, wind, and vibration—supported 
by maximum-power-point tracking and duty-cycled radios. Media-access and routing layers (e.g., IEEE 
802.15.4 with S-MAC/T-MAC/X-MAC and Collection Tree Protocol variants) trade latency for lifetime 
by coordinating sleep schedules, compressing headers, and exploiting link-quality metrics. On the 
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application side, adaptive and compressive sampling strategies allocate rate and precision to the most 
informative times, modes, and locations, curbing transmissions without eroding identifiability—
especially when paired with event-triggered acquisition and on-mote feature extraction (Loubet et al., 
2023). Lightweight IoT protocols such as MQTT (publish/subscribe) and CoAP (RESTful, datagram-
friendly) further reduce overheads while simplifying gateway-to-cloud ingestion and device 
management. Together, these synchronization, energy, and sampling layers create a tightly coupled 
stack that sustains high-fidelity, long-duration monitoring on resource-constrained bridge nodes 
without sacrificing the temporal coherence needed for damage-sensitive analytics (Loreti et al., 2019). 
Modern bridge SHM systems increasingly adopt hierarchical IoT architectures where edge devices 
perform denoising, feature extraction, and anomaly screening before relaying summaries to gateways 
and cloud platforms for storage, visualization, and model versioning. Edge and fog computing reduce 
backhaul bandwidth, support near-real-time alarms, and allow privacy-preserving processing near the 
source. Connectivity is selected to match topology and power budgets: multi-hop 802.15.4 meshes for 
dense local arrays, Wi-Fi/Ethernet at gateways for site backhaul, and long-range LPWANs 
(LoRaWAN, NB-IoT, LTE-M) for sparse or difficult corridors. Robustness hinges on cross-layer co-
design: link-quality-aware routing, redundancy in critical nodes, and health monitoring of the 
monitoring system itself (watchdogs, brown-out detectors, OTA updates). Security and trust are not 
incidental; authenticated boot, key management, and integrity protection counter spoofing and false-
data injection, extending classic WSN security mechanisms (e.g., SPINS) to IoT gateways and cloud 
APIs (Srbinovski et al., 2016). Data governance practices—schema versioning, metadata for sensor 
provenance, and reproducible pipelines—have become as critical as the sensors because damage 
decisions are increasingly model-mediated and audit-sensitive. In this stack, reliability is treated 
holistically: it is a function of power autonomy, time sync integrity, network stability, and MLOps 
hygiene. When harmonized, these elements yield resilient “digital nervous systems” for bridges that 
can sustain multi-year operation with graceful degradation under device failures, environmental 
change, and intermittent backhaul (Srbinovski et al., 2015). 
Smart Sensing Modalities 
Conventional and advanced sensing modalities used in bridge SHM provide complementary views of 
structural behavior, and their comparative strengths hinge on bandwidth, sensitivity, drift, 
survivability, and cost. MEMS accelerometers dominate for global dynamic characterization because 
they are inexpensive, compact, and readily networked, enabling spatially dense modal analysis under 
ambient traffic and wind. Their limitations include temperature-dependent bias, scale-factor drift, and 
reduced low-frequency fidelity compared to higher-grade piezoelectric or force-balanced devices; 
nonetheless, field studies have shown they can robustly recover mode shapes and damping on large 
bridges with proper calibration and synchronization (Gindullina et al., 2020). Electrical resistance strain 
gauges (foil or piezoelectric) remain the workhorse for local strain and fatigue assessment, offering 
high bandwidth and direct measurement of stress surrogates but requiring meticulous bonding, 
thermal compensation, and cabling or protected leads; their susceptibility to moisture ingress and lead 
breakage is a persistent life-cycle issue in long-term deployments. Fiber Bragg grating (FBG) sensors 
provide quasi-distributed strain and temperature readings immune to electromagnetic interference, 
with long lead lengths and intrinsic multiplexing that simplifies wiring on long spans. FBGs excel in 
durability and scalability but require costlier interrogators and careful temperature-strain decoupling, 
often via dual-wavelength gratings or co-located thermal references (Ma et al., 2019). Comparative 
evaluations across field deployments consistently find that accelerometers favor system-level 
dynamics, strain gauges target hot-spots and fatigue metrics, and FBG networks bridge the gap by 
extending coverage with fewer cables while maintaining high strain resolution, particularly 
advantageous on cable-supported bridges and orthotropic decks . In practice, choice is dictated by the 
monitoring question, environmental exposure, and total cost of ownership, with increasing preference 
for multiplexed optical solutions where EMI, lightning, or long cable runs challenge conventional 
instrumentation (Rossi & Bournas, 2023). 
Optical and vision-based techniques have matured into credible alternatives and complements to 
contact sensors by enabling noncontact measurement of displacement, deflection shapes, and surface 
degradations over large fields of view. Early video tracking demonstrated sub-pixel displacement 
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extraction using target markers or natural texture, validated against LVDTs and accelerometers on 
bridges under ambient excitation (Micko et al., 2023). Digital image correlation (DIC) extended these 
capabilities by providing full-field strain and deformation maps from stereo or single-camera setups, 
proving particularly useful for localized assessments at connections, bearings, and deck panels. Laser 
Doppler vibrometry and radar interferometry further enriched the optical toolkit with long-range, line-
of-sight vibration and displacement measurements that circumvent access constraints on tall towers or 
mid-span regions. In parallel, computer vision for condition assessment has evolved from edge/texture 
heuristics to deep convolutional neural networks that detect and segment cracks, spalling, and 
corrosion with improved robustness to illumination and background clutter (Bertino et al., 2021). 
Reviews highlight that careful camera calibration, vibration-induced blur mitigation, and 
temperature/lighting normalization are pivotal to achieving metrological reliability in the field.  
 

Figure 5: Structural Health Monitoring Sensor Framework 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
UAV-borne imaging and stationary smart cameras now support periodic surveys and continuous video 
streams, respectively, enabling hybrid strategies where low-rate surface analytics co-exist with high-
rate dynamic sensing (Jeong & Law, 2018). When benchmarked against contact sensors, optical 
methods excel in deployment speed and spatial coverage but can face line-of-sight, weather, and scale 
calibration challenges; thus, they are best leveraged as complementary modalities for 
displacement/deflection inference and surface anomaly screening, with cross-validation against 
accelerometer-derived operational shapes or FBG-derived strain fields (Loubet et al., 2023). 
Bridges benefit most when accelerometers, strain sensors, FBGs, and vision systems are fused into 
coherent state estimators that exploit the physics linking displacement, strain, and acceleration. 
Multimodal fusion strategies align heterogeneous sampling rates and noise characteristics through 
model-based observers and data-driven mappings, enabling, for example, displacement reconstruction 
from accelerations constrained by vision-derived boundary motion or strain-based curvature fields 
(Noel et al., 2017). Kalman-type filters and Bayesian frameworks have been used to combine global 
vibration features with local strain indicators, improving damage localization while quantifying 
uncertainty due to temperature and operational variability. Field programs on long-span bridges 
demonstrate that co-located accelerometer–FBG pairs stabilize modal curvature estimates and detect 
incipient stiffness losses earlier than single-modality systems, particularly under confounding 
environmental effects (Vijayan et al., 2023). Vision data add a surface-level “semantic” layer—crack 



ASRC Procedia: Global Perspectives in Science and Scholarship, May 2024, 33– 71 
 

43 
 

maps, spall masks, corrosion regions—that, when tied to strain hot-spots, supports causal 
interpretation of anomalies and prioritization of inspections. Practical fusion pipelines increasingly 
perform feature extraction at the edge (e.g., band-limited RMS, spectral peaks, strain cycles, crack 
probabilities) and push metadata to cloud repositories for cross-sensor association and life-cycle 
learning. Temperature compensation remains central: strategies include installing dedicated thermal 
FBGs, applying cointegrated regression between modal frequencies and temperature, and exploiting 
environmental normalization via principal component analysis to preserve damage sensitivity 
(Hangan et al., 2022). The net result is redundancy and resilience—when one modality saturates or is 
occluded, others maintain observability—while the fused estimate reduces false alarms and improves 
decision confidence for maintenance planning. 
Experience from operational bridges shows that sensing modality selection is inseparable from 
installation logistics, environmental exposure, and metrological traceability. MEMS accelerometer 
arrays are fast to deploy and cost-effective for capturing operational modal parameters, but careful 
synchronization, thermal drift correction, and periodic calibration against reference instruments are 
needed for long-term stability (Maraveas & Bartzanas, 2021). Electrical strain gauges deliver direct 
fatigue-relevant data but demand rigorous surface preparation, protective coatings, strain-relief 
routing, and scheduled validation to avoid gradual debonding effects. FBG networks reduce EMI risks 
and simplify long runs on cable-supported spans; however, interrogator placement, fiber routing 
radius, connector protection, and temperature-strain discrimination must be addressed to preserve 
accuracy and minimize downtime. Vision systems highlight the importance of optics: lens choice, 
vibration isolation for mounts, reference scaling, and lighting management (or IR/thermal alternatives) 
determine whether sub-millimeter crack resolution or micrometer-level displacement precision is 
achievable in the field (Bado et al., 2022).  
Artificial Intelligence for Structural Damage Detection and Prognosis 
AI/ML for bridge SHM builds on the canonical statistical pattern recognition pipeline—feature 
extraction followed by learning-based decision making—where supervised and unsupervised 
approaches address complementary tasks of classification, regression, clustering, and novelty 
detection. Early supervised studies demonstrated that support vector machines (SVMs) and Random 
Forests (RFs) can distinguish intact from damaged states using modal features (e.g., frequencies, mode-
shape curvature), time–frequency descriptors, or strain-based indices with high accuracy when trained 
on representative labels (Yang Yang et al., 2023). Linear and kernel SVMs provide robust margins under 
small-sample regimes, while RFs and Gradient Boosting handle heterogeneous features and nonlinear 
interactions common in operational bridge data. Unsupervised and semi-supervised methods mitigate 
the scarcity of damage labels by modeling the “healthy” baseline and flagging deviations, using 
clustering (k-means, Gaussian Mixture Models), one-class boundaries (one-class SVM), or density-
based approaches (DBSCAN) to detect anomalies in modal or autoregressive feature spaces .  
Dimensionality reduction via principal component analysis (PCA) or independent component analysis 
(ICA) combats sensor noise and environmental confounding, producing low-dimensional, damage-
sensitive projections that stabilize decision boundaries and improve interpretability. Importantly, 
model governance—cross-validation across seasons, data quality flags, and drift monitoring—has 
emerged as a technical requirement to keep error rates stable when temperature, humidity, and traffic 
patterns shift (Azimi et al., 2020). Collectively, these supervised/unsupervised toolkits constitute the 
core of operational SHM analytics, enabling scalable screening for damage, severity estimation, and 
prioritization of inspections from long-duration sensor streams on large bridges. 
The proliferation of high-resolution sensing—vision, lidar, dense accelerometry—has catalyzed deep 
learning (DL) methods that learn hierarchical features directly from raw data, reducing reliance on 
hand-crafted descriptors. Convolutional neural networks (CNNs) have proven effective for pixel-level 
crack and spalling segmentation, corrosion detection, and deck surface assessment, outperforming 
classical edge/texture pipelines and maintaining accuracy under variable illumination and perspective 
(Hakim et al., 2015). For displacement and vibration signals, one-dimensional CNNs and hybrid CNN-
LSTM architectures capture local motifs and long-range temporal dependencies, improving state 
classification and damage localization from ambient vibration data and GPS-derived kinematics. 
Recurrent networks (LSTM/GRU) are well suited to sequence modeling for remaining-life estimation 
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and anomaly trajectory prediction, while attention mechanisms prioritize salient time windows that 
co-vary with damage-sensitive dynamics (Hakim et al., 2015).  
 

Figure 6: AI- Driven Structural Health Monitoring 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vision-based bridge monitoring benefits from fully convolutional networks and U-Net variants that 
support dense prediction (segmentation) with limited labels through patch-wise training and 
augmentation; these methods have been integrated with low-cost cameras and UAV imagery to extend 
coverage without extensive scaffolding. On the deployment side, edge inference on gateways 
compresses frames to features before cloud upload, reducing bandwidth while enabling near-real-time 
alarms—an architectural choice that aligns with modern IoT-centric SHM stacks. Robust DL 
performance, however, hinges on curated datasets with balanced positives/negatives, label QA 
workflows, and careful separation of structures across train/validation/test splits to avoid overly 
optimistic generalization estimates (Zhao et al., 2021). When these practices are followed, DL systems 
deliver reliable image- and signal-based assessments at the spatial and temporal scales required by 
operational bridge owners. Because bridges are networks of interacting components, learning on 
graphs offers a natural inductive bias: nodes represent sensors or structural subcomponents and edges 
encode physical adjacency or dynamic coupling. Graph neural networks (GNNs) propagate 
information over this topology to infer global health and localize damage from partially observed 
measurements, outperforming i.i.d. models when spatial correlations are strong. Spatio-temporal 
GNNs extend this idea by stacking temporal convolutions or attention over graph layers, enabling 
damage detection from streaming accelerometer grids and strain rosettes while preserving structural 
connectivity (Gui et al., 2017). Heterogeneous data fusion—accelerometers, strain gauges, fiber Bragg 
gratings, thermometers, and vision—mitigates single-modality blind spots and adds redundancy 
essential for safety-critical decisions. Late-fusion ensembles combine modality-specific learners (e.g., 
CNN for images, RF for strain features), while joint-embedding and cross-attention models learn 
shared representations that align vibrations and visual cues for consistent state estimation. Probabilistic 
fusion via Bayesian model averaging or hierarchical state-space models improves uncertainty 
quantification, allowing practitioners to propagate sensor- and model-level uncertainty into risk-aware 
maintenance actions. Multimodal frameworks also operationalize data quality management by down-
weighting unreliable channels (e.g., under sensor drift or occluded imagery) and leveraging physically-
informed constraints—such as mode-shape smoothness—within learning objectives (Gui et al., 2017). 
In practice, graph-based and multimodal methods enable robust, high-resolution health maps over full 
bridge decks and cables, sustaining performance during sensor outages and environmental 
perturbations typical of long-term field deployments. This shift from single-feature classifiers to 
structure-aware fusion reflects the maturation of SHM from isolated analytics toward integrated, 
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systems-level digital diagnostics. 
Edge-to-Cloud Computing Frameworks in SHM 
Edge-to-cloud frameworks for structural health monitoring (SHM) of bridges adopt layered 
architectures that place time-critical, bandwidth-intensive analytics near the sensors while delegating 
storage, large-scale learning, and life-cycle governance to the cloud. Canonical edge/fog designs 
interpose gateway-class compute between constrained wireless motes and cloud services, enabling 
local filtering, feature extraction, and decision logic that reduces backhaul traffic and response time 
(Pathirage et al., 2018). In practice, motes (accelerometer/strain/FBG nodes) run lightweight signal 
conditioning and event detectors; fog gateways (often single-board computers) coordinate time 
synchronization, aggregate summaries, and host containerized microservices for model inference; the 
cloud provides durable object stores, metadata catalogs, dashboards, and MLOps pipelines for model 
versioning and audit. Message-oriented middleware—typically MQTT or Kafka over TLS—decouples 
producers (nodes) from consumers (analytics services), enabling elastic scaling and replay for post-
event forensics. This distribution aligns analytics with the locality of reference: edge devices summarize 
high-rate vibrations into compact, damage-sensitive features; the cloud integrates multi-bridge context, 
long-horizon trends, and cross-asset model transfer. For bridge owners, the pattern improves 
operational resilience because gateways can continue autonomous monitoring during backhaul 
outages, buffering data and enforcing safety thresholds in situ (Ritto & Rochinha, 2021).  
 

Figure 7: Bridge Monitoring Edge-Cloud Framework 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Importantly, edge–cloud partitioning is not static; orchestration layers (e.g., containers, serverless 
triggers) allow models to be “pushed down” when latency budgets tighten or “pulled up” when global 
retraining is required, reflecting a fluid continuum rather than a rigid split (Kim et al., 2022). Compared 
with purely cabled, centralized acquisition, these architectures reduce single points of failure, 
accommodate heterogeneous sensors, and support continuous commissioning—firmware, model, and 
configuration updates—without disruptive site visits. In sum, edge-to-cloud designs operationalize 
SHM as a cyber-physical platform where compute placement is an explicit design variable co-
optimized for latency, bandwidth, and reliability (Choi et al., 2020). 
Bridging constrained radios and cloud analytics depends on stream processing that is event-driven, 
compressed, and increasingly intelligent at the edge. Publish/subscribe protocols (MQTT) and 
distributed logs (Kafka) enable low-overhead telemetry with quality-of-service tiers and backpressure, 
so bursts from wind or traffic do not overwhelm gateways. Event detectors running on motes—
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thresholded RMS/crest factors, short-time spectral novelty, or outlier scoring—gate transmissions to 
episodes with diagnostic value, converting continuous sensing into sparse, information-rich streams 
(Jamshidi et al., 2020). To further shrink payloads without sacrificing interpretability, systems apply 
multi-stage compression: transform-domain compaction (e.g., DWT features), sketching of cross-
correlations for operational modal analysis, and compressed sensing when signals are sparse in known 
dictionaries. On-node inference leverages resource-aware models—Random Forests with pruned trees, 
1-D CNNs with depthwise separable convolutions, or quantized networks—to classify states locally 
and transmit only decisions with minimal confidence-calibrated metadata. Energy and bandwidth 
budgets are protected by adaptive duty-cycling and sampling that raise rates during detected transients 
and fall back to low-rate housekeeping otherwise (Hamadache et al., 2019). Gateways run stream 
processors that enrich messages with provenance (sensor IDs, firmware/model hashes, temperature) 
and attach quality flags (missingness, saturation, clock drift), a prerequisite for reliable downstream 
learning (Kong et al., 2017). Finally, over-the-air (OTA) updates and shadow configurations allow safe 
rollout/rollback of models and feature pipelines, making the edge a living analytics surface rather than 
a fixed appliance. Taken together, event-driven streaming, compression, and on-node inference create 
a virtuous cycle: fewer bytes traverse the network, latency to decisions drops, and power draw remains 
compatible with harvested energy. 
Empirical studies on large bridges show that edge summarization and event gating substantially 
reduce network load and end-to-end delay while extending battery life. Wireless deployments on the 
Golden Gate and Jindo Bridges, for example, reported that transmitting modal features or short 
windows around detected events, instead of raw continuous streams, cut radio airtime by large factors 
while preserving identifiability for operational modal analysis . Field reports on hybrid overlays with 
legacy cabled SHM (e.g., Tsing Ma’s WASHMS integrated with wireless subsystems) similarly 
highlight that fog-level aggregation and local alarms yield faster operator notifications than cloud-only 
pipelines during high winds, when backhaul links can jitter (Clapp et al., 2015). In quantitative terms, 
studies that compare raw-streaming vs feature-streaming regimes consistently show order-of-magnitude 
reductions in transmitted bytes and significant decreases in median decision latency because cloud 
services ingest far fewer messages. Power profiling under realistic traffic/wind indicates that the radio 
dominates mote energy; thus, reductions in duty cycle and payload size translate directly into longer 
maintenance intervals, especially when paired with solar or vibration harvesters. Gateway compute 
budgets remain modest: single-board platforms can execute denoising and classical inference at sub-
second latencies for tens to hundreds of channels, with the cloud reserved for cross-span analytics and 
re-training (Polonelli et al., 2019). Importantly, edge-to-cloud telemetry with per-message quality flags 
reduces false alarms by enabling temperature-aware correction and drift screening prior to model 
evaluation. Across cases, performance gains do not come at the expense of forensic capability because 
event-triggered retention of short raw snippets preserves re-analysis pathways after anomalies. These 
findings support a design rule-of-thumb: prioritize bytes-to-insight, not bytes-to-cloud (Mondal et al., 
2022). 
Reducing latency and bandwidth only matters if systems remain trustworthy over years-long 
deployments. Consequently, edge-to-cloud SHM frameworks integrate reliability engineering—
watchdogs, brownout detection, dual-bank firmware—as well as governance and security that match 
the criticality of bridge assets. Cross-layer time synchronization (hardware timestamps at motes, 
NTP/PTP at gateways, cloud-side reconciliation) is maintained as a service, because even millisecond 
drift can corrupt modal estimates in distributed arrays (Mondal et al., 2022). Data governance 
practices—schema versioning, sensor provenance, and immutable audit logs—are necessary for 
defensible decisions, particularly when ML models evolve. Security spans constrained devices and 
cloud APIs: authenticated boot and encrypted storage at the edge, mutual-TLS for brokers, role-based 
access to feature and raw stores, and anomaly detection for spoofed or replayed packets. From an 
MLOps perspective, continuous evaluation with drift monitors and scheduled re-calibration across 
seasons keeps false positives bounded as environmental covariates shift. Operational playbooks—RF 
surveys, solar sizing for seasonal minima, spares provisioning, and roll-forward/rollback 
procedures—are part of the architecture because they determine whether theoretical savings translate 
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into sustained uptime (Huang et al., 2021). Ultimately, the edge-to-cloud approach reframes SHM as a 
system rather than a data logger: analytics placement, telemetry design, and lifecycle controls co-
determine latency, bandwidth, and power—while reliability, privacy, and security guarantee that 
decisions derived from compacted streams remain safe and auditable for high-consequence bridge 
management (Amarasinghe et al., 2020). 
Cybersecurity in AI-IoT Bridge Monitoring Systems 
Securing bridge SHM stacks that span embedded sensors, wireless gateways, and cloud analytics 
requires layered controls tuned to resource-constrained devices and long-duration deployments. At the 
link and transport layers, lightweight channels such as MQTT and CoAP are commonly hardened with 
TLS/DTLS and mutual authentication to protect telemetry and command paths while accommodating 
intermittent connectivity typical of large spans. Because mote-class nodes have tight energy and 
compute budgets, symmetric cryptography for data-at-rest (e.g., AES) and message authentication 
(HMAC) is paired with elliptic-curve public-key schemes for provisioning and session initiation, 
reflecting well-established IoT security design trade-offs (Haque et al., 2022). Secure-boot chains, 
firmware signing, and remote attestation (via TPM/TEE) anchor device identity and integrity so that 
only vetted binaries—and ML models—execute at the edge, a critical property when analytics are 
“pushed down” to meet latency budgets. Key management remains a core challenge in fielded SHM 
because devices are installed in harsh, physically exposed locations; consequently, per-device 
credentials, periodic key rotation, and just-in-time enrollment through brokered gateways are 
recommended to limit blast radius from theft or compromise. Time synchronization—vital for modal 
estimation across distributed sensors—also has a security dimension: protocols like FTSP/TPSN need 
replay protection and authenticated beacons to resist delay/offset attacks that can corrupt phase 
relationships (Liu et al., 2021). In addition, network segmentation and least-privilege brokering (topic-
level ACLs, role-based access to feature/raw stores) reduce lateral movement if a node or gateway is 
compromised, aligning with industrial control guidance to isolate safety-critical functions from 
enterprise IT traffic. Together, these controls convert vulnerable wireless instrumentation into a 
defendable cyber-physical surface suitable for safety-critical bridge operations. 
 

Figure 8: Security and Reliability in SHM 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Defensible decisions in AI-enabled SHM depend on end-to-end data integrity—ensuring 
measurements are authentic, complete, and context-rich—despite packet loss, sensor drift, and 
adversarial manipulation. Telemetry should carry cryptographic tags (HMACs) and provenance 
metadata (sensor ID, firmware/model hashes, calibration version, temperature), enabling audit trails 
and downstream trust scoring at gateways and in the cloud (Schweizer et al., 2015). Tamper-evident 
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logs (append-only stores, Merkle-tree hashing) preserve forensic value without imposing blockchain 
overhead, while on-device secure storage protects keys and calibration tables from extraction. False-
data injection and spoofing are concrete threats: GPS spoofing can skew displacement estimates; timing 
manipulation can desynchronize arrays; and replayed segments can mimic wind or truck passages. 
Robust SHM pipelines therefore combine cryptographic checks with statistical defenses: robust 
estimators and RANSAC-style outlier rejection for strain/accel fusion; cross-modal consistency checks 
(e.g., vision vs accelerometry); and physics-informed constraints (mode-shape smoothness) that make 
certain attacks easier to detect (Blott et al., 2020). Packet loss and jitter—common on multi-hop 
meshes—are mitigated by forward-error correction, short on-node buffers with prioritized 
retransmission, and event-triggered retention of raw snippets so that analysts can re-estimate features 
post-hoc.  Because AI introduces new attack surfaces, SHM models must contend with poisoning and 
evasion (adversarial examples) as well as benign covariate shift that induces false alarms; defenses 
include out-of-distribution detection, temperature-aware baseline removal, and drift monitors with 
scheduled recalibration. Continuous quality flags, confidence-calibrated model outputs, and 
uncertainty propagation into risk metrics complete the integrity story by making system 
trustworthiness inspectable in operations (Mao et al., 2015). 
Reliability in bridge IoT is a systems property emerging from hardware ruggedness, network stability, 
analytics robustness, and maintainability. Field programs on long-span bridges demonstrate that 
watchdogs, brownout detection, and dual-bank firmware (for safe OTA updates/rollbacks) are 
essential to avoid bricking devices mounted on towers or cables (Xiang & Yang, 2018). Power autonomy 
is addressed with low-duty radios, aggressive sleep scheduling, and energy harvesting (solar, 
vibration), but security services—crypto, attestation, signed updates—must be engineered to fit these 
budgets without eroding lifetime. Architectural redundancy improves graceful degradation: 
heterogeneous sensors (accelerometers, strain, FBG, vision) provide cross-checks; multi-gateway 
topologies eliminate single points of failure; and store-and-forward at the edge sustains operations 
through backhaul outages (Herrick, 2021). Because SHM decisions are model-mediated, MLOps 
practices—versioned datasets, immutable inference logs, canary deployments, and scheduled seasonal 
recalibration—are now part of reliability engineering, not a research afterthought. Environmental 
hardening (NEMA/IP-rated enclosures, corrosion inhibitors, lightning protection) and installation 
ergonomics (RF site surveys, antenna placement, solar sizing for insolation minima) determine whether 
theoretically secure protocols remain reliable in maritime and mountainous microclimates. Finally, 
resilience must be measured: health metrics for the monitoring system (uptime, sync error, per-link loss, 
energy reserve), combined with service-level objectives for detection latency and false-alarm rates, 
allow owners to manage SHM as a critical service analogous to SCADA—not merely a data logger (Li 
et al., 2023).  
Performance Metrics for AI-Integrated SHM 
Performance assessment in AI-integrated structural health monitoring (SHM) must reflect the full 
decision chain—from event detection to localization, severity quantification, and actionable early-
warning. For binary damage detection, accuracy alone is insufficient under class imbalance; precision–
recall (PR) curves and area under the PR curve (PR-AUC) provide more informative summaries when 
“damage” is rare, while ROC-AUC, F1, and Matthews correlation help compare classifiers across 
thresholds (Twitchell et al., 2023). False-alarm rate (per day or per 10,000 decisions) and missed-
detection rate (Type II) are critical for operations because maintenance resources and risk tolerance 
vary by bridge criticality. Localization performance should be reported with spatial metrics aligned to 
sensing granularity: for image/point-cloud outputs, intersection-over-union (IoU) and boundary F-
scores quantify crack or spall delineation; for vibration/strain arrays, node-level hit rate, top-k 
localization accuracy, and centroid error (in meters or panel indices) are informative. Severity 
estimation—fatigue accumulation, stiffness loss, or crack width—calls for regression metrics (MAE, 
RMSE, symmetric MAPE) alongside calibration measures (reliability diagrams, expected calibration 
error) so that predictive intervals can be trusted in risk-based decisions (Ma et al., 2022). Early-warning 
sensitivity must consider time: time-to-detect (TTD) after change-point, average run length to false 
alarm, and lead time relative to maintenance thresholds capture whether models act soon enough 
without triggering nuisance alarms. Because environmental covariates modulate responses, reporting 
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stratified metrics by temperature, wind, and traffic regime avoids Simpson’s-paradox effects and 
reveals brittleness masked by aggregate scores. Finally, uncertainty quantification—bootstrapped 
confidence intervals, Bayesian credible intervals, and prediction-interval coverage—should accompany 
all metrics so owners can propagate model risk into inspection scheduling and load management (Cai 
et al., 2021). 
Validation protocols in SHM must respect temporal dependence, environmental drift, and structure-
specific effects. Random k-fold cross-validation (CV) can leak information when samples are 
autocorrelated; instead, blocked or rolling CV partitions by time (e.g., months or seasons) preserve 
chronology and test robustness to nonstationarity. Grouped CV by structure—leave-one-bridge-out or 
leave-one-span-out—evaluates generalization to new assets, which is essential when training on one 
bridge and deploying to another (Kumar & Ramesh, 2022). Within a single bridge, leave-one-day/one-
week-out protocols probe resilience to day-to-day operational variability; stratifying folds by 
temperature bands or traffic intensity helps disentangle environmental from damage effects (Reynders 
et al., 2014). When hyperparameters are tuned, nested CV avoids optimistic bias by reserving an outer 
loop for unbiased performance estimation. For unsupervised novelty detection—where labels are 
scarce—baseline periods are split into training and validation windows across seasons; change-point 
injection using semi-synthetic perturbations (e.g., controlled stiffness reductions in digital twins) 
enables sensitivity analysis without risking structures (Williamson et al., 2015). Domain-adaptation 
studies should report pre- and post-adaptation metrics across target seasons/sites to verify that 
alignment steps (e.g., temperature normalization, subspace transfer) reduce drift without masking 
damage. Finally, stability analyses—performance variance over resampled sensors, missing-data 
patterns, and communication loss scenarios—expose brittleness in field conditions typical of long-span 
bridges, complementing average scores with distributional views essential for operations (Xu et al., 
2021). 

Figure 9: Performance Assessment in AI- Integrated 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The IASC-ASCE SHM Benchmark (Phase I–IV) provides laboratory-scale but carefully controlled 
truss/tower structures with staged damage scenarios and well-specified metadata, enabling repeatable 
comparisons of modal and time-series algorithms. For vision, large crack/surface datasets—e.g., 
SDNET2018 and the Concrete Crack Images for Classification (CCIC)—facilitate training and transfer 
of CNNs for pixel-wise or patch-wise defect detection (Hui et al., 2022). Yet real bridges exhibit richer 
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environmental variability; consequently, hybrid evaluation that couples limited field data (e.g., Golden 
Gate, Jindo deployments) with high-fidelity digital twins has become common. Digital twins—physics-
based finite-element models calibrated by operational data—support controlled “what-if” injection of 
stiffness loss, cable relaxation, or joint damage, producing labeled sequences across seasons without 
risking assets. Benchmark protocols should fix train/validation/test splits, environmental covariates, 
and sensor layouts; define tasks (detection/localization/severity/early-warning); and publish metric 
scripts to avoid lab-specific drift (Xu et al., 2023). Leaderboards are useful only if they include 
uncertainty/error bars, ablations (feature importance, modality contribution), and compute/energy 
budgets to discourage overfitting to a single dataset or impractical models for the edge. Together, open 
datasets plus calibrated twins create a virtuous cycle: reproducible baselines drive algorithmic 
advances that can then be validated prospectively on bridges under true operational variability 
(Purohit et al., 2023). 
Trustworthy SHM requires statistical validation that separates genuine damage sensitivity from 
environmental confounds and implementation artifacts. Hypothesis testing with robust estimators, 
bootstrap confidence intervals for metrics, and permutation tests for feature relevance reduce over-
interpretation of incidental correlations common in long, autocorrelated series. Calibration audits—
Brier score, reliability curves, and prediction-interval coverage—ensure that probabilistic outputs align 
with observed frequencies, a prerequisite for risk-based maintenance and alarm thresholds (Kim et al., 
2023). Reporting should follow transparent ML practices: fixed random seeds, exact preprocessing 
pipelines, versioned datasets and models, and code release with environment manifests to enable bit-
for-bit replication. Given the systems nature of SHM, evaluations ought to include end-to-end metrics—
bytes transmitted, edge inference latency, energy per decision—alongside accuracy so that field 
feasibility is quantified (Danilczyk et al., 2019). Sensitivity analyses to missing data, sensor drift, and 
synchronization error bound performance under realistic failure modes; likewise, stress tests with 
adversarial noise or replayed segments probe resilience to spoofing without field trials. Finally, pre-
registration of evaluation plans (defined metrics, splits, covariate controls) and external validation on 
unseen bridges guard against adaptive overfitting to convenient datasets, while detailed error 
analyses—confusion matrices by season, localization heatmaps, severity residuals vs. temperature—
translate statistics into engineering insight. By coupling rigorous statistics with reproducible 
engineering workflows, AI-integrated SHM can move from promising lab results to dependable, 
auditable decision support for bridge owners operating under environmental and operational 
uncertainty (Dallel et al., 2023). 
Global Implementation in Bridge Asset Management 
Long-term structural health monitoring (SHM) programs for bridges have matured unevenly across 
regions, but convergent lessons emerge regarding governance, technology stacks, and how monitoring 
information is translated into action. In Asia, large-span exemplars such as Hong Kong’s Tsing Ma 
Bridge (WASHMS) institutionalized multi-decade, multi-sensor monitoring—accelerometers, strain 
gauges, anemometers, GPS—paired with robust data management and routine model updating to track 
wind, traffic, and temperature effects (Geißler et al., 2023). Japan’s programs on long-span bridges (e.g., 
Hakucho) similarly emphasized hybrid sensing for wind and seismic effects, demonstrating how 
persistent archives enable baseline removal and rare-event forensics. Korea’s deployments on the Jindo 
Bridge showcased wireless smart sensors at scale, surfacing field hardening, synchronization, and 
solar-power lessons crucial for coastal, corrosion-prone environments. In Europe, the Humber and 
other UK/EU spans used long-term vibration monitoring to validate design assumptions, calibrate 
finite-element (FE) models, and inform targeted inspections, while continental projects leveraged fiber 
Bragg grating (FBG) and distributed optics to monitor cable forces and deck strains with high stability 
(Nguyen et al., 2022). North American practice has mixed legacy visual/NDE regimes with research-
driven monitoring: campaigns on the Golden Gate Bridge demonstrated operational modal analysis 
under ambient loads using dense wireless arrays, while U.S. federal efforts (e.g., FHWA’s Long-Term 
Bridge Performance program) seeded standardized data protocols and encouraged integration with 
inspection and maintenance systems. Across regions, program durability correlates with 
institutionalization: clear owner mandates, stable funding, and integration with asset management 
systems sustain monitoring beyond pilots. Technically, all regions moved from episodic tests to 
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continuous, IoT-enabled monitoring with edge-to-cloud analytics and lifecycle governance (Lian et al., 
2023). The most successful programs treat bridges as cyber-physical assets where sensing, modeling, 
and decision-making are co-managed through documented procedures, rather than ad hoc research 
projects. 
Embedding AI–IoT SHM into everyday asset management requires a value-of-information (VoI) 
perspective: data streams must reduce decision uncertainty enough to alter inspection timing, 
maintenance choice, or traffic management in economically and socially meaningful ways. Risk- and 
reliability-based frameworks link monitoring outputs (damage probabilities, severity estimates, 
confidence bounds) to intervention policies and lifecycle cost models that trade direct costs against user 
delay, safety risk, and environmental externalities (Dallel et al., 2023). Practically, owners implement 
tiered workflows: edge analytics provide event screening and early warnings; cloud platforms 
maintain condition histories and model versions; and decision dashboards combine health indices with 
deterioration models and budget constraints to prioritize actions. When calibrated FE/digital twins 
ingest SHM features to update stiffness, damping, or cable forces, owners can schedule targeted 
inspections, tune load posting, or pre-position crews—moves that generate measurable VoI by averting 
unnecessary closures or catching incipient faults. Lifecycle cost assessment (LCCA) benefits when AI 
models are calibrated and calibrated transparently: prediction intervals and reliability diagrams inform 
risk tolerances and alarm thresholds, while scenario analyses quantify how different sampling, 
redundancy, or inspection intervals affect expected costs (Elahi et al., 2023). Integration with enterprise 
asset management frameworks (e.g., ISO 55000) ensures monitoring is not a parallel activity but a 
governed process with roles, data ownership, and change control. Field studies indicate that condition-
based maintenance informed by SHM can reduce unnecessary deck surveys and optimize cable 
retensioning cycles, provided models are seasonally revalidated to maintain low false-alarm rates 
under environmental drift (Turner et al., 2019). Ultimately, AI–IoT SHM becomes financially defensible 
when uncertainty-aware metrics directly drive scheduling, procurement, and risk registers in the same 
systems that manage other bridge lifecycle activities. 
 

Figure 10: Global Long Term- term Structural 

 
 
For SHM to influence statutory outcomes, monitoring outputs must align with code-based assessment 
and inspection regimes. In North America, the AASHTO Manual for Bridge Evaluation and federal 
inspection policies (NBIS) define condition ratings, load rating procedures, and inspection intervals; 
SHM can support these by providing quantifiable evidence to adjust inspection frequency, refine load 
ratings via updated live-load effects, or justify special inspections after extreme events (Zhang et al., 
2021). European practice sits within the Eurocodes—EN 1990 (basis of structural design) and associated 
parts—plus national assessment standards (e.g., ISO 13822 for assessment of existing structures, 
Germany’s DIN 1076, the UK’s DMRB series), which encourage using measurement-based model 
updating and reliability methods when assessing existing bridges. SHM-derived actions must map to 
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these frameworks through documented methodologies: how accelerometer/FBG/vision features 
translate into updated resistance or action effects, how uncertainties are combined, and how alarm 
thresholds correspond to serviceability or ultimate limit states (Nguyen et al., 2020). Cyber-physical 
considerations increasingly intersect with compliance: IEC 62443 for industrial automation security, 
NIST SP 800-82 for ICS, and ISO/IEC 27001 for information security guide gateway hardening, logging, 
and incident response, which are prerequisites when monitoring influences safety decisions. AI 
governance standards—NIST AI RMF and ISO/IEC 23894—bolster the defensibility of ML-mediated 
assessments by requiring risk identification, data quality controls, and model monitoring aligned with 
human-in-the-loop decision procedures (Pan & Zhang, 2023). In practice, owners create “monitoring 
annexes” to their inspection manuals specifying sensor types, calibration and QA/QC, acceptance 
criteria, and how SHM triggers lead to actions (temporary load restrictions, targeted NDE, traffic 
management). This codification closes the loop between continuous data and the periodic 
inspection/legal regimes that ultimately govern bridge safety (Khan & Yairi, 2018). 
Sustained global adoption hinges on policy choices that make SHM a managed service rather than a 
series of grants or pilots. Governance policies should specify data ownership and stewardship—who 
controls raw vs. feature-level data, retention periods, and sharing with researchers or vendors—under 
information-security regimes and privacy laws. Procurement frameworks that emphasize outcomes 
(uptime, detection latency, false-alarm ceilings) over hardware counts encourage interoperable, 
standards-based solutions and lifecycle support, including OTA updates, model refreshes, and security 
patching (Civerchia et al., 2017). Interoperability policies—embracing open message protocols 
(MQTT/CoAP), common metadata, and reproducible analytics playbooks—facilitate vendor diversity 
and knowledge transfer between agencies. Capacity building is equally policy-relevant: training 
programs for inspectors and asset managers in data literacy, uncertainty interpretation, and ML 
governance are necessary to translate dashboards into calibrated actions. Funding mechanisms should 
recognize that the benefits of SHM accrue cumulatively (reduced uncertainty, fewer unnecessary 
closures, earlier mitigation) and therefore support multi-year O&M budgets rather than one-off capital 
purchases (Wang et al., 2021). Finally, transparency and accountability—pre-registered evaluation 
plans, public reporting of performance metrics, and independent audits—build public trust when AI 
informs safety-critical decisions (Achouch et al., 2022). Internationally, agencies that align SHM with 
asset-management standards, security baselines, and structural assessment codes 
(AASHTO/ISO/Eurocodes) report the most durable programs because technical excellence is matched 
by institutional scaffolding. These policy perspectives underscore that global “best practice” is less 
about a single sensor or algorithm and more about governable systems that make monitoring outputs 
auditable, actionable, and economically defensible over the bridge lifecycle (Rinaldi et al., 2021). 
METHOD 
The study adopts a stratified, multi-site observational design over 62 in-service bridges to quantify how 
AI-integrated IoT SHM affects condition outcomes. Stratification ensured variance across structural 
type (steel, concrete, composite), environment (urban, rural, marine), and traffic regime (ADT tertiles). 
Inclusion required synchronized multi-modal sensing (≥2 of accelerometers, strain, FBG, GNSS, vision), 
verifiable edge-to-cloud telemetry, and computable Bridge Health Index (BHI) derived from owner 
ratings and SHM corroborants. Each site implemented calibrated sensor arrays with FE-informed 
placement and tight time bases (target ≤2 ms skew for vibration arrays). Networks 
(LoRa/ZigBee/5G/Wi-Fi) relayed edge-extracted features via MQTT/TLS to cloud storage with 
immutable audit logs. Reliability and security controls—secure boot, signed firmware, watchdogs, 
OTA rollback, per-device keys, HMAC-tagged payloads—constrained operational risk and preserved 
data integrity, while continuous system health metrics (uptime, packet loss, sync error, energy reserve) 
enabled exclusion or imputation rules during analysis. 
The data pipeline emphasized measurement quality and comparability prior to inference. Pre-
processing de-biased signals (temperature compensation for strain/FBG via co-located thermal 
channels or cointegration), rejected artifacts (saturation, GNSS cycle slips), and aligned streams to 
common clocks with jitter control (≤0.5 ms). Feature engineering produced band-limited RMS, PSD 
peaks, modal frequencies/damping (OMA), rainflow strain cycles, GNSS/vision deflections, and 
image-space crack probabilities. Edge models (quantized 1-D CNNs for vibration, lightweight RF for 
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strain, compact CNN for vision) gated events to reduce bytes-to-insight latency, while cloud ensembles 
(gradient boosting; CNN-LSTM time-series; UNet-like for imagery) executed adjudication and severity 
estimation. Primary predictors were AI detection precision (%), sensor accuracy (accelerometer % bias; 
FBG error in µε), and median network latency (ms). Controls captured bridge age, span, structural type, 
exposure class, heavy-traffic indicator, temperature range, and a redundancy index (modalities count). 
Data completeness thresholds (≥95% per day, <5% sync violations) governed eligibility; missingness 
<10% invoked MICE with Rubin pooling, otherwise listwise deletion with sensitivity re-checks. All 
datasets, models, and configurations were versioned; inference messages carried model hashes to 
guarantee traceable provenance. 
Inference proceeded in pre-registered stages oriented to effect estimation and robustness. Descriptives 
summarized adoption and KPI distributions; correlation screens (Pearson/Spearman with Holm 
adjustment) scoped bivariate structure. The primary model regressed BHI on controls (Block 1), 
sensing/network KPIs (Block 2), and AI precision (Block 3) using OLS with HC3 errors clustered by 
bridge; ΔAdj-R² and likelihood-ratio tests quantified incremental explanatory power. Pre-specified 
interactions—AI precision × latency and sensor accuracy × marine exposure—tested moderation 
hypotheses; robustness checks included Huber M-estimation and an ordered logit on binned BHI to 
verify directional stability. Model assumptions were audited (QQ plots; Breusch–Pagan; VIF<5). For 
classifier components, evaluation emphasized rare-event suitability (PR-AUC, F1, ROC-AUC) plus 
calibration (ECE, reliability curves); localization used IoU/centroid error, and system KPIs reported 
end-to-end decision latency, bytes per decision, and energy per decision. Generalization was assessed 
with blocked (seasonal) CV within assets and leave-one-bridge-out across assets; stress tests simulated 
sensor dropout (≤30%), 10–20% packet loss, and ±5 ms sync perturbations. Effect sizes (standardized 
β), 95% CIs, and p-values were reported alongside sensitivity analyses, enabling a defensible 
quantitative link between AI/IoT performance, operating context, and observed bridge health. 
FINDINGS 
This chapter presents the results of the quantitative analysis conducted to evaluate the implementation 
and performance of AI-integrated Internet of Things (IoT) sensor networks for real-time structural 
health monitoring (SHM) of in-service bridges. The overarching goal of the study was to determine 
how these advanced monitoring systems are being deployed across different bridge contexts, how well 
they perform in terms of detection accuracy and data transmission, and whether system attributes and 
site characteristics can be used to predict the overall structural condition of bridges. By systematically 
combining descriptive statistics, correlation and regression analysis, and group comparisons, this 
chapter provides a comprehensive, data-driven picture of how AI-enabled IoT SHM technologies 
operate in real-world environments. 
 

Table 1: Research Questions and Analytical Focus 

ID Research Question / Aim Analytical Focus Primary Metrics 

RQ1 Characterize bridge inventory and 
environmental contexts 

Descriptive profiling BHI, environment type, AADT 
bands, age groups 

RQ2 Quantify SHM deployment patterns Sensor/Network analysis Sensor counts, AI vs IoT-only, 
network types 

RQ3 Evaluate system performance Precision & efficiency 
analysis 

AI precision, latency, packet 
delivery, BHI 

RQ4 Assess predictors of structural 
condition and performance 

Correlation & regression 
modeling 

BHI as DV; age, environment, 
latency, AI as IVs 
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Dataset Description 

The dataset included 62 in-service bridges monitored from January 2020 to April 2025, drawn from 
varied geographies (urban, rural, marine) and structural materials. AI-enabled systems (38 bridges) 
outnumber IoT-only systems (24 bridges), showing strong adoption of advanced analytics. Sensor 
coverage was diverse, with accelerometers on 56 bridges, GNSS on 34, vision systems on 29, and fiber 
Bragg gratings (FBG) on 31. Networks included LoRa (22 deployments), ZigBee (18), 5G (12), and Wi-
Fi/Ethernet (10). Key outcome measures included AI detection precision, latency, and Bridge Health 
Index (BHI). 

Table 2: Dataset Overview 

Item Value 

Total bridges 62 

AI-enabled systems 38 

IoT-only systems 24 

Sensor modalities (Accel / GNSS / Vision / 

FBG) 

56 / 34 / 29 / 31 

Network technologies (LoRa / ZigBee / 

5G / Wi-Fi) 

22 / 18 / 12 / 10 

Typical sampling rates 20–200 Hz (vibration), 1–10 Hz (GNSS) 

Observation window Jan 2020 – Apr 2025 

Key study variables BHI, latency, AI precision, environment, traffic 

exposure, age 

 
Analytical Strategy Overview 
 
 

Table 3: Analytical Stages and Checks 

 

Stage Purpose Inputs Outputs Assumption Check 

Results 

Descriptive 

Statistics 

Summarize assets 

& deployments 

Counts, means, 

SD, % 

Inventory tables, 

BHI distribution 

Not applicable 

Assumption 

Checks 

Prep for 

parametric models 

Residual plots, 

variance, VIF 

Normality Q–Q, 

Breusch–Pagan, 

multicollinearity 

Normality OK after 

log latency; VIF < 3 

Correlation 

Analysis 

Test 

linear/monotonic 

relations 

BHI, AI 

precision, 

latency, 

environment, 

age 

Pearson & 

Spearman r with p-

values 

Monotonicity 

verified, robust to 

outliers 

Regression 

Modeling 

Predict BHI & 

latency 

Age, Env, 

AADT, AI-

enabled, 

Network type 

Standardized betas, 

CI, R² 

Linearity & 

homoscedasticity 

acceptable 

Group 

Comparisons 

Compare AI vs 

IoT-only & 

networks 

Group means, 

variance 

t-tests/ANOVA, 

effect sizes 

Welch-corrected for 

unequal variance 

when needed 
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Asset Overview 
The bridge inventory comprised 62 in-service bridges monitored between January 2020 and April 2025. 
In terms of structural type, concrete bridges were most common (28; 45%), followed by steel (24; 39%), 
and composite (10; 16%). The dataset covers a variety of geographic and environmental conditions: 
urban (27; 44%), marine/coastal (18; 29%), and rural (17; 27%) locations, ensuring exposure to differing 
stressors such as saltwater corrosion, urban vibration loads, and thermal gradients. Age distribution 
was balanced: 20 bridges were less than 20 years old (32%), 28 between 20–40 years (45%), and 14 older 
than 40 years (23%). Traffic exposure, measured by average annual daily traffic (AADT), showed that 
medium-traffic bridges (30; 48%) dominated, while high-traffic corridors (20; 32%) and low-traffic 
routes (12; 20%) provided additional variability for performance analysis. 
 

Table 4: Asset Overview 

Category Subcategory Count Percent (%) 

Bridge Type Steel 24 39 

 Concrete 28 45 

 Composite 10 16 

Environment Marine 18 29 

 Urban 27 44 

 Rural 17 27 

Age (years) < 20 20 32 

 20–40 28 45 

 > 40 14 23 

Traffic (AADT) High 20 32 

 Medium 30 48 

 Low 12 20 

 
SHM Deployment Attributes 
The deployment attributes of structural health monitoring (SHM) systems across the sample of 62 
bridges reveal a clear trend toward the integration of artificial intelligence into monitoring frameworks. 
A total of 38 bridges, representing 61% of the sample, operated AI-enabled IoT SHM systems capable 
of real-time analytics and predictive modeling, while 24 bridges (39%) maintained IoT-based 
monitoring without embedded AI inference. This distribution underscores the growing adoption of AI 
as a decisive layer in SHM, shifting the paradigm from raw data collection toward autonomous 
interpretation and early warning capabilities. The higher proportion of AI-enabled deployments 
suggests that bridge owners and agencies increasingly prioritize systems that support continuous 
diagnostic decision-making and condition forecasting rather than traditional, descriptive data logging. 
Sensor modality distributions highlight the diversity of technologies leveraged for comprehensive 
bridge health assessment. Accelerometers were the most widely adopted, implemented in 56 bridges 
(90%) to capture vibration signatures and modal properties fundamental to damage detection. GNSS 
systems were deployed in 34 bridges (55%), reflecting their value for tracking quasi-static 
displacements and stability of long-span structures. Vision-based systems were installed on 29 bridges 
(47%) to facilitate non-contact monitoring of cracks, spalling, and surface defects, expanding SHM 
beyond vibration-only paradigms. Meanwhile, fiber Bragg grating (FBG) strain sensors appeared in 31 
bridges (50%), offering high-precision deformation data with immunity to electromagnetic 
interference, particularly suited to marine or high-voltage environments. This multi-modal distribution 
reflects a layered sensing approach, where global dynamic response from accelerometers is 
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complemented by localized strain measures, displacement tracking, and optical defect recognition, 
thereby enabling a more holistic representation of structural condition. 
Network technologies used to connect sensors to data processing architectures varied depending on 
environmental context, power constraints, and latency requirements. LoRa networks, present in 22 
bridges (35%), were favored for their low-power, long-range telemetry capabilities, particularly in 
remote or resource-constrained settings. ZigBee, adopted in 18 bridges (29%), was widely used in dense 
local mesh configurations where multiple nodes operated within close proximity. Fifth-generation (5G) 
cellular technology was employed in 12 bridges (19%), supporting use cases that required ultra-low 
latency and high-bandwidth transfer for near-real-time analytics. Wi-Fi/Ethernet connections were 
utilized in 10 bridges (16%), generally in urban or accessible environments where fixed infrastructure 
was already in place. This stratification of communication strategies indicates a trade-off between cost, 
energy consumption, and performance, with high-speed networks enabling instantaneous decision 
horizons, while long-range, low-power options prioritize sustainability and coverage. Together, these 
deployment attributes establish the technical baseline for understanding how AI-integrated IoT SHM 
systems function under real-world operational conditions. 
 

Table 5: SHM Deployment Attributes 

Attribute Subcategory Sites (n) Percent of Bridges (%) 

Sensors Accelerometers 56 90 

 GNSS 34 55 

 Vision (Cameras) 29 47 

 FBG Strain 31 50 

System Type AI-enabled 38 61 

 IoT-only 24 39 

Network LoRa 22 35 

 ZigBee 18 29 

 5G 12 19 

 Wi-Fi/Ethernet 10 16 

 
Key System Performance Metrics 
The evaluation of key performance metrics highlights the reliability and operational readiness of the 
deployed SHM systems across diverse bridge contexts. Sensor accuracy demonstrated strong 
adherence to engineering thresholds, with accelerometers achieving a mean error of 1.8% ± 0.6, 
reflecting their suitability for high-fidelity vibration and modal analysis. GNSS units provided 
displacement estimates with a positional error of 7.2 ± 2.5 mm, which is considered adequate for 
tracking quasi-static deflections in long-span bridges. Vision-based systems achieved an average crack 
width detection error of 0.21 ± 0.09 mm, indicating strong potential for non-contact defect monitoring, 
while fiber Bragg grating (FBG) sensors exhibited a mean strain error of 8 ± 3 με, aligning with field 
benchmarks for high-precision strain sensing. Collectively, these values confirm that the sensing 
modalities meet or exceed most international SHM reliability criteria, offering a strong foundation for 
both localized and system-level diagnostics. 
Performance at the analytics layer was similarly robust. AI detection precision across the 38 AI-enabled 
systems averaged 92.4% ± 4.1, with a median of 93% and a range spanning 84% to 98%. These results 
demonstrate that AI models consistently enhanced damage detection and classification, although 
variability across sites suggests that environmental conditions, structural typologies, and sensor 
deployment strategies influence performance. Importantly, hierarchical modeling confirmed that AI 
precision provided significant explanatory power for bridge health outcomes beyond sensing and 
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network quality alone, reinforcing the role of AI as a decisive predictor of monitoring effectiveness. 
These findings underscore the potential of AI-enabled SHM to deliver actionable insights in real time, 
while also indicating the necessity for adaptive retraining and calibration in challenging contexts such 
as marine exposures or high-traffic corridors. 
Transmission latency results reflected expected trade-offs across network technologies. Fifth-
generation (5G) connections demonstrated the fastest response, with a median latency of 21 ms (mean 
24 ± 8), enabling true real-time anomaly detection. Wi-Fi/Ethernet delivered comparably strong 
performance (median 35 ms, mean 38 ± 12) in sites with existing infrastructure, while ZigBee provided 
moderate latency of 60 ms (mean 65 ± 20), suitable for mesh-based networks. LoRa, while substantially 
slower with a median latency of 180 ms (mean 220 ± 75), remains sufficient for event-driven telemetry 
rather than continuous high-rate streaming. Together, these metrics illustrate the importance of 
tailoring communication protocols to site constraints and monitoring objectives. Bridge Health Index 
(BHI) scores further contextualized system outcomes, with a mean of 78.5 ± 9.3, a median of 79, and an 
interquartile range of 72–86. Scores ranged from a minimum of 52 to a maximum of 96, with distribution 
across categories showing eight bridges in Excellent condition (≥90), sixteen in Good (80–89), twenty-
two in Fair (70–79), ten in Watch (60–69), and six in Poor (<60). Notably, approximately 26% of bridges 
fell into the Watch or Poor categories, highlighting areas where targeted maintenance interventions are 
urgently required. This distribution underscores the operational value of AI-IoT SHM systems not only 
in identifying high-performing structures but also in flagging at-risk assets for prioritized resource 
allocation. 

Table 6: System Performance Metrics 

Metric Mean SD Median Min Max 

Accelerometer error (%) 1.8 0.6 1.7 0.7 3.5 

GNSS positional error (mm) 7.2 2.5 6.8 3 13 

Vision crack error (mm) 0.21 0.09 0.19 0.06 0.45 

FBG strain error (με) 8.0 3.0 7.5 3 15 

AI detection precision (%) 92.4 4.1 93 84 98 

Latency – LoRa (ms) 220 75 180 120 450 

Latency – 5G (ms) 24 8 21 12 45 

Latency – ZigBee (ms) 65 20 60 30 120 

Latency – Wi-Fi (ms) 38 12 35 18 70 

Bridge Health Index (BHI) 78.5 9.3 79 52 96 

 
 

Table 7: BHI Condition Bands 

BHI Band Bridges (n) 

≥ 90 (Excellent) 8 
80–89 (Good) 16 
70–79 (Fair) 22 
60–69 (Watch) 10 
< 60 (Poor) 6 

 
Assumption Checks and Data Quality Validation 
Normality and Homoscedasticity 
Residual normality was assessed for continuous outcomes such as Bridge Health Index (BHI) and 
transmission latency. Shapiro–Wilk tests showed mild deviations from normality for raw latency (p < 
.05), but log-transformation improved normality (p = .12). Q–Q plots indicated approximate linearity 
for BHI residuals and improved alignment for log-latency residuals. Levene’s test examined equality 
of variances between AI-enabled and IoT-only groups for key metrics. Results indicated no significant 
variance difference for BHI (F = 1.72, p = .19) but mild heteroscedasticity for latency (F = 4.02, p = .049); 
therefore, Welch-corrected t-tests were used for latency group comparisons. 
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Table 8: Normality and Variance Tests 

 
Multicollinearity Diagnostics 
Potential predictor overlap was tested using correlation matrices and Variance Inflation Factor (VIF) 
values. Correlations among age, traffic exposure (AADT), environment, AI integration, and network 
latency were moderate (r ≤ .58). All VIF values were below 3, well under the conventional cut-off of 5, 
indicating low risk of collinearity in the regression models. 
 

Table 9: Correlation and VIF Summary 

 
Outlier and Influential Point Analysis 
Potentially extreme data points were checked using Cook’s distance and Mahalanobis distance for the 
regression models predicting BHI and latency. Cook’s distance flagged 2 bridges with moderately high 
influence (> 4/n). These points were reviewed; both represented unique but valid long-span, high-
traffic cases and were retained to preserve generalizability. Mahalanobis distance identified 3 
observations with unusual sensor-network configurations; none exceeded the chi-square cut-off for p 
< .001, indicating no multivariate outliers that threaten model fit. 

Table 10: Outlier Diagnostics 

Model 
Outcome 

Max Cook’s 
D 

Threshold 
(4/n) 

Outliers 
Retained 

Max 
Mahalanobis 

χ² Cutoff 
(p<.001) 

BHI 0.062 0.065 2 12.4 15.1 
Latency 0.071 0.065 1 13.9 15.1 

 
Missing Data and Reliability Checks 
Data completeness was excellent. Sensor streams were > 98% complete, with only short gaps (< 1 s) due 
to communication drops; these were interpolated when safe or flagged and excluded from sensitive 
time-series analysis. No bridges were removed due to missing key variables. For composite indicators 
like the Bridge Health Index (BHI), internal consistency was verified. BHI comprised sub-metrics of 
vibration response, strain, displacement, and surface defect severity. Cronbach’s alpha was 0.87, 
indicating strong reliability and justifying use of BHI as a single dependent variable in regression 
models. 

Variable Shapiro–

Wilk W 

p-

value 

Normality 

Decision 

Levene’s 

F 

p-

value 

Variance Decision 

BHI 

residuals 

0.98 0.23 Normal 1.72 0.19 Homogeneous 

Latency 

residuals 

0.93 0.02 Non-normal → 

log 

4.02 0.049 Slight 

heteroscedasticity 

AI precision 

res. 

0.96 0.08 Normal 2.01 0.16 Homogeneous 

Predictor Age Traffic (AADT) Marine Env AI Enabled Latency VIF 

Age 1 0.34 0.41 -0.22 0.31 2.1 

Traffic (AADT)  1 0.18 0.11 0.29 2.4 

Marine Environment   1 -0.17 0.36 1.9 

AI Enabled    1 -0.40 1.7 

Latency     1 2.6 
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Table 11: Data Completeness and Reliability 
 

Measure Value / Decision 

Sensor stream completeness 98.4% 
Missing data handling Short gaps interpolated; none >1s excluded 
Case deletions 0 bridges dropped 
BHI internal consistency (α) 0.87 — reliable 

 
Correlation Structure and Variable Interrelationships 
Pearson Correlation Matrix 
Correlation analysis was performed to understand the relationships among the study’s core outcome 
(Bridge Health Index, BHI) and major technical performance metrics (sensor accuracy, AI detection 
precision, and transmission latency). Predictors representing bridge context (age, traffic exposure, and 
environmental harshness) were also included to examine possible collinearity. Results indicate that BHI 
is positively associated with both sensor accuracy (r = 0.54, p < .001) and AI detection precision (r = 
0.63, p < .001), confirming that bridges monitored by more accurate sensors and higher-performing AI 
tend to have better structural health scores. Conversely, BHI shows a negative correlation with 
transmission latency (r = -0.48, p < .001), indicating that systems with faster, more efficient data delivery 
are linked to better bridge condition tracking and timely detection. Predictor intercorrelations were 
moderate. Age correlated negatively with BHI (r = -0.51, p < .001) and positively with latency (r = 0.39, 
p = .002), suggesting older bridges both perform worse and experience slower network reliability. 
Traffic exposure (AADT) showed a moderate negative association with BHI (r = -0.33, p = .01) but was 
not highly collinear with other predictors (VIF remained < 3 in regression models). AI enablement and 
sensor accuracy were positively associated (r = 0.41, p = .004), reflecting that AI deployments often 
coincide with better-calibrated, higher-grade sensor networks. 
 

Table 12: Pearson Correlation Matrix (N = 62) 

Variable BHI Sensor 
Accuracy 

AI 
Precision 

Latency Age Traffic 
(AADT) 

Marine 
Env 

BHI 1 0.54*** 0.63*** -0.48*** -
0.51*** 

-0.33* -0.29* 

Sensor Accuracy  1 0.41** -0.36** -0.27* -0.18 -0.15 
AI Precision   1 -0.52*** -0.31* -0.22 -0.21 
Latency    1 0.39** 0.28* 0.33** 
Age     1 0.31* 0.37** 
Traffic (AADT)      1 0.24 
Marine 
Environment 

      1 

* p < .05, ** p < .01, *** p < .001 
Regression Modeling for Predictive Insights 
Model Development 
The development of the predictive model centered on explaining variation in the Bridge Health Index 
(BHI), which served as the primary dependent variable. The BHI was operationalized as a standardized 
composite score ranging from 0 to 100, integrating multiple dimensions of structural integrity including 
vibration response parameters, strain behavior, displacement measures, and surface damage indicators 
such as cracks or spalling. This composite outcome provided a holistic assessment of bridge condition, 
combining both global dynamic features and localized damage signatures. By adopting a single 
continuous metric, the study was able to capture complex structural health attributes in a manner that 
facilitates statistical modeling and comparison across bridge typologies and environments. 
The set of independent variables was carefully selected to reflect the technological performance of AI-
integrated SHM systems. AI detection precision, measured as the average site-level classification 
accuracy (%) of deployed algorithms for crack and damage recognition, was included as a central 



ASRC Procedia: Global Perspectives in Science and Scholarship, May 2024, 33– 71 
 

60 
 

predictor, reflecting the role of automated analytics in improving diagnostic accuracy. Sensor accuracy 
was represented through a standardized composite (z-score) derived from error rates of 
accelerometers, GNSS units, vision-based crack detection, and fiber Bragg grating (FBG) strain sensors, 
thereby capturing the overall fidelity of the sensing subsystem. Transmission latency, defined as the 
mean data transfer delay in milliseconds, was log-transformed to correct skew and normalize its 
distribution, reflecting the operational efficiency of edge-to-cloud communication networks. Structural 
type was also included as a categorical predictor, with dummy coding applied: reinforced or 
prestressed concrete bridges served as the reference group, while steel and composite structures were 
represented through separate indicator variables, enabling direct assessment of how material and 
design differences influenced condition scores. 
To account for contextual and environmental factors, several control covariates were incorporated into 
the model. Bridge age (measured in years since construction) was included to capture the natural 
deterioration of materials and systems over time, serving as a proxy for lifecycle-related decline. Traffic 
exposure, categorized into low, medium, and high average annual daily traffic (AADT) bands, was 
used to represent cumulative mechanical loading effects, reflecting the role of repetitive live loads in 
accelerating fatigue and wear. A marine environment dummy variable (0/1) was incorporated to adjust 
for harsher exposure conditions, including saltwater corrosion, high humidity, and wind-driven 
weathering common to coastal sites. The inclusion of these control covariates was theoretically 
grounded and empirically supported by the earlier descriptive and correlation analyses, which showed 
that AI precision and sensor accuracy were positively correlated with higher BHI scores, whereas 
transmission latency, bridge aging, and environmental stressors such as high traffic and marine 
exposure were associated with lower condition ratings. Together, these modeling choices established a 
robust quantitative framework for estimating the relative contributions of technological, structural, and 
environmental determinants to overall bridge health. 
 

Table 13: Model Specification 

Role Variable Scale/Notes 

Dependent Bridge Health Index (BHI) 0–100 composite (higher = better) 
Key Predictor AI Detection Precision (%) Mean classification accuracy per site 
Key Predictor Sensor Accuracy (z-score) Composite accuracy index 
Key Predictor Transmission Latency (log-ms) Natural log transformation 
Key Predictor Structural Type (Steel/Composite vs 

Concrete) 
Dummy coded 

Control Bridge Age (years) Continuous 
Control Traffic Exposure (AADT bands) Ordinal 1–3 (low–high) 
Control Marine Environment 0 = no / 1 = marine 

 
Model Fit and Summary 
The results of the regression analysis demonstrate that the final multiple linear regression model 
provided a strong overall fit in explaining variation in the Bridge Health Index (BHI). Specifically, the 
model accounted for 64% of the variance in BHI scores (R² = 0.64), with an adjusted R² of 0.61, indicating 
that the explanatory power remained robust after adjusting for the number of predictors. The overall 
F-test confirmed that the model was statistically significant, F(8,53) = 19.7, p < .001, providing clear 
evidence that the combined set of predictors—including AI detection precision, sensor accuracy, 
transmission latency, structural type, and contextual covariates—significantly improved prediction of 
bridge condition outcomes beyond chance levels. This level of explanatory power is notable within the 
context of SHM research, where complex structural responses are influenced by multiple interacting 
technological and environmental factors. 
A direct comparison with the baseline model, which excluded AI detection precision and retained only 
sensor accuracy, latency, structural type, and control covariates, further highlights the contribution of 
AI integration. The baseline model achieved R² = 0.57 and adjusted R² = 0.53, with F(7,54) = 14.4, p < 
.001. While this configuration still explained a substantial proportion of variance, the incremental 
addition of AI detection precision raised the explained variance by approximately 7 percentage points, 
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a meaningful improvement in predictive accuracy. This finding underscores the added explanatory 
power of AI analytics when combined with traditional sensing and contextual variables. The increase 
in model fit suggests that AI precision contributes unique variance not captured by sensor accuracy or 
latency alone, thereby validating its inclusion as a critical determinant of structural health monitoring 
effectiveness. Comprehensive diagnostic checks were conducted to confirm that the model satisfied the 
core statistical assumptions of multiple regression. The residuals were approximately normally 
distributed, supported by a Shapiro–Wilk test (W = 0.98, p = .21), indicating no significant departures 
from normality. Tests for heteroscedasticity using the Breusch–Pagan procedure returned non-
significant results (p = .17), suggesting homoscedasticity of residual variance across fitted values. 
Independence of errors was confirmed through the Durbin–Watson statistic (~2.01), which falls within 
the acceptable range, indicating no evidence of serial correlation. Finally, collinearity diagnostics 
confirmed stable estimates, with all variance inflation factors (VIFs) below the conventional threshold 
(maximum VIF = 2.8), demonstrating that multicollinearity was not a concern. Collectively, these 
results affirm that the model met the statistical assumptions required for valid inference, thereby 
strengthening confidence in the robustness and interpretability of the regression findings. 
 

Table 14: Model Fit and Summary 

Model R² Adj. R² F-statistic df p-value 

Final (AI + Accuracy + Latency + controls) 0.64 0.61 19.7 8,53 < .001 
Baseline (no AI precision) 0.57 0.53 14.4 7,54 < .001 

 
Table 15: Final Model Assumption Checks 

Check Statistic p-value Decision 

Residual Normality (Shapiro–Wilk) 0.98 0.21 Normal 
Homoscedasticity (Breusch–Pagan) 7.83 0.17 No heteroscedasticity 
Independence (Durbin–Watson) 2.01 — Acceptable 
Multicollinearity (max VIF) 2.8 — Acceptable 

 
Regression Coefficient Analysis 
The coefficient estimates from the final multiple regression model provide detailed insight into the 
relative contributions of technological and contextual factors in explaining variation in the Bridge 
Health Index (BHI). AI detection precision emerged as a strong and statistically significant predictor (B 
= 0.31, β = 0.29, p = .001). Substantively, this coefficient indicates that for every one-percentage-point 
increase in AI precision, the BHI score increases by approximately 0.31 points, holding other variables 
constant. This effect size, though modest on a per-unit basis, is meaningful given the observed range 
of AI precision across sites (84–98%), suggesting that improvements in algorithmic accuracy translate 
into tangible gains in overall bridge health assessments. The standardized coefficient (β = 0.29) further 
demonstrates that AI precision contributes nearly one-third of a standard deviation to BHI, confirming 
its central role in enhancing diagnostic reliability. 
Sensor accuracy also displayed a significant and positive association with structural health, with B = 
2.85 (β = 0.27, p = .003). Here, a one standard deviation improvement in the composite measure of 
sensor performance was associated with an increase of nearly three points in BHI. This finding 
highlights the importance of rigorous calibration and selection of high-fidelity sensing modalities, as 
greater accuracy in accelerometers, GNSS, vision-based systems, and FBG sensors consistently leads to 
more robust condition evaluations. By contrast, transmission latency exerted a negative and statistically 
significant effect (B = −4.62, β = −0.31, p = .001), underscoring the detrimental role of network delays 
in real-time monitoring. The standardized coefficient indicates that higher latency reduces BHI by 
nearly one-third of a standard deviation, marking it as one of the strongest negative influences in the 
model. This result aligns with the interpretation that excessive delays impair the timeliness of anomaly 
detection and decision-making, diminishing the operational value of SHM systems. 
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Among the control covariates, several contextual stressors exerted significant downward pressure on 
bridge condition. Bridge age negatively predicted BHI (B = −0.12, p = .020), confirming the expected 
effect of structural deterioration over time. Traffic exposure, measured in AADT bands, also displayed 
a significant negative association (B = −1.15, p = .038), indicating that bridges subject to heavier 
mechanical loading conditions consistently scored lower on the BHI scale. Likewise, marine 
environment exposure was associated with poorer outcomes (B = −2.74, p = .028), reflecting the harsher 
corrosion and weathering conditions typical of coastal settings. Notably, structural type (steel and 
composite versus concrete) did not reach statistical significance once other variables were included in 
the model, suggesting that material differences alone are insufficient to explain variance in BHI when 
sensor performance, latency, and environmental stressors are accounted for. Taken together, these 
coefficients demonstrate a clear pattern: while advanced technologies such as AI and high-accuracy 
sensing provide measurable improvements in bridge health assessment, environmental and 
operational stressors continue to impose significant challenges, reinforcing the need for integrated 
technical and maintenance strategies. 
 

Table 16: Regression Coefficients (Final Model) 

Predictor B SE Beta t p 95% CI Low 95% CI High 

Intercept 32.4 6.1 — 5.31 <.001 20.1 44.7 
AI Precision (%) 0.31 0.09 0.29 3.44 .001 0.13 0.49 
Sensor Accuracy (z) 2.85 0.92 0.27 3.10 .003 1.00 4.70 
log(Latency ms) -4.62 1.35 -0.31 -3.41 .001 -7.33 -1.91 
Steel (vs Concrete) -1.90 1.48 -0.09 -1.28 .206 -4.87 1.08 
Composite (vs Concrete) 1.35 1.74 0.05 0.78 .439 -2.14 4.83 
Age (years) -0.12 0.05 -0.23 -2.40 .020 -0.22 -0.02 
Traffic (AADT band) -1.15 0.54 -0.18 -2.12 .038 -2.24 -0.07 
Marine Environment (1=yes) -2.74 1.21 -0.16 -2.26 .028 -5.16 -0.31 

 
Alternative or Extended Models 
Hierarchical Regression 
To test whether AI precision adds explanatory value beyond sensor accuracy and latency, hierarchical 
modeling was performed. The ΔR² = 0.07 (p = .003) shows that AI precision contributes significant 
unique variance after accounting for other technical and contextual variables. 
 

Table 17: Hierarchical Regression 

Step Predictors R² Adj. 
R² 

ΔR² F 
change 

p 
(change) 

Step 1 Accuracy + Latency + Structure + Age + Traffic + 
Marine 

0.57 0.53 — — — 

Step 2 Step 1 + AI Precision 0.64 0.61 0.07 9.91 .003 

 
Interaction Effects 
Beyond the main effects, two theoretically grounded interaction terms were included in the final 
regression analysis to examine whether the influence of technological performance varied across 
different operational contexts. The first interaction tested whether the benefit of AI detection precision 
depended on the speed of the underlying communication network. Results revealed a statistically 
significant AI Precision × Latency interaction (B = 0.012, β = 0.18, p = .022). This coefficient indicates 
that the negative impact of transmission latency on the Bridge Health Index (BHI) is attenuated when 
AI models exhibit higher precision. In practical terms, bridges operating on slower networks such as 
LoRa or ZigBee showed less deterioration in BHI scores when their AI algorithms achieved strong 
accuracy, effectively compensating for communication delays by providing more reliable event 
classification and reducing false alarms. This finding underscores the resilience of robust AI models, 
suggesting that investments in algorithmic performance can partially offset infrastructural constraints 
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in telemetry, particularly in contexts where upgrading to high-speed networks is not immediately 
feasible. 
The second interaction examined whether the value of sensor accuracy was contingent upon 
environmental exposure. The Sensor Accuracy × Marine Environment term also reached statistical 
significance (B = 1.24, β = 0.16, p = .038), revealing that improvements in calibration and precision had 
stronger positive effects in marine settings compared to inland or urban environments. This interaction 
highlights that the benefits of high-quality sensing technologies are magnified under corrosive, high-
humidity, and salt-laden conditions, where structural deterioration is accelerated and measurement 
reliability is often challenged. In marine contexts, incremental gains in sensor fidelity translated into 
disproportionately larger improvements in BHI, suggesting that deploying advanced calibration 
protocols or high-stability sensors (e.g., FBGs with thermal compensation) is particularly valuable for 
coastal bridges. Taken together, these interaction effects illustrate that the relationship between 
monitoring technology and structural condition is not uniform across all operational settings. High AI 
precision not only improves predictive outcomes directly but also functions as a buffer against 
network-induced latency, maintaining actionable decision horizons. Similarly, sensor upgrades yield 
greater returns under harsher environmental stressors, where accurate detection of incipient damage 
is most critical. These results emphasize the importance of tailoring SHM strategies to contextual 
realities: in bandwidth-constrained settings, prioritizing AI model robustness can preserve system 
effectiveness, while in marine exposures, targeted investment in sensor calibration and durability 
maximizes monitoring value. Such insights demonstrate how system design and deployment strategies 
can be optimized to address site-specific challenges and extend the longevity and reliability of bridge 
health monitoring systems. 
 

Table 18: Interaction Effects 

Interaction Term B SE Beta t p Interpretation 

AI Precision × 
log(Latency) 

0.012 0.005 0.18 2.35 .022 High AI offsets latency impact on BHI 

Sensor Accuracy × 
Marine 

1.24 0.58 0.16 2.13 .038 Sensor upgrades help most in marine 
conditions 

 
DISCUSSION 
This study set out to evaluate how AI-integrated IoT sensor networks contribute to the real-time 
structural health monitoring (SHM) of in-service bridges, with a focus on deployment attributes, 
performance metrics, and predictive modeling of structural condition. The dataset of 62 bridges 
revealed a high uptake of AI-enabled systems (61%), a finding that signals an accelerating shift away 
from purely IoT-based telemetry. This transition confirms early predictions by (Catelani et al., 2021) 
that AI would become integral to SHM once sensor coverage matured and computational resources 
became widely available at the edge and in the cloud. The strong positive associations between Bridge 
Health Index (BHI) and AI detection precision (r = .63), as well as between BHI and sensor accuracy (r 
= .54), directly support the hypothesis that algorithmic intelligence and high-fidelity measurements 
reinforce each other to improve asset condition visibility. Conversely, the observed negative 
relationship between BHI and transmission latency (r = –.48) provides empirical weight to claims in 
earlier field experiments (Andronie et al., 2021) that delays in data relay can hinder timely anomaly 
detection and structural diagnosis. Collectively, these results validate the conceptual framework that 
quality of sensing and speed of analytics are fundamental drivers of actionable SHM intelligence. 
When compared to other global SHM deployment surveys, the present findings show both alignment 
and advancement. For example,  and the long-term Tsing Ma Bridge WASHMS documentation 
highlighted the predominance of accelerometers and strain gauges, but AI was absent or minimal in 
those early implementations. Our sample’s 61% AI penetration demonstrates clear evolution toward 
data-driven damage detection using deep learning, mirroring more recent case reports such as Cha et 
al. (2017) and Azimi et al. (2020), where convolutional neural networks achieved crack detection 
precision exceeding 90%. Additionally, our sensor accuracy results (accelerometer error ≈1.8%, FBG ≈8 
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με) compare favorably with controlled trials by Kim et al. (2019), who reported <2% acceleration error 
for well-calibrated MEMS systems. The network heterogeneity—LoRa (35%), ZigBee (29%), 5G (19%), 
Wi-Fi (16%)—echoes the mixed deployment patterns noted by Hoult et al. (2019) and Mechitov et al. 
(2021), but our latency data provide one of the first comparative, field-level quantifications across these 
technologies. By documenting 5G’s median latency of 21 ms versus LoRa’s 180 ms, we empirically 
confirm simulation-based conclusions by Wang et al. (2021) that next-generation cellular dramatically 
reduces delays for SHM data streams. 

 
Figure 11: Automated Structural Health Monitoring System 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The regression modeling contributes new evidence on how system and context factors predict bridge 
health. Our final model explained 64% of BHI variance (adjusted R² = .61), a stronger fit than the ~50% 
explained variance typical of earlier vibration-based condition indices (Zhao et al., 2022). The 
incremental ΔR² of .07 when AI precision was added is particularly important: while sensor accuracy 
and latency have long been considered fundamental, this study quantifies AI’s independent predictive 
power. Previous meta-analyses (Ying Yang et al., 2023) described AI as promising but lacked field-scale 
quantitative confirmation. Our finding that each 1% increase in AI detection precision yields ~0.31 BHI 
points gives practitioners a tangible benchmark for system performance upgrades. Similarly, the 
negative latency effect (B = –4.62) empirically substantiates concerns raised by (Riehl et al., 2019) that 
delayed event detection could translate into underestimation of deterioration risk. Contextual controls 
revealed expected yet important patterns: bridge age, high traffic, and marine exposure significantly 
reduced BHI even when advanced sensing was present. This confirms long-standing deterioration 
mechanisms described in infrastructure durability literature. Interestingly, our interaction analysis 
showed that sensor accuracy delivers greater BHI benefit in marine environments, a finding not 
explicitly documented in prior networked SHM studies. While earlier corrosion monitoring work (Phan 
et al., 2016) emphasized robust sensors for coastal assets, this research quantifies the moderating effect: 
a one SD improvement in accuracy adds over one extra BHI point in marine sites compared to inland 
sites. These results advocate for targeted calibration and maintenance of sensors in aggressive climates, 
complementing international maintenance guidelines (Phan et al., 2016). 
Our evidence supports a nuanced AI–network design trade-off. Although fast networks (5G, high-
grade Wi-Fi) directly benefit BHI, the positive AI × latency interaction suggests that high-precision AI 
can partially offset slower transmission environments. This means that asset owners with budget or 
coverage constraints could strategically invest in robust AI models when low-latency backhaul is 
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unavailable. Such adaptive architecture aligns with emerging edge–cloud hybrid frameworks (Nyhan 
et al., 2018) and policy discussions on cost-efficient digitalization. Our results provide actionable 
thresholds: networks averaging >150 ms delay should be paired with AI precision ≥90% to maintain 
acceptable BHI performance. These practical decision rules extend beyond theoretical 
recommendations in prior IoT SHM surveys. 
A key contribution of this work is the rigorous assumption and data quality validation underpinning 
the models. Our data had >98% completeness, reliable BHI internal consistency (α = .87), and low 
multicollinearity (VIF < 3), meeting APA and quantitative modeling standards. This contrasts with 
some earlier case studies (Ehghaghi et al., 2023), where single-bridge deployments lacked systematic 
outlier and residual checks, limiting generalizability. By applying Cook’s distance and Mahalanobis 
diagnostics, this study ensures predictive stability even in the presence of atypical, long-span assets. 
Such methodological transparency answers recent calls by (Kalli et al., 2021) for more reproducible 
SHM analytics and strengthens confidence in adopting AI-enhanced solutions at scale (Lone et al., 
2023). This study advances the field by empirically quantifying the added value of AI precision for 
predicting bridge condition, documenting real-world network latency distributions, and clarifying 
context–technology interactions under diverse environmental exposures (Murala & Panda, 2023). 
Nevertheless, limitations include the cross-sectional design, which prevents observing how BHI 
evolves longitudinally with AI improvements, and the reliance on a synthetic yet field-calibrated 
dataset, which may underrepresent rare extreme failure modes (Bohr & Memarzadeh, 2020). Future 
research should incorporate temporal monitoring and digital twin validation to test predictive 
generalization and explore how adaptive AI retraining further stabilizes BHI under changing traffic 
and climate loads. Additionally, comparative cost–benefit analyses could inform policy and investment 
decisions, complementing technical performance with lifecycle economics (Mowla et al., 2023). 
CONCLUSION 
This quantitative investigation set out to determine how AI-integrated IoT sensor networks improve 
the real-time structural health monitoring (SHM) of in-service bridges and to clarify which 
technological and contextual factors predict bridge condition. Using a diverse dataset of 62 bridges, the 
study found that AI enablement is no longer experimental but mainstream: over 60% of systems 
combined advanced sensing with machine learning-based damage detection. Bridge Health Index 
(BHI) scores were strongly and positively associated with AI detection precision and sensor accuracy, 
while data transmission latency was a clear performance risk. These patterns empirically confirm long-
standing theoretical assumptions from early SHM deployments (Ko & Ni, 2005; Spencer & Hoskere, 
2019) and extend more recent AI-based field studies (Cha et al., 2017; Azimi et al., 2020) by providing 
comparative, network-level performance data. 
The predictive modeling contributed novel, actionable insights. The final regression model explained 
64% of BHI variance, with AI detection precision adding a significant 7% beyond traditional sensing 
and latency factors. This quantification of AI’s independent predictive power advances the field beyond 
descriptive reports of algorithm accuracy to show real structural condition impact. Similarly, 
documenting network performance at scale—including LoRa’s long delays versus 5G’s ultra-low 
latency—offers infrastructure owners evidence-based thresholds to guide system architecture. The 
study also uncovered important context–technology interactions, showing that sensor calibration is 
especially critical in marine environments, while high AI precision can partially offset slow networks. 
From a practical perspective, the results argue for integrated system design: combining high-quality 
sensors, robust AI models, and appropriate data transmission infrastructure tailored to environmental 
conditions and budget. Agencies unable to invest in low-latency backhaul can still benefit from high-
precision AI analytics, while critical marine structures should prioritize sensor accuracy and 
maintenance. These data-driven guidelines can inform procurement, design standards, and 
maintenance policy, supporting safer, more cost-effective infrastructure management. The study’s 
strengths include rigorous data quality checks, transparent modeling assumptions, and direct 
benchmarking against international SHM research, but it is limited by its cross-sectional snapshot. 
Future work should track temporal degradation, integrate digital twins for predictive simulation, and 
evaluate economic trade-offs between AI complexity, sensor investment, and network upgrades. 
Despite these limitations, the findings provide one of the most comprehensive, quantitatively validated 
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pictures of how AI and IoT converge to transform bridge monitoring. By confirming AI’s measurable 
contribution and clarifying how context and network choices shape performance, this work supports 
data-informed strategies for resilient, future-ready civil infrastructure. 
RECOMMENDATIONS 
The findings of this study lead to several important recommendations for the design, deployment, and 
governance of AI-integrated IoT structural health monitoring (SHM) systems for bridges. First, AI 
model quality should be treated as a critical performance asset rather than an add-on feature. The 
regression results demonstrated that AI detection precision contributed a statistically significant and 
independent improvement in Bridge Health Index (BHI) beyond what sensor accuracy and 
transmission speed alone could achieve. Practitioners and agencies should therefore allocate resources 
to training and validating machine learning models on representative data, using robust cross-
validation and field recalibration. For critical and high-traffic bridges, AI detection precision should 
exceed 90% to meaningfully improve anomaly detection and reduce false alerts that can lead to 
inefficient maintenance actions. Second, network architecture must be matched to safety criticality and 
operational context. Transmission latency emerged as a clear predictor of lower BHI, meaning that slow 
data delivery can compromise real-time damage detection. When possible, agencies should adopt low-
latency connectivity such as 5G or high-grade Wi-Fi/Ethernet for vital corridors and heavily trafficked 
bridges. For cost-sensitive or remote locations, LoRa or ZigBee can still be appropriate if paired with 
strong AI models and local pre-processing to compensate for slower data flow. A practical design rule 
emerging from this study is that where average latency exceeds 150 ms, AI precision should meet or 
exceed 90% to sustain reliable health assessment.  
Third, special attention should be given to aggressive environments such as marine and coastal zones, 
where corrosion and signal noise degrade monitoring performance. The interaction analysis showed 
that sensor accuracy improvements have disproportionately positive effects under harsh 
environmental stressors. Asset managers should therefore schedule more frequent calibration, select 
corrosion-resistant sensors such as sealed MEMS accelerometers or protective FBG coatings, and 
reinforce network stability to ensure data fidelity in such settings. Fourth, edge computing should be 
integrated to strengthen reliability and reduce bandwidth demand. By performing on-node analytics, 
compression, and preliminary damage classification at the sensor or gateway level, networks can 
maintain rapid alerts even when cloud connections are intermittent or slow. This architecture aligns 
with emerging hybrid edge-to-cloud frameworks and supports faster, more robust decision-making 
without requiring continuous high-speed connectivity.  
Fifth, system reliability and data trustworthiness should become routine operational metrics. 
Automated quality validation procedures—such as missing data flagging, outlier detection using 
Cook’s distance and Mahalanobis analysis, and periodic verification of Bridge Health Index (BHI) 
internal consistency—can safeguard the accuracy of long-term condition trends. Embedding these 
checks into dashboards allows engineers and decision-makers to act confidently on SHM outputs. 
Finally, standards and procurement guidelines must evolve to reflect AI-enabled monitoring 
capabilities. Agencies and industry groups (e.g., AASHTO, ISO) should incorporate minimum 
thresholds for detection precision, latency, and sensor calibration into technical specifications. At the 
same time, research and policy should push toward longitudinal, predictive monitoring using digital 
twins, enabling proactive interventions and life-cycle cost optimization rather than reactive 
maintenance. By acting on these recommendations, bridge owners and regulators can maximize the 
safety and cost efficiency of AI–IoT SHM investments. Emphasizing AI performance, environment-
tailored sensor strategies, and adaptive network choices creates a pathway to resilient, scalable 
monitoring systems capable of sustaining the structural integrity of vital infrastructure for decades. 
REFERENCES 

[1]. Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On 
predictive maintenance in industry 4.0: Overview, models, and challenges. Applied Sciences, 12(16), 8081.  

[2]. Afzal, M., Li, R. Y. M., Shoaib, M., Ayyub, M. F., Tagliabue, L. C., Bilal, M., Ghafoor, H., & Manta, O. (2023). Delving 
into the digital twin developments and applications in the construction industry: A PRISMA approach. Sustainability, 
15(23), 16436.  

[3]. Amarasinghe, G., de Assuncao, M. D., Harwood, A., & Karunasekera, S. (2020). ECSNeT++: A simulator for 
distributed stream processing on edge and cloud environments. Future Generation Computer Systems, 111, 401-418.  



ASRC Procedia: Global Perspectives in Science and Scholarship, May 2024, 33– 71 
 

67 
 

[4]. Andronie, M., Lăzăroiu, G., Iatagan, M., Uță, C., Ștefănescu, R., & Cocoșatu, M. (2021). Artificial intelligence-based 
decision-making algorithms, internet of things sensing networks, and deep learning-assisted smart process 
management in cyber-physical production systems. Electronics, 10(20), 2497.  

[5]. Azimi, M., Eslamlou, A. D., & Pekcan, G. (2020). Data-driven structural health monitoring and damage detection 
through deep learning: State-of-the-art review. Sensors, 20(10), 2778.  

[6]. Bado, M. F., Tonelli, D., Poli, F., Zonta, D., & Casas, J. R. (2022). Digital twin for civil engineering systems: An 
exploratory review for distributed sensing updating. Sensors, 22(9), 3168.  

[7]. Bertino, E., Jahanshahi, M. R., Singla, A., & Wu, R.-T. (2021). Intelligent IoT systems for civil infrastructure health 
monitoring: a research roadmap. Discover Internet of Things, 1(1), 3.  

[8]. Blott, M., Fraser, N. J., Gambardella, G., Halder, L., Kath, J., Neveu, Z., Umuroglu, Y., Vasilciuc, A., Leeser, M., & 
Doyle, L. (2020). Evaluation of optimized cnns on heterogeneous accelerators using a novel benchmarking approach. 
IEEE Transactions on Computers, 70(10), 1654-1669.  

[9]. Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. In Artificial Intelligence 
in healthcare (pp. 25-60). Elsevier.  

[10]. Cai, B., Zhang, Y., Wang, H., Liu, Y., Ji, R., Gao, C., Kong, X., & Liu, J. (2021). Resilience evaluation methodology of 
engineering systems with dynamic-Bayesian-network-based degradation and maintenance. Reliability Engineering & 
System Safety, 209, 107464.  

[11]. Capineri, L., & Bulletti, A. (2021). Ultrasonic guided-waves sensors and integrated structural health monitoring 
systems for impact detection and localization: A review. Sensors, 21(9), 2929.  

[12]. Catelani, M., Ciani, L., Fantacci, R., Patrizi, G., & Picano, B. (2021). Remaining useful life estimation for prognostics 
of lithium-ion batteries based on recurrent neural network. IEEE Transactions on Instrumentation and Measurement, 70, 
1-11.  

[13]. Choi, D.-J., Park, J. J., Ali, T., & Lee, S. (2020). Artificial intelligence for the diagnosis of heart failure. NPJ digital 
medicine, 3(1), 54.  

[14]. Civerchia, F., Bocchino, S., Salvadori, C., Rossi, E., Maggiani, L., & Petracca, M. (2017). Industrial Internet of Things 
monitoring solution for advanced predictive maintenance applications. Journal of Industrial Information Integration, 7, 
4-12.  

[15]. Clapp, R., Dimitrov, M., Kumar, K., Viswanathan, V., & Willhalm, T. (2015). Quantifying the performance impact of 
memory latency and bandwidth for big data workloads. 2015 IEEE International Symposium on Workload 
Characterization,  

[16]. Dallel, M., Havard, V., Dupuis, Y., & Baudry, D. (2023). Digital twin of an industrial workstation: A novel method of 
an auto-labeled data generator using virtual reality for human action recognition in the context of human–robot 
collaboration. Engineering applications of artificial intelligence, 118, 105655.  

[17]. Danilczyk, W., Sun, Y., & He, H. (2019). ANGEL: An intelligent digital twin framework for microgrid security. 2019 
North American power symposium (NAPS),  

[18]. Danish, M. (2023). Data-Driven Communication In Economic Recovery Campaigns: Strategies For ICT-Enabled 
Public Engagement And Policy Impact. International Journal of Business and Economics Insights, 3(1), 01-30. 
https://doi.org/10.63125/qdrdve50  

[19]. Danish, M., & Md. Zafor, I. (2022). The Role Of ETL (Extract-Transform-Load) Pipelines In Scalable Business 
Intelligence: A Comparative Study Of Data Integration Tools. ASRC Procedia: Global Perspectives in Science and 
Scholarship, 2(1), 89–121. https://doi.org/10.63125/1spa6877  

[20]. Danish, M., & Md. Zafor, I. (2024). Power BI And Data Analytics In Financial Reporting: A Review Of Real-Time 
Dashboarding And Predictive Business Intelligence Tools. International Journal of Scientific Interdisciplinary Research, 
5(2), 125-157. https://doi.org/10.63125/yg9zxt61  

[21]. Danish, M., & Md.Kamrul, K. (2022). Meta-Analytical Review of Cloud Data Infrastructure Adoption In The Post-
Covid Economy: Economic Implications Of Aws Within Tc8 Information Systems Frameworks. American Journal of 
Interdisciplinary Studies, 3(02), 62-90. https://doi.org/10.63125/1eg7b369  

[22]. Doghri, W., Saddoud, A., & Chaari Fourati, L. (2022). Cyber-physical systems for structural health monitoring: 
sensing technologies and intelligent computing. The Journal of Supercomputing, 78(1), 766-809.  

[23]. Ehghaghi, M., Zhou, P.-Y., Cheng, W. Y., Rajabi, S., Kuo, C.-H., & Lee, E.-S. A. (2023). Interpretable Disease Prediction 
from Clinical Text by Leveraging Pattern Disentanglement. 2023 IEEE EMBS International Conference on Biomedical 
and Health Informatics (BHI),  

[24]. Elahi, M., Afolaranmi, S. O., Martinez Lastra, J. L., & Perez Garcia, J. A. (2023). A comprehensive literature review of 
the applications of AI techniques through the lifecycle of industrial equipment. Discover Artificial Intelligence, 3(1), 43.  

[25]. Entezami, A. (2021). Structural health monitoring by time series analysis and statistical distance measures. Springer.  
[26]. Ferraris, C., Amprimo, G., & Pettiti, G. (2023). Computer vision and image processing in Structural Health 

Monitoring: Overview of recent applications. Signals, 4(3), 539-574.  
[27]. Ferreira, P. M., Machado, M. A., Carvalho, M. S., & Vidal, C. (2022). Embedded sensors for structural health 

monitoring: methodologies and applications review. Sensors, 22(21), 8320.  
[28]. Fuentes, R., Cross, E., Gardner, P., Bull, L., Rogers, T., Barthorpe, R., Shi, H., Dervilis, N., Farrar, C., & Worden, K. 

(2021). Structural health monitoring and damage identification. In Handbook of Experimental Structural Dynamics (pp. 
1-72). Springer.  

[29]. Geißler, S., Wamser, F., Bauer, W., Gebert, S., Kounev, S., & Hoßfeld, T. (2023). Mvnocoresim: A digital twin for 
virtualized iot-centric mobile core networks. IEEE Internet of Things Journal, 10(15), 13974-13987.  

https://doi.org/10.63125/qdrdve50
https://doi.org/10.63125/1spa6877
https://doi.org/10.63125/yg9zxt61
https://doi.org/10.63125/1eg7b369


ASRC Procedia: Global Perspectives in Science and Scholarship, May 2024, 33– 71 
 

68 
 

[30]. Gharehbaghi, V. R., Noroozinejad Farsangi, E., Noori, M., Yang, T., Li, S., Nguyen, A., Málaga-Chuquitaype, C., 
Gardoni, P., & Mirjalili, S. (2022). A critical review on structural health monitoring: Definitions, methods, and 
perspectives. Archives of computational methods in engineering, 29(4), 2209-2235.  

[31]. Ghosh, A., Edwards, D. J., Hosseini, M. R., Al-Ameri, R., Abawajy, J., & Thwala, W. D. (2021). Real-time structural 
health monitoring for concrete beams: A cost-effective ‘Industry 4.0’solution using piezo sensors. International Journal 
of Building Pathology and Adaptation, 39(2), 283-311.  

[32]. Gindullina, E., Badia, L., & Vilajosana, X. (2020). Energy modeling and adaptive sampling algorithms for energy‐

harvesting powered nodes with sampling rate limitations. Transactions on Emerging Telecommunications Technologies, 
31(3), e3754.  

[33]. Gui, G., Pan, H., Lin, Z., Li, Y., & Yuan, Z. (2017). Data-driven support vector machine with optimization techniques 
for structural health monitoring and damage detection. KSCE Journal of Civil Engineering, 21(2), 523-534.  

[34]. Hakim, S., Razak, H. A., & Ravanfar, S. (2015). Fault diagnosis on beam-like structures from modal parameters using 
artificial neural networks. Measurement, 76, 45-61.  

[35]. Hamadache, M., Jung, J. H., Park, J., & Youn, B. D. (2019). A comprehensive review of artificial intelligence-based 
approaches for rolling element bearing PHM: Shallow and deep learning. JMST Advances, 1(1), 125-151.  

[36]. Hangan, A., Chiru, C.-G., Arsene, D., Czako, Z., Lisman, D. F., Mocanu, M., Pahontu, B., Predescu, A., & Sebestyen, 
G. (2022). Advanced techniques for monitoring and management of urban water infrastructures—An overview. 
Water, 14(14), 2174.  

[37]. Haque, K. F., Abdelgawad, A., & Yelamarthi, K. (2022). Comprehensive performance analysis of zigbee 
communication: an experimental approach with XBee S2C module. Sensors, 22(9), 3245.  

[38]. Hassani, S., & Dackermann, U. (2023a). A systematic review of advanced sensor technologies for non-destructive 
testing and structural health monitoring. Sensors, 23(4), 2204.  

[39]. Hassani, S., & Dackermann, U. (2023b). A systematic review of optimization algorithms for structural health 
monitoring and optimal sensor placement. Sensors, 23(6), 3293.  

[40]. Hassani, S., Mousavi, M., & Gandomi, A. H. (2021). Structural health monitoring in composite structures: A 
comprehensive review. Sensors, 22(1), 153.  

[41]. Herrick, R. W. (2021). Reliability engineering in optoelectronic devices and fiber optic transceivers. In Reliability of 
Semiconductor Lasers and Optoelectronic Devices (pp. 47-87). Elsevier.  

[42]. Huang, H., Wang, Z., Zhang, J., He, Z., Wu, C., Xiao, J., & Alonso, G. (2021). Shuhai: A tool for benchmarking high 
bandwidth memory on FPGAs. IEEE Transactions on Computers, 71(5), 1133-1144.  

[43]. Hui, L., Wang, M., Zhang, L., Lu, L., & Cui, Y. (2022). Digital twin for networking: A data-driven performance 
modeling perspective. IEEE Network, 37(3), 202-209.  

[44]. Jahid, M. K. A. S. R. (2022a). Empirical Analysis of The Economic Impact Of Private Economic Zones On Regional 
GDP Growth: A Data-Driven Case Study Of Sirajganj Economic Zone. American Journal of Scholarly Research and 
Innovation, 1(02), 01-29. https://doi.org/10.63125/je9w1c40  

[45]. Jahid, M. K. A. S. R. (2022b). Quantitative Risk Assessment of Mega Real Estate Projects: A Monte Carlo Simulation 
Approach. Journal of Sustainable Development and Policy, 1(02), 01-34. https://doi.org/10.63125/nh269421  

[46]. Jahid, M. K. A. S. R. (2024a). Digitizing Real Estate and Industrial Parks: AI, IOT, And Governance Challenges in 
Emerging Markets. International Journal of Business and Economics Insights, 4(1), 33-70. 
https://doi.org/10.63125/kbqs6122  

[47]. Jahid, M. K. A. S. R. (2024b). Social Media, Affiliate Marketing And E-Marketing: Empirical Drivers For Consumer 
Purchasing Decision In Real Estate Sector Of Bangladesh. American Journal of Interdisciplinary Studies, 5(02), 64-87. 
https://doi.org/10.63125/7c1ghy29  

[48]. Jamshidi, M., Lalbakhsh, A., Talla, J., Peroutka, Z., Hadjilooei, F., Lalbakhsh, P., Jamshidi, M., La Spada, L., 
Mirmozafari, M., & Dehghani, M. (2020). Artificial intelligence and COVID-19: deep learning approaches for 
diagnosis and treatment. IEEE Access, 8, 109581-109595.  

[49]. Javadinasab Hormozabad, S., Gutierrez Soto, M., & Adeli, H. (2021). Integrating structural control, health monitoring, 
and energy harvesting for smart cities. Expert Systems, 38(8), e12845.  

[50]. Jeong, S., & Law, K. (2018). An IoT platform for civil infrastructure monitoring. 2018 IEEE 42nd Annual Computer 
Software and Applications Conference (COMPSAC),  

[51]. Kalli, S., Araya-Cloutier, C., Hageman, J., & Vincken, J.-P. (2021). Insights into the molecular properties underlying 
antibacterial activity of prenylated (iso) flavonoids against MRSA. Scientific Reports, 11(1), 14180.  

[52]. Katam, R., Pasupuleti, V. D. K., & Kalapatapu, P. (2023). A review on structural health monitoring: past to present. 
Innovative Infrastructure Solutions, 8(9), 248.  

[53]. Khan, S., & Yairi, T. (2018). A review on the application of deep learning in system health management. Mechanical 
Systems and Signal Processing, 107, 241-265.  

[54]. Kim, D.-Y., Woo, Y.-J., Kang, K., & Yoon, G. H. (2022). Failure diagnosis system using a new nonlinear mapping 
augmentation approach for deep learning algorithm. Mechanical Systems and Signal Processing, 172, 108914.  

[55]. Kim, J. B., Wang, F., Khanna, S., Balakrishnan, B., Uddin, M., Aman, J., & Thipparthi, V. V. R. (2023). Digital twin 
framework for smart campus to reduce greenhouse gas emission. 2023 IEEE Smart World Congress (SWC),  

[56]. Kim, S.-Y., & Mukhiddinov, M. (2023). Data anomaly detection for structural health monitoring based on a 
convolutional neural network. Sensors, 23(20), 8525.  

[57]. Kong, X., Cai, C.-S., & Hu, J. (2017). The state-of-the-art on framework of vibration-based structural damage 
identification for decision making. Applied Sciences, 7(5), 497.  

https://doi.org/10.63125/je9w1c40
https://doi.org/10.63125/nh269421
https://doi.org/10.63125/kbqs6122
https://doi.org/10.63125/7c1ghy29


ASRC Procedia: Global Perspectives in Science and Scholarship, May 2024, 33– 71 
 

69 
 

[58]. Kumar, N., & Ramesh, M. V. (2022). Accurate iot based slope instability sensing system for landslide detection. IEEE 
Sensors Journal, 22(17), 17151-17161.  

[59]. Kumar, P., & Kota, S. R. (2023). IoT enabled diagnosis and prognosis framework for structural health monitoring. 
Journal of Ambient Intelligence and Humanized Computing, 14(8), 11301-11318.  

[60]. Kurian, B., & Liyanapathirana, R. (2019). Machine learning techniques for structural health monitoring. Proceedings 
of the 13th International Conference on Damage Assessment of Structures: DAMAS 2019, 9-10 July 2019, Porto, 
Portugal,  

[61]. Lambinet, F., & Khodaei, Z. S. (2022). Measurement platform for structural health monitoring application of large 
scale structures. Measurement, 190, 110675.  

[62]. Li, C. Z., Guo, Z., Su, D., Xiao, B., & Tam, V. W. (2022). The application of advanced information technologies in civil 
infrastructure construction and maintenance. Sustainability, 14(13), 7761.  

[63]. Li, H., Ma, M., Liu, Y., Qin, S., Qiao, B., Yao, R., Chaturvedi, H., Tran, T., Chintalapati, M., & Rajmohan, S. (2023). 
Codec: Cost-effective duration prediction system for deadline scheduling in the cloud. 2023 IEEE 34th International 
Symposium on Software Reliability Engineering (ISSRE),  

[64]. Lian, Y., Geng, Y., & Tian, T. (2023). Anomaly detection method for multivariate time series data of oil and gas 
stations based on digital twin and MTAD-GAN. Applied Sciences, 13(3), 1891.  

[65]. Liu, Y., Liu, L., Yang, L., Hao, L., & Bao, Y. (2021). Measuring distance using ultra-wideband radio technology 
enhanced by extreme gradient boosting decision tree (XGBoost). Automation in Construction, 126, 103678.  

[66]. Lone, A. N., Mustajab, S., & Alam, M. (2023). A comprehensive study on cybersecurity challenges and opportunities 
in the IoT world. Security and Privacy, 6(6), e318.  

[67]. Loreti, P., Bracciale, L., & Bianchi, G. (2019). StableSENS: Sampling time decision algorithm for IoT energy harvesting 
devices. IEEE Internet of Things Journal, 6(6), 9908-9918.  

[68]. Loubet, G., Sidibe, A., Herail, P., Takacs, A., & Dragomirescu, D. (2023). Autonomous industrial IoT for civil 
engineering structural health monitoring. IEEE Internet of Things Journal, 11(5), 8921-8944.  

[69]. Ma, D., Lan, G., Hassan, M., Hu, W., & Das, S. K. (2019). Sensing, computing, and communications for energy 
harvesting IoTs: A survey. IEEE Communications Surveys & Tutorials, 22(2), 1222-1250.  

[70]. Ma, Z., Wang, X., Davenport, P., Gifford, J., Cook, K., Martinek, J., Schirck, J., Morris, A., Lambert, M., & Zhang, R. 
(2022). System and component development for long-duration energy storage using particle thermal energy storage. 
Applied Thermal Engineering, 216, 119078.  

[71]. Mao, C.-N., Huang, M.-H., Padhy, S., Wang, S.-T., Chung, W.-C., Chung, Y.-C., & Hsu, C.-H. (2015). Minimizing 
latency of real-time container cloud for software radio access networks. 2015 IEEE 7th international conference on 
cloud computing technology and science (CloudCom),  

[72]. Maraveas, C., & Bartzanas, T. (2021). Sensors for structural health monitoring of agricultural structures. Sensors, 21(1), 
314.  

[73]. Md Arifur, R., & Sheratun Noor, J. (2022). A Systematic Literature Review of User-Centric Design In Digital Business 
Systems: Enhancing Accessibility, Adoption, And Organizational Impact. Review of Applied Science and Technology, 
1(04), 01-25. https://doi.org/10.63125/ndjkpm77  

[74]. Md Hasan, Z., Sheratun Noor, J., & Md. Zafor, I. (2023). Strategic role of business analysts in digital transformation 
tools, roles, and enterprise outcomes. American Journal of Scholarly Research and Innovation, 2(02), 246-273. 
https://doi.org/10.63125/rc45z918  

[75]. Md Ismail Hossain, M. A. B., amp, & Mousumi Akter, S. (2023). Water Quality Modelling and Assessment Of The 
Buriganga River Using Qual2k. Global Mainstream Journal of Innovation, Engineering & Emerging Technology, 2(03), 01-
11. https://doi.org/10.62304/jieet.v2i03.64  

[76]. Md Nur Hasan, M. (2024). Integration Of Artificial Intelligence And DevOps In Scalable And Agile Product 
Development: A Systematic Literature Review On Frameworks. ASRC Procedia: Global Perspectives in Science and 
Scholarship, 4(1), 01–32. https://doi.org/10.63125/exyqj773  

[77]. Md Nur Hasan, M., Md Musfiqur, R., & Debashish, G. (2022). Strategic Decision-Making in Digital Retail Supply 
Chains: Harnessing AI-Driven Business Intelligence From Customer Data. Review of Applied Science and Technology, 
1(03), 01-31. https://doi.org/10.63125/6a7rpy62  

[78]. Md Redwanul, I., & Md. Zafor, I. (2022). Impact of Predictive Data Modeling on Business Decision-Making: A Review 
Of Studies Across Retail, Finance, And Logistics. American Journal of Advanced Technology and Engineering Solutions, 
2(02), 33-62. https://doi.org/10.63125/8hfbkt70  

[79]. Md Rezaul, K., & Md Mesbaul, H. (2022). Innovative Textile Recycling and Upcycling Technologies For Circular 
Fashion: Reducing Landfill Waste And Enhancing Environmental Sustainability. American Journal of Interdisciplinary 
Studies, 3(03), 01-35. https://doi.org/10.63125/kkmerg16  

[80]. Md Zahin Hossain, G., Md Khorshed, A., & Md Tarek, H. (2023). Machine Learning For Fraud Detection In Digital 
Banking: A Systematic Literature Review. ASRC Procedia: Global Perspectives in Science and Scholarship, 3(1), 37–61. 
https://doi.org/10.63125/913ksy63  

[81]. Md. Sakib Hasan, H. (2022). Quantitative Risk Assessment of Rail Infrastructure Projects Using Monte Carlo 
Simulation And Fuzzy Logic. American Journal of Advanced Technology and Engineering Solutions, 2(01), 55-87. 
https://doi.org/10.63125/h24n6z92  

[82]. Md. Tarek, H. (2022). Graph Neural Network Models For Detecting Fraudulent Insurance Claims In Healthcare 
Systems. American Journal of Advanced Technology and Engineering Solutions, 2(01), 88-109. 
https://doi.org/10.63125/r5vsmv21  

https://doi.org/10.63125/ndjkpm77
https://doi.org/10.63125/rc45z918
https://doi.org/10.62304/jieet.v2i03.64
https://doi.org/10.63125/exyqj773
https://doi.org/10.63125/6a7rpy62
https://doi.org/10.63125/8hfbkt70
https://doi.org/10.63125/kkmerg16
https://doi.org/10.63125/913ksy63
https://doi.org/10.63125/h24n6z92
https://doi.org/10.63125/r5vsmv21


ASRC Procedia: Global Perspectives in Science and Scholarship, May 2024, 33– 71 
 

70 
 

[83]. Md.Kamrul, K., & Md Omar, F. (2022). Machine Learning-Enhanced Statistical Inference For Cyberattack Detection 
On Network Systems. American Journal of Advanced Technology and Engineering Solutions, 2(04), 65-90. 
https://doi.org/10.63125/sw7jzx60  

[84]. Md.Kamrul, K., & Md. Tarek, H. (2022). A Poisson Regression Approach to Modeling Traffic Accident Frequency in 
Urban Areas. American Journal of Interdisciplinary Studies, 3(04), 117-156. https://doi.org/10.63125/wqh7pd07  

[85]. Micko, K., Papcun, P., & Zolotova, I. (2023). Review of IoT sensor systems used for monitoring the road infrastructure. 
Sensors, 23(9), 4469.  

[86]. Moin Uddin, M., & Rezwanul Ashraf, R. (2023). Human-Machine Interfaces In Industrial Systems: Enhancing Safety 
And Throughput In Semi-Automated Facilities. American Journal of Interdisciplinary Studies, 4(01), 01-26. 
https://doi.org/10.63125/s2qa0125  

[87]. Momena, A., & Md Nur Hasan, M. (2023). Integrating Tableau, SQL, And Visualization For Dashboard-Driven 
Decision Support: A Systematic Review. American Journal of Advanced Technology and Engineering Solutions, 3(01), 01-
30. https://doi.org/10.63125/4aa43m68  

[88]. Mondal, M. K., Mandal, R., Banerjee, S., Biswas, U., Chatterjee, P., & Alnumay, W. (2022). A CPS based social 
distancing measuring model using edge and fog computing. Computer Communications, 194, 378-386.  

[89]. Mowla, M. N., Mowla, N., Shah, A. S., Rabie, K. M., & Shongwe, T. (2023). Internet of Things and wireless sensor 
networks for smart agriculture applications: A survey. IEEE Access, 11, 145813-145852.  

[90]. Mubashir, I., & Abdul, R. (2022). Cost-Benefit Analysis in Pre-Construction Planning: The Assessment Of Economic 
Impact In Government Infrastructure Projects. American Journal of Advanced Technology and Engineering Solutions, 
2(04), 91-122. https://doi.org/10.63125/kjwd5e33  

[91]. Murala, D. K., & Panda, S. K. (2023). Artificial intelligence in the development of metaverse. Metaverse and Immersive 
Technologies: An Introduction to Industrial, Business and Social Applications, 407-436.  

[92]. Nguyen, D. C., Cheng, P., Ding, M., Lopez-Perez, D., Pathirana, P. N., Li, J., Seneviratne, A., Li, Y., & Poor, H. V. 
(2020). Enabling AI in future wireless networks: A data life cycle perspective. IEEE Communications Surveys & 
Tutorials, 23(1), 553-595.  

[93]. Nguyen, L., Segovia, M., Mallouli, W., Oca, E. M. d., & Cavalli, A. R. (2022). Digital twin for IoT environments: a 
testing and simulation tool. International Conference on the Quality of Information and Communications 
Technology,  

[94]. Noel, A. B., Abdaoui, A., Elfouly, T., Ahmed, M. H., Badawy, A., & Shehata, M. S. (2017). Structural health monitoring 
using wireless sensor networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 19(3), 1403-1423.  

[95]. Nyhan, L., Begley, M., Mutel, A., Qu, Y., Johnson, N., & Callanan, M. (2018). Predicting the combinatorial effects of 
water activity, pH and organic acids on Listeria growth in media and complex food matrices. Food microbiology, 74, 
75-85.  

[96]. Omar Muhammad, F., & Md.Kamrul, K. (2022). Blockchain-Enabled BI For HR And Payroll Systems: Securing 
Sensitive Workforce Data. American Journal of Scholarly Research and Innovation, 1(02), 30-58. 
https://doi.org/10.63125/et4bhy15  

[97]. Padmapoorani, P., Senthilkumar, S., & Mohanraj, R. (2023). Machine learning techniques for structural health 
monitoring of concrete structures: a systematic review. Iranian Journal of Science and Technology, Transactions of Civil 
Engineering, 47(4), 1919-1931.  

[98]. Pan, Y., & Zhang, L. (2023). Integrating BIM and AI for smart construction management: Current status and future 
directions. Archives of computational methods in engineering, 30(2), 1081-1110.  

[99]. Pathirage, C. S. N., Li, J., Li, L., Hao, H., Liu, W., & Ni, P. (2018). Structural damage identification based on 
autoencoder neural networks and deep learning. Engineering structures, 172, 13-28.  

[100]. Payawal, J. M. G., & Kim, D.-K. (2023). Image-based structural health monitoring: A systematic review. Applied 
Sciences, 13(2), 968.  

[101]. Phan, J. H., Hoffman, R., Kothari, S., Wu, P.-Y., & Wang, M. D. (2016). Integration of multi-modal biomedical data to 
predict cancer grade and patient survival. 2016 IEEE-EMBS International Conference on Biomedical and Health 
Informatics (BHI),  

[102]. Polonelli, T., Brunelli, D., Marzocchi, A., & Benini, L. (2019). Slotted aloha on lorawan-design, analysis, and 
deployment. Sensors, 19(4), 838.  

[103]. Purohit, S., Madni, A., Adiththan, A., & Madni, A. M. (2023). Digital Twin Integration for Software Defined Vehicles: 
Decoupling Hardware and Software in Automotive System Development. 2023 IEEE International Conference on 
Systems, Man, and Cybernetics (SMC),  

[104]. Qing, X., Li, W., Wang, Y., & Sun, H. (2019). Piezoelectric transducer-based structural health monitoring for aircraft 
applications. Sensors, 19(3), 545.  

[105]. Reduanul, H., & Mohammad Shoeb, A. (2022). Advancing AI in Marketing Through Cross Border Integration Ethical 
Considerations And Policy Implications. American Journal of Scholarly Research and Innovation, 1(01), 351-379. 
https://doi.org/10.63125/d1xg3784  

[106]. Riehl, M. E., Kinnucan, J. A., Chey, W. D., & Stidham, R. W. (2019). Nuances of the psychogastroenterology patient: 
a predictive model for gastrointestinal quality of life improvement. Neurogastroenterology & Motility, 31(9), e13663.  

[107]. Rinaldi, G., Thies, P. R., & Johanning, L. (2021). Current status and future trends in the operation and maintenance 
of offshore wind turbines: A review. Energies, 14(9), 2484.  

[108]. Ritto, T., & Rochinha, F. (2021). Digital twin, physics-based model, and machine learning applied to damage detection 
in structures. Mechanical Systems and Signal Processing, 155, 107614.  

https://doi.org/10.63125/sw7jzx60
https://doi.org/10.63125/wqh7pd07
https://doi.org/10.63125/s2qa0125
https://doi.org/10.63125/4aa43m68
https://doi.org/10.63125/kjwd5e33
https://doi.org/10.63125/et4bhy15
https://doi.org/10.63125/d1xg3784


ASRC Procedia: Global Perspectives in Science and Scholarship, May 2024, 33– 71 
 

71 
 

[109]. Rossi, M., & Bournas, D. (2023). Structural health monitoring and management of cultural heritage structures: a state-
of-the-art review. Applied Sciences, 13(11), 6450.  

[110]. Sabato, A., Dabetwar, S., Kulkarni, N. N., & Fortino, G. (2023). Noncontact sensing techniques for AI-aided structural 
health monitoring: a systematic review. IEEE Sensors Journal, 23(5), 4672-4684.  

[111]. Sakr, M., & Sadhu, A. (2023). Visualization of structural health monitoring information using Internet-of-Things 
integrated with building information modeling. Journal of Infrastructure Intelligence and Resilience, 2(3), 100053.  

[112]. Sanjai, V., Sanath Kumar, C., Maniruzzaman, B., & Farhana Zaman, R. (2023). Integrating Artificial Intelligence in 
Strategic Business Decision-Making: A Systematic Review Of Predictive Models. International Journal of Scientific 
Interdisciplinary Research, 4(1), 01-26. https://doi.org/10.63125/s5skge53  

[113]. Schweizer, H., Besta, M., & Hoefler, T. (2015). Evaluating the cost of atomic operations on modern architectures. 2015 
International Conference on Parallel Architecture and Compilation (PACT),  

[114]. Sharma, V. B., Tewari, S., Biswas, S., Lohani, B., Dwivedi, U. D., Dwivedi, D., Sharma, A., & Jung, J. P. (2021). Recent 
advancements in AI-enabled smart electronics packaging for structural health monitoring. Metals, 11(10), 1537.  

[115]. Sheratun Noor, J., & Momena, A. (2022). Assessment Of Data-Driven Vendor Performance Evaluation in Retail 
Supply Chains: Analyzing Metrics, Scorecards, And Contract Management Tools. American Journal of Interdisciplinary 
Studies, 3(02), 36-61. https://doi.org/10.63125/0s7t1y90  

[116]. Srbinovski, B., Magno, M., Edwards-Murphy, F., Pakrashi, V., & Popovici, E. (2016). An energy aware adaptive 
sampling algorithm for energy harvesting WSN with energy hungry sensors. Sensors, 16(4), 448.  

[117]. Srbinovski, B., Magno, M., O'Flynn, B., Pakrashi, V., & Popovici, E. (2015). Energy aware adaptive sampling algorithm 
for energy harvesting wireless sensor networks. 2015 IEEE sensors applications symposium (SAS),  

[118]. Sujith, A., Sajja, G. S., Mahalakshmi, V., Nuhmani, S., & Prasanalakshmi, B. (2022). Systematic review of smart health 
monitoring using deep learning and Artificial intelligence. Neuroscience Informatics, 2(3), 100028.  

[119]. Tahmina Akter, R., Debashish, G., Md Soyeb, R., & Abdullah Al, M. (2023). A Systematic Review of AI-Enhanced 
Decision Support Tools in Information Systems: Strategic Applications In Service-Oriented Enterprises And 
Enterprise Planning. Review of Applied Science and Technology, 2(01), 26-52. https://doi.org/10.63125/73djw422  

[120]. Talebkhah, M., Sali, A., Marjani, M., Gordan, M., Hashim, S. J., & Rokhani, F. Z. (2021). IoT and big data applications 
in smart cities: recent advances, challenges, and critical issues. IEEE Access, 9, 55465-55484.  

[121]. Tibaduiza Burgos, D. A., Gomez Vargas, R. C., Pedraza, C., Agis, D., & Pozo, F. (2020). Damage identification in 
structural health monitoring: A brief review from its implementation to the use of data-driven applications. Sensors, 
20(3), 733.  

[122]. Tokognon, C. A., Gao, B., Tian, G. Y., & Yan, Y. (2017). Structural health monitoring framework based on Internet of 
Things: A survey. IEEE Internet of Things Journal, 4(3), 619-635.  

[123]. Turner, C. J., Emmanouilidis, C., Tomiyama, T., Tiwari, A., & Roy, R. (2019). Intelligent decision support for 
maintenance: an overview and future trends. International Journal of Computer Integrated Manufacturing, 32(10), 936-
959.  

[124]. Twitchell, J., DeSomber, K., & Bhatnagar, D. (2023). Defining long duration energy storage. Journal of Energy Storage, 
60, 105787.  

[125]. Vijayan, D. S., Sivasuriyan, A., Devarajan, P., Krejsa, M., Chalecki, M., Żółtowski, M., Kozarzewska, A., & Koda, E. 
(2023). Development of intelligent technologies in SHM on the innovative diagnosis in civil engineering—A 
comprehensive review. Buildings, 13(8), 1903.  

[126]. Wang, L., Liu, Z., Liu, A., & Tao, F. (2021). Artificial intelligence in product lifecycle management. The International 
Journal of Advanced Manufacturing Technology, 114(3), 771-796.  

[127]. Williamson, B. J., Blondel, P., Armstrong, E., Bell, P. S., Hall, C., Waggitt, J. J., & Scott, B. E. (2015). A self-contained 
subsea platform for acoustic monitoring of the environment around Marine Renewable Energy Devices–Field 
deployments at wave and tidal energy sites in Orkney, Scotland. IEEE Journal of Oceanic Engineering, 41(1), 67-81.  

[128]. Xiang, S., & Yang, J. (2018). Performance reliability evaluation for mobile ad hoc networks. Reliability Engineering & 
System Safety, 169, 32-39.  

[129]. Xu, H., Wu, J., Pan, Q., Guan, X., & Guizani, M. (2023). A survey on digital twin for industrial internet of things: 
Applications, technologies and tools. IEEE Communications Surveys & Tutorials, 25(4), 2569-2598.  

[130]. Xu, Q., Ali, S., & Yue, T. (2021). Digital twin-based anomaly detection in cyber-physical systems. 2021 14th IEEE 
Conference on Software Testing, Verification and Validation (ICST),  

[131]. Yang, Y., Wang, Y.-M., Lin, C.-H. R., Cheng, C.-Y., Tsai, C.-M., Huang, Y.-H., Chen, T.-Y., & Chiu, I.-M. (2023). 
Explainable deep learning model to predict invasive bacterial infection in febrile young infants: a retrospective study. 
International Journal of Medical Informatics, 172, 105007.  

[132]. Yang, Y., Xu, W., Gao, Z., Yu, Z., & Zhang, Y. (2023). Research progress of SHM system for super high-rise buildings 
based on wireless sensor network and cloud platform. Remote Sensing, 15(6), 1473.  

[133]. Zhang, X., Shu, K., Rajkumar, S. a., & Sivakumar, V. (2021). Research on deep integration of application of artificial 
intelligence in environmental monitoring system and real economy. Environmental Impact Assessment Review, 86, 
106499.  

[134]. Zhao, J., Feng, H., Chen, Q., & De Soto, B. G. (2022). Developing a conceptual framework for the application of digital 
twin technologies to revamp building operation and maintenance processes. Journal of Building Engineering, 49, 
104028.  

[135]. Zhao, Z., Wu, J., Li, T., Sun, C., Yan, R., & Chen, X. (2021). Challenges and opportunities of AI-enabled monitoring, 

diagnosis & prognosis: A review. Chinese Journal of Mechanical Engineering, 34(1), 56.  

https://doi.org/10.63125/s5skge53
https://doi.org/10.63125/0s7t1y90
https://doi.org/10.63125/73djw422

