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Abstract 
This systematic review synthesizes how Internet of Things infrastructures and artificial intelligence 

predictive models enhance real-time operation of perovskite and tandem photovoltaic systems. 

Following a prospectively registered protocol and the PRISMA framework, we searched major scholarly 

databases, screened records with two independent reviewers, and extracted commensurate metrics 

for quantitative aggregation alongside structured narrative synthesis. In total, 115 articles met the 

eligibility criteria and were included in the final synthesis. Findings highlight four operational layers. For 

forecasting and nowcasting, multimodal pipelines that fuse plant telemetry with all sky imagery 

achieved error reductions relative to persistence baselines, and attention or graph based temporal 

models improved skill on multi hour horizons; practical latency was reported with gateway inference 

suitable for supervisory control. For fault and anomaly diagnostics, deep classifiers and segmentation 

models operating on infrared, electroluminescence, photoluminescence, and SCADA streams 

delivered high discriminative performance and supported explainable overlays for technician 

workflows. Degradation and remaining useful life estimation benefited from physics informed or 

Bayesian models that combine electrical and thermal or optical channels, improving early warning 

and calibration over purely data driven regressors. Finally, controller guidance for maximum power 

point tracking and thermal regulation increasingly leverages edge aware architectures while secure 

data fabrics align with IEC 61850 and FAIR principles. Across these layers, perovskite and tandem 

aware features reduce bias under heat and spectral variability and help close the gap between 

laboratory devices and fielded assets. The review also offers a taxonomy and decision matrix linking 

sensing, models, and deployment choices to operational objectives. 
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INTRODUCTION 
Photovoltaic (PV) systems convert solar irradiance into electrical power through semiconductor 
junctions whose current–voltage characteristics reflect the material’s band structure and 
recombination dynamics. Within the PV landscape, metal halide perovskites (ABX₃; A = MA/FA/Cs, 
B = Pb/Sn, X = I/Br/Cl) have emerged as a distinct materials class combining defect tolerance, long 
diffusion lengths, and tunable bandgaps (via A/B/X-site engineering) that enable high open-circuit 
voltages and current matching in stacked architectures (Isikgor et al., 2023; Saliba, 2024). Tandem PV 
architectures either perovskite/silicon or all-perovskite stack complementary bandgaps to exceed the 
Shockley–Queisser limit of single junctions, thereby improving area-normalized energy yield, which 
matters acutely in dense, land-limited regions and built environments (Leijtens et al., 2018; Rahman 
et al., 2018). In parallel, the Internet of Things (IoT) denotes networks of distributed, sensorized edge 
nodes, gateways, and cloud services that collect, transmit, and process time-series data from physical 
assets for monitoring and control (Pederiva et al., 2023). AI predictive models encompass machine-
learning (ML) and deep-learning (DL) methods for forecasting power/irradiance, detecting faults and 
anomalies, and estimating degradation trajectories or remaining useful life (RUL), often with 
uncertainty quantification (UQ) (Kazem & Yousif, 2017). The coupling of IoT telemetry with AI 
inference in PV plants is internationally significant: it underpins grid integration under rising PV 
penetration, supports predictive maintenance for cost control, and offers a route to stabilize newer 
perovskite and tandem technologies under real-world stressors across diverse climates and 
regulatory regimes (Danish & Zafor, 2022).  While certified device efficiencies for perovskite single-
junctions and tandems now rival or surpass incumbent technologies, operational stability in the field 
remains the constraining challenge. Chemical and structural instabilities moisture ingress, 
oxygen/photoinduced reactions, ion migration, interfacial reactions with transport layers/electrodes 
translate into drift, hysteresis, and accelerated degradation under thermal/UV cycles, soiling, and 
humidity (Danish & Kamrul, 2022).  
Tandem stacks add additional failure modes: current mismatch, recombination layer resistance, and 
thermal/mechanical stresses across sub-cells (Leijtens et al., 2018; Isikgor et al., 2023). The practical 
question, therefore, is not only how to fabricate high-performing devices but how to operate them as 
cyber-physical energy assets whose performance is continuously sensed, predicted, and adjusted 
under non-stationary environments. This motivates real-time or near-real-time optimization loops 
combining high-frequency sensing (irradiance, module/backsheet temperature, IV curves, humidity), 
edge analytics, and AI-assisted control to mitigate mismatch and incipient faults before energy yield 
loss accumulates (Alao et al., 2024; Rahman et al., 2018). Framed this way, IoT + AI becomes an 
operational layer that converts perovskite/tandem materials advances into stable, bankable energy 
services across jurisdictions with heterogeneous grid codes and climatic loads (Jahid, 2022).  IoT 
architectures for PV commonly follow a node–gateway–cloud (or edge–cloud) topology, 
instrumenting arrays with pyranometers/photodiodes, thermistors/RTDs, anemometers, soiling 
cameras or thermal imagers, and sometimes on-board IV tracers; telemetry streams are transported 
over Wi-Fi, LoRaWAN, NB-IoT, 4G/5G, or wired industrial protocols to message brokers and time-
series stores (Arifur & Noor, 2022). Open-source, low-cost deployments enable dense monitoring and 
rapid prototyping in remote or resource-constrained settings, including agricultural pumping and 
islanded microgrids (Al-Dahidi et al., 2019; Bekkouche et al., 2023).  
Recent engineering studies demonstrate sub-minute resolution acquisition of irradiance, panel 
temperature, backsheet temperature, DC voltage/current, and environmental variables; integrated 
anomaly flags support maintenance scheduling (Chaudhary, 2025). Digital-twin (DT) abstractions 
extend this stack by calibrating physics-based/empirical models to live data for monitoring, 
diagnostics, and what-if analysis of O&M interventions (Alao et al., 2024). For perovskite/tandem 
fields, where moisture barriers, encapsulants, and interface chemistries determine stability, the ability 
to measure and synchronize device-level and meteorological signals at high cadence is central to 
distinguishing recoverable reversible effects (e.g., ion redistribution) from irreversible degradation 
trajectories.  AI for PV operations partitions broadly into (i) short-horizon power/irradiance 
forecasting (minutes–hours) to support dispatch, smoothing, and inverter scheduling; (ii) 
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fault/anomaly detection and diagnostics (e.g., hot spots, delamination, PID, string outages); and (iii) 
degradation modeling/RUL estimation with uncertainty bounds. Data-driven reviews consistently 
find that ML/DL models (tree ensembles, SVR, CNNs, LSTMs, temporal CNNs, Transformers) 
outperform naïve baselines and many physics-only models for short-term forecasting, provided 
exogenous weather inputs and well-tuned features (Gimeno-Sales et al., 2020). Recent work integrates 
probabilistic layers (Gaussian processes/variational GP, quantile or distributional models) to deliver 
calibrated UQ for grid-facing decisions (Gour et al., 2022). For fault detection, thermal-image 
segmentation and classification with U-Net/DeepLab/FPN families now detect PV anomalies at scale 
(Kofinas, 2017) and are being extended with modern transformer backbones (e.g., Swin-T) for subtle 
defect patterns (Hassani et al., 2025). On degradation/RUL, physics-informed strategies and hybrid 
digital-twin pipelines are beginning to codify mechanistic priors ion migration, interfacial reactions, 
moisture diffusion into learnable surrogates suitable for online updates (Avila et al., 2020). 
 

Figure 1: Integration of IoT Sensing and AI Control for Perovskite and Tandem PV Systems 
 

 
The operational thread across these tasks is latency-aware inference with explainability for O&M 
crews (e.g., SHAP-style feature attributions or saliency maps), so that alerts translate into actionable 
maintenance tickets rather than dashboard noise (Rahaman, 2022a). Beyond prediction, IoT-
instrumented PV arrays can close control loops that adapt inverter set-points, curtailment strategies, 
or thermal management. In the perovskite/tandem context where sub-cells exhibit different thermal 
coefficients and transients sophisticated MPPT (maximum power point tracking) is critical to avoid 
sustained mismatch losses under fast irradiance/temperature fluctuations and partial shading (Liu et 
al., 2023; Rahaman, 2022b). Reinforcement-learning (RL) approaches (DQN, DDPG, PPO, LSTM-
augmented agents) have been demonstrated for robust MPPT, often outperforming classical 
P&O/INC under dynamic and partial-shading conditions and converging to global MPPs in 
nonconvex landscapes (Zhuang et al., 2023). Bench-scale and power-hardware-in-the-loop studies 
report accuracies >95% against global MPP under varied irradiance/temperature profiles, with 
reduced oscillation around the set-point (Rahaman & Ashraf, 2022; Rana & Kumar, 2024). Integrating 
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these controllers with edge devices, IV tracers, and thermal sensors enables closed-loop adaptation 
that is sensitive to the particular electro-thermal signatures of perovskite top cells and silicon or 
perovskite bottom cells in tandems (Islam, 2022). The research logic of this review, therefore, centers 
on how model classes, instrumentation, and deployment choices (edge, cloud, or hybrid) jointly shape 
achievable real-time performance in perovskite and tandem PV plants. Where AI inference happens 
matters. Edge computing reduces latency and bandwidth, safeguards data sovereignty, and sustains 
operation during backhaul outages attributes favored for real-time MPPT, fast anomaly screening, 
and on-device feature extraction from imagery (Hasan et al., 2022; Rodríguez et al., 2023). Cloud layers 
remain essential for heavy training, fleet-level analysis, DT synchronization, and benchmarking 
across sites; hybrid patterns schedule models to the edge with over-the-air (OTA) updates and 
“shadow” inference for A/B evaluation. SCADA modernization for utility-scale PV increasingly 
exposes secure APIs for such ML services, and IoT SCADA designs tailored to PV demonstrate 
practical pathways for integrating AI while preserving operational reliability (Redwanul & Zafor, 
2022; Singh & Pal, 2021). DT reviews in the power sector emphasize versioned data pipelines, model 
provenance, and quality control of sensor streams the MLOps substrate needed to keep predictive 
models trustworthy as environments drift (Rezaul & Mesbaul, 2022; Zhang, 2024). For 
perovskite/tandem deployments often pilots with evolving materials stacks this orchestration is 
crucial: it enables controlled rollouts of predictive models, rapid rollback on performance regressions, 
and lineage tracking linking device recipes to field behavior. The empirical landscape is broad but 
fragmented across materials science, device physics, power systems, controls, and data science. 
Perovskite/tandem reviews meticulously document materials, interfaces, and device architectures 
that raise certified efficiencies (Cen 2024; Hasan, 2022), whereas IoT/AI reviews focus on forecasting 
algorithms, datasets, or fault imaging often in silicon-dominant fleets (El-Hoshy & Bouzaidi, 2023; 
Tarek, 2022). Meanwhile, case studies show IoT platforms and low-cost nodes that actually gather the 
telemetry needed for real-time analytics (Cipriani, 2024; Kamrul & Omar, 2022) and recent works add 
high-resolution PV monitoring devices and progressive AI controllers (Fernández et al., 2021). What 
is missing is a structured synthesis that (a) maps IoT sensing/communications choices to the specific 
prediction/control tasks; (b) compares AI model classes using comparable metrics 
(RMSE/MAE/MAPE, F1/AUC, calibration, latency/energy overhead); (c) relates deployment 
location (edge/cloud) to latency and resilience constraints; and (d) compiles evidence on 
yield/uptime/LCOE deltas when IoT+AI is applied to perovskite and tandem assets. This review 
undertakes that synthesis to establish a coherent picture of what has been demonstrated across 
settings and how these demonstrations relate to the distinctive degradation physics and control 
requirements of perovskite and tandem PV systems (Hassani, 2025; Kamrul & Tarek, 2022). 
This review sets out to deliver a precise, decision-oriented synthesis of how IoT-enabled AI predictive 
models can enhance real-time performance of perovskite and tandem photovoltaic systems. First, it 
will establish a unified taxonomy that links sensing modalities, connectivity options, and compute 
placement with specific operational tasks, including short-horizon forecasting, fault and anomaly 
screening, degradation and remaining-life estimation, and controller guidance for maximum power 
point tracking and thermal regulation. Second, it will apply a transparent and replicable screening 
protocol to identify and extract study-level details on device architecture, measurement cadence, data 
volume, modeling approach, deployment topology, and runtime characteristics, enabling like-for-like 
comparisons across heterogeneous studies. Third, it will benchmark model classes against common 
accuracy and calibration metrics alongside latency, computational footprint, and energy overhead, so 
that performance is interpreted jointly with the constraints of real-time operation. Fourth, it will 
evaluate edge, cloud, and hybrid deployment patterns by examining the relationships among 
network conditions, update strategies, online learning, and operational resilience, drawing explicit 
connections between where inference occurs and the feasibility of closed-loop control. Fifth, it will 
quantify reported operational outcomes such as energy yield uplifts, downtime reductions, and 
levelized cost effects, translating predictive gains into plant-level performance indicators and 
identifying the data and telemetry prerequisites that enable those gains. Sixth, it will synthesize 
evidence on digital-twin workflows, data engineering practices, and model lifecycle management, 
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emphasizing traceability, versioning, and quality control as foundations for trustworthy analytics. 
Seventh, it will assess data security and privacy practices within IoT stacks and summarize standards 
and interoperability mechanisms that enable multi-vendor integration. Eighth, it will produce an 
evidence map that highlights well-supported method–deployment–task combinations and 
systematically exposes underexplored intersections relevant to perovskite and tandem technologies. 
Finally, it will deliver a reusable extraction schema and a practical decision matrix that practitioners 
and researchers can apply to match instrumentation and modeling choices to site conditions, 
reliability needs, and operational objectives, ensuring that findings are immediately applicable to the 
design and evaluation of real-time, IoT-driven AI pipelines in this domain. 
LITERATURE REVIEW 
The literature on IoT-enabled AI for photovoltaics spans several partially overlapping streams that 
rarely speak the same language, making an integrative entry point essential before drilling into 
specific subtopics. Research rooted in materials and device physics focuses on the electro-optical 
behavior and stability of perovskite and tandem architectures, documenting how moisture ingress, 
thermal loads, interfacial chemistry, and current-matching constraints shape field performance; 
parallel work in power systems and controls treats PV plants as cyber-physical assets governed by 
sensing, actuation, and supervisory logic; and a third stream in data science emphasizes predictive 
modeling, uncertainty quantification, and deployment mechanics for streaming time-series and 
images. The introductory sweep of this review links these traditions by tracing the flow of information 
and decisions through an operational stack: sensors and IV tracers at the module and string level; 
connectivity layers that determine bandwidth, latency, and resilience; compute placement across 
edge, cloud, or hybrid topologies; and applications that transform data into forecasts, anomaly scores, 
degradation and remaining-life estimates, and controller guidance for maximum power point 
tracking or thermal regulation. Because perovskite and tandem systems exhibit distinct transient 
behaviors and degradation signatures, the review foregrounds how sensing choices and sampling 
cadence condition the learnability of relevant targets, and how model classes ranging from tree 
ensembles and kernel methods to recurrent and transformer architectures, physics-informed 
surrogates, and reinforcement-learning controllers trade off accuracy, interpretability, stability under 
drift, and computational footprint. Equally central is evaluation: beyond error metrics, the review 
treats latency budgets, on-device resource consumption, and the translation of predictive gains into 
plant-level indicators such as energy yield, uptime, and cost. The survey also establishes common 
terminology for digital-twin workflows, online learning, and model lifecycle management, since real-
time performance depends as much on data engineering and MLOps practices as on algorithms. 
Finally, the review highlights cross-cutting constraints that shape feasibility in practice data quality 
and labeling, domain shift between lab and field, cybersecurity for distributed nodes and gateways, 
and interoperability across vendors and systems so subsequent subsections can compare methods on 
a like-for-like basis and identify where evidence is strong, where it is promising but nascent, and 
where critical gaps remain for perovskite and tandem deployments operating under real-world 
conditions. 
IoT Architectures for Photovoltaic (PV) Monitoring 
IoT architectures for PV monitoring are layered systems that translate physical sensing into 
actionable, time-synchronized data streams, enabling continuous observability from module to plant 
scale. At the device/sensing layer, instrumented nodes acquire electrical and environmental variables 
string and module DC voltage and current, inverter telemetry, backsheet and ambient temperatures, 
irradiance, wind, humidity, and sometimes IV curves or thermal imagery at cadences ranging from 
sub-minute to multi-minute intervals. These nodes typically combine low-cost microcontrollers (e.g., 
ESP32) with local storage and real-time clocks to ensure timestamp integrity and graceful degradation 
during backhaul loss (Melo et al., 2021). The connectivity layer links dispersed sensors to gateways 
and services while balancing range, power, latency, and cost. For wide-area, battery-operated 
deployments, LPWAN options such as LoRa/LoRaWAN are widely used to backhaul compact PV 
metrics over kilometers with milliwatt-level budgets, supporting campus and utility layouts. Where 
licensed coverage and quality of service are needed, NB-IoT offers carrier-grade connectivity for 
distributed PV monitoring and limited control, albeit with differing uplink duty cycles and latency 
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envelopes . On rooftop or dense sites, Wi-Fi or Ethernet remains practical for high-rate streams and 
dashboard interactivity (Al-Naib et al., 2024). The messaging and integration layer generally adopts 
MQTT brokers for pub/sub telemetry and lightweight control topics, sometimes alongside OPC UA 
where industrial interoperability, strong typing, and method calls are required. Finally, the compute 
layer splits responsibilities between edge nodes which perform filtering, feature extraction, 
thresholding, and first-pass anomaly checks and cloud services which aggregate fleet data, retrain 
models, and serve historical analytics and digital twins. Across these layers, architectural choices are 
constrained by energy autonomy of field nodes, desired monitoring resolution, and the need for 
secure, resilient, and maintainable data paths in harsh outdoor conditions. 
 

Figure 2: Cycle Diagram of Layered IoT Architecture for Photovoltaic Monitoring 

 

 
 
For resource-constrained sensing nodes, power budgeting drives both hardware and protocol design. 
Energy-autonomous IoT platforms increasingly integrate miniature PV harvesters and 
supercapacitors to sustain periodic telemetry without manual battery service, a property essential for 
distributed per-module monitoring and remote balance-of-system (BoS) assets; in such designs, 
opportunistic data-rate selection and duty-cycling reconcile coverage with lifetime . LoRaWAN links 
commonly achieve hundreds of milliseconds to seconds of latency adequate for monitoring and slow 
supervisory actions while edge nodes cache measurements during outages for eventual consistency . 
NB-IoT gateways can offload lightweight machine learning to compress or prioritize payloads, 
reducing radio transmissions and energy draw useful when sites push images or dense diagnostics 
in addition to scalar time series (Mubashir & Abdul, 2022) . At the plant level, open-source SCADA 
architectures that stitch together MQTT, Node-RED/flow engines, and time-series databases have 
demonstrated modular, auditable pipelines supporting real-time dashboards, alarm routing, and 
HMI controls; because components are loosely coupled, the same stack can host AI microservices for 
forecasting and anomaly scoring without vendor lock-in. Where PV assets must interoperate with 
existing industrial systems, OPC UA servers/gateways bridge legacy MODBUS devices with modern 
analytics and provide typed address spaces and role-based security, features that simplify integration 
at utility scale (Carballo et al., 2024). Taken together, these building blocks enable hierarchical 
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observability: per-module telemetry feeds string and inverter views, which in turn feed site- and fleet-
level analytics, with policy-driven retention and down-sampling to control storage costs. 
Architectural rigor at this level is a prerequisite for real-time AI deployment because feature freshness, 
data lineage, and backpressure handling directly condition model reliability and the stability of 
downstream control loops (Muhammad & Kamrul, 2022). 
IoT architectures also shape where analytics run and how control authority is exercised. For 
monitoring-centric tasks yield accounting, degradation tracking, and alarm correlation cloud 
aggregation suffices; but for time-sensitive functions like fast anomaly screening or wireless MPPT 
orchestration, inference near the source reduces latency and keeps operation resilient during backhaul 
loss. Recent studies demonstrate centralized or coordinated MPPT over LoRa/LoRaWAN, 
centralizing set-point computation while maintaining low-power, long-range links to distributed 
converters; such designs reduce wiring complexity and make algorithm upgrades and A/B tests 
tractable (Reduanul & Shoeb, 2022). For distributed PV, NB-IoT–based strategies have been proposed 
for real-time monitoring and voltage regulation, highlighting the need to budget for cellular attach 
times and coverage variability across rooftops and feeders (Kumar & Zobayer, 2022). In parallel, 
virtualized SCADA stacks with OPC UA cores illustrate how to modernize solar plants extending to 
CSP fields with secure, typed data models and mesh backhauls, thereby easing integration of analytics 
and hybrid human-in-the-loop control. At the gateway and data-platform tier, “bring-your-own-
model” patterns expose MQTT/REST endpoints for AI microservices and schedule model updates to 
the edge; low-cost, open hardware makes these rollouts feasible for pilot-scale perovskite/tandem 
arrays where instrumentation density and failure modes differ from silicon PV (Al-Naib et al., 2024; 
Noor & Momena, 2022). Finally, security and reliability considerations device identity, encrypted 
transport, and defense-in-depth between field networks and cloud tenants must be baked into the 
architecture rather than layered post-hoc. Energy-autonomous nodes, typed industrial endpoints, and 
standards-based messaging together supply the operational substrate upon which AI forecasting, 
fault diagnostics, and control can act reliably in real (Istiaque et al., 2023; Melo et al., 2021). 
IoT-linked Monitoring of Perovskite and Tandem PV 
Reliable IoT-enabled monitoring hinges on the quality and fitness of the underlying sensors and 
diagnostic instruments that feed data pipelines from cell to module, string, and plant scales. In the 
photovoltaic domain, three complementary instrumentation families dominate: electrical 
characterization (e.g., I–V tracers, reference cells), thermal/infrared imaging, and luminescence-based 
techniques (electroluminescence/photoluminescence), each with distinct observability and latency 
profiles. Electrical metrology (string-level voltage, current, impedance, and I–V sweeps) provides 
directly actionable performance indicators, but its spatial resolution is limited unless multiplexed or 
paired with module-embedded sensing; recent reviews outline architectures for portable and multi-
channel I–V tracers that reduce test time and allow routine field deployment in digital O&M 
workflows (Hasan et al., 2023; Morales-Aragonés et al., 2021). Thermal imagery especially radiometric 
infrared thermography (IRT) adds non-contact spatial context to electrical anomalies (e.g., hotspots 
from resistive defects, diode malfunction, PID), and has matured from handheld cameras to 
standardized aerial inspections with radiometric calibration and flight-path automation; surveys 
highlight how aIRT can be integrated in condition-based maintenance loops and where algorithmic 
generalization still lags (Gallardo-Saavedra et al., 2020; Hossain et al., 2023). For perovskite and 
perovskite–silicon tandem technologies whose ion migration, interfacial reactions, and 
moisture/thermal sensitivities may elude coarse electrical summaries in situ/operando optical 
probes are particularly informative. Electroluminescence (EL) and photoluminescence (PL) imaging, 
including emerging daylight-compatible EL with current modulation and InGaAs detection, resolve 
microcracks, shunts, and interconnect defects with cell-scale granularity and are increasingly being 
paired with explainable deep models to automate defect taxonomy and severity scoring (Santamaría 
et al., 2025; Rahaman & Ashraf, 2023). Together, these modalities define a sensor triad whose outputs 
are well-suited for edge ingestion and IoT transport, enabling cross-modal fusion (electrical-thermal-
optical) that raises diagnostic confidence for both silicon-dominant and perovskite-inclusive fleets. 
Designing IoT sensing stacks for perovskite and tandem PV requires attention to irradiance and 
soiling observability, environmental stressors, and calibration traceability. Irradiance remains the 
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primary exogenous driver; thus, Class A pyranometers or spectrally-matched reference cells on the 
plane of array are essential to normalize production metrics and to disambiguate weather-driven 
yield variations from degradation (Sultan et al., 2023). While electrical proxies (e.g., Isc from reference 
cells) can suffice for relative tracking, robust networks benefit from redundancy paired irradiance and 
module-backsheet temperature channels to stabilize performance-ratio estimates under transient 
clouds and wind. Soiling, a frequent confounder of apparent degradation in arid and agricultural 
regions, warrants dedicated sensing or vision-based estimation. Field studies demonstrate that 
machine-learning regressors trained on routine PV telemetry (Isc, module temperature, RH, pressure) 
can estimate soiling losses with practical accuracy, enabling economically optimal cleaning policies 
without costly particle counters (Hossen et al., 2023; Pérez et al., 2021). Complementarily, recent 
computer-vision pipelines using visible-spectrum imagery classify or quantify panel soiling and 
surface blemishes, performing well enough to trigger maintenance tickets and to annotate aIRT/EL 
inspections (Tawfiqul, 2023; Trifonov et al., 2024). On the thermal front, IRT systematization matters: 
reviews comparing illuminated versus dark conditions, indoor versus outdoor, and bidirectional-
inverter-assisted “dark-IRT” protocols detail when each mode is most discriminative and how 
radiometric corrections reduce false positives due to wind, angle-of-view, and emissivity drift. Aerial 
radiometric IRT pipelines, coupled with deep transfer learning and post-hoc explainability, show 
promise for scalable, bias-aware triage under heat-wave stress conditions under which perovskite 
devices may exhibit accelerated ionic and interfacial changes (Borah et al., 2023; Uddin & Ashraf, 2023; 
Qureshi et al., 2025). For perovskite/silicon tandems specifically, PL/EL channels add sensitivity to 
sub-bandgap defect states and interlayer recombination that precede power loss, positioning optical 
sensing as an early-warning layer above electrical baselines (Borah et al., 2023; Momena & Hasan, 
2023; Qureshi et al., 2025). 
 

Figure 3: Cycle Diagram of Sensing and Instrumentation for IoT-Linked Monitoring  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Critically, perovskite stability research motivates IoT-ready, in situ/operando instrumentation that 
can run unattended during realistic duty cycles and environmental excursions. Operando 
frameworks integrate controlled humidity/temperature/illumination with continuous tracking of PV 
parameters and optical observables to capture fast and reversible ionic phenomena versus slow and 
irreversible degradation, a distinction vital for predictive modeling (Fukuda et al., 2025). For fielded 
tandems, practical compromises involve embedding miniature sensors (humidity, temperature) in 
junction boxes or backplates, synchronizing their time series with edge-executed I–V sweeps and 
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periodic EL snapshots. The recent literature argues for standardized metadata (illumination spectra, 
spectrum-mismatch, thermal boundary conditions) and for fusing optical kinetics (e.g., PL 
quenching/recovery) with electrical drifts to disentangle transport-layer failure from photoabsorber 
chemistry. In operational plants, portable and multi-channel I–V tracers with smart multiplexers 
shorten test windows, allowing routine baseline refreshes suitable for IoT scheduling. Meanwhile, 
maturing aerial IRT playbooks amortize inspection costs and improve fleet coverage. Pulling these 
threads together, an instrumentation stack optimized for IoT must (i) ensure traceable 
irradiance/temperature/soiling context, (ii) add periodic, radiometrically reliable thermal and 
luminescence imaging for spatial diagnostics, and (iii) align sampling cadences and data schemas 
with edge compute and bandwidth realities (Sanjai et al., 2023). Such stacks generate the rich, well-
labeled multimodal datasets that AI predictive models need to deliver trustworthy, perovskite-aware 
prognostics at scale. 
Edge/Cloud Infrastructure for Real-Time PV Analytics 
High-quality IoT telemetry for perovskite and tandem photovoltaic (PV) systems depends on 
communication stacks that can move time-sensitive measurements from harsh outdoor environments 
to decision points with predictable latency, reliability, and security. At the physical and link layers, 
low-power wide-area networks (LPWANs) such as LoRa/LoRaWAN prioritize energy efficiency and 
kilometers-scale range, enabling dense sensor deployments on modules, combiner boxes, trackers, 
and weather masts with multiyear node lifetimes; the trade-offs are duty-cycle limits, narrow 
payloads, and region-specific spectrum rules that affect update rates and acknowledgments. For 
distributed rooftops and feeders where licensed coverage is desirable, NB-IoT provides carrier-grade 
attachment and extended coverage, with better service guarantees for periodic monitoring and event-
driven alarms, albeit at the cost of attach procedures and variable uplink latency that must be 
budgeted for in real-time loops (Mekki et al., 2019; Zhou et al., 2019). Moving up the stack, message 
queuing telemetry transport (MQTT) and related pub/sub patterns remain the lingua franca for 
telemetry fan-out and lightweight control topics; comparative evaluations against CoAP show 
MQTT’s robustness under lossy links and its suitability for gateway aggregation, particularly when 
PV fleets require topic hierarchies for strings, inverters, and site-level digital twins (Akter et al., 2023; 
Trakadas et al., 2020). Where interoperability with industrial control systems is needed, OPC UA 
notable for its typed address spaces, method invocation, and security model bridges modern analytics 
with legacy power electronics and SCADA backbones, and can be combined with Time-Sensitive 
Networking for deterministic transport on the substation LAN (Leitner & Mahnke, 2014). Together, 
these design choices shape how perovskite/tandem assets are observed: LPWANs excel at sparse, 
power-frugal metrics from widely distributed nodes; NB-IoT and Ethernet/Wi-Fi support higher-rate 
streams and firmware updates; MQTT/OPC UA provide integration and role-based access; and TSN-
ready plants lay the groundwork for time-bounded control traffic (Raza et al., 2017; Thangavel et al., 
2014). 
The edge–cloud split determines where inference runs and how resilient the system is under backhaul 
variability. Conceptually, edge computing brings filtering, feature extraction, and first-pass inference 
to gateways or even sensor nodes, reducing bandwidth, containing personally or commercially 
sensitive data, and keeping alerting live during connectivity loss; cloud tiers centralize training, 
fleetwide benchmarking, and model governance (Danish & Zafor, 2024; Shi et al., 2016). In PV 
operations, this division maps naturally onto task criticality and latency budgets: sub-second anomaly 
screening near inverters and strings, minute-scale forecasting at gateways, and heavier model 
retraining or A/B testing in the cloud. Practical blueprints increasingly adopt a three-tier pattern 
device → edge gateway → cloud so that per-module telemetry can be down-sampled, summarized, 
or prioritized at the edge before being published upstream, while the cloud maintains a “source of 
truth” time-series lake and orchestrates model updates. The rise of edge intelligence tightens this loop 
further by co-locating compact deep models with data sources and enabling on-device adaptation to 
local microclimates, soiling regimes, and thermal behaviors that differ across sites (Nasrallah et al., 
2019). Complementarily, fog abstractions support in-between compute aggregation (e.g., per-feeder 
or per-array), useful when tandem fields are geographically dispersed and share feeders or 
substations; this reduces round trips and allows local consensus for control actions (Chiang & Zhang, 
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2016; Istiaque et al., 2024). For perovskite/tandem deployments often pilots with evolving device 
stacks this layered approach limits backhaul load from high-cadence IV tracers, thermal imagers, or 
luminescence probes, yet keeps the analytical “center” robust for cross-site comparisons, drift 
detection, and model lifecycle management (Hasan et al., 2024; Popovski et al., 2018). 
 

Figure 4: Edge/Cloud Infrastructure for Real-Time PV Analytics 

 
Achieving determinism and reliability in cyber-physical control paths requires attention to both the 
network fabric and ML operations. On plant LANs, Time-Sensitive Networking (TSN) provides 
bounded-latency flows and time-aware shaping for control and protection traffic, making it a natural 
fit for PV plants modernizing beyond best-effort Ethernet; surveys show how TSN’s scheduling, clock 
sync, and stream reservation primitives can underpin closed-loop control alongside noncritical 
telemetry. At the enterprise edge, 5G adds URLLC-class links for mobile assets and wide-area 
resilience, with slicing and QoS differentiation that can segregate monitoring, video inspection, and 
control topics (Rahaman, 2024; Popovski et al., 2018). In parallel, federated learning offers a privacy-
preserving way to personalize models to sites and climates without centralizing raw data an attractive 
property for third-party O&M providers or multi-tenant industrial parks operating mixed PV 
technologies while still allowing global aggregation and convergence in the cloud (Kairouz et al., 
2021). For interoperability between operational technology and analytics, OPC UA Pub/Sub over TSN 
has emerged as a reference integration, carrying typed measurements and commands with 
deterministic behavior and easing certification in regulated grids (Hasan, 2024; Trakadas et al., 2020). 
The practical arc ties back to deployment engineering: MQTT topics bridge field nodes to gateways; 
OPC UA/TSN secures deterministic lanes on plant networks; edge compute hosts compact models; 
5G or NB-IoT backhauls summaries; and cloud services retrain and govern models. With these gears 
synchronized bounded latency flows, resilient backhaul, privacy-aware learning, and explainable, 
updatable edge models IoT connectivity and edge infrastructure become an enabling substrate on 
which real-time AI for perovskite and tandem PV can operate at scale (Ashiqur et al., 2025; Mekki et 
al., 2019; Raza et al., 2017). 
AI for Power and Irradiance Forecasting 
Short- to day-ahead forecasting of solar irradiance and PV power is central to real-time operation, 
market participation, and control of perovskite and tandem systems, and AI now dominates the state-
of-the-art across horizons from minutes to 24 hours. Deep learning models particularly convolutional 
and recurrent architectures leverage multi-source inputs (on-site sensors, sky imagers, satellite fields, 
and numerical weather prediction) to learn nonlinear mappings between meteorology and PV 
response that traditional statistical methods struggle to capture. For ultra-short horizons (1–30 
minutes), computer-vision pipelines that ingest whole-sky images and recent plant telemetry via IoT 
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gateways have proven especially effective; hybrid CNN/RNN designs translate cloud morphology 
and motion into rapid irradiance ramps, reducing smoothing biases and improving ramp detection 
relative to purely time-series models (Hasan, 2025; Sun et al., 2019; Venugopal et al., 2019). At plant 
and regional scales, probabilistic formulations quantify uncertainty with predictive intervals that can 
be consumed by dispatch and reserve scheduling; techniques based on correlated weather-scenario 
generation, Copulas, and machine-learning ensembles yield calibrated densities while preserving 
cross-variable dependence. Beyond single-site learning, grouped Gaussian processes and graph-
based deep networks explicitly encode spatial structure across fleets, exploiting correlations among 
sites and nearby weather stations to lift both point accuracy and uncertainty quantification (Ismail et 
al., 2025). Recent systematic reviews confirm that, across benchmarks, deep learning consistently 
outperforms shallow baselines when diverse exogenous covariates and plant metadata are fused, and 
that careful feature engineering around solar geometry and sky conditions is critical for robustness 
(Al-Dahidi et al., 2024). Within this landscape, IoT instrumentation irradiance sensors, 
module/backsheet thermistors, pyranometers, all-sky cameras, ceilometers, and inverter telemetry 
serves as the data fabric that streams high-frequency signals into AI models with sub-minute latency, 
enabling continuous retraining and online adaptation to perovskite-specific thermal and hysteretic 
behaviors (Jakaria et al., 2025). 
 

Figure 5: Layered Framework of AI for Power and Irradiance Forecasting in Perovskite 
 

 
 

For hour-ahead to day-ahead horizons, attention-based Transformers and hybrid encoder–decoder 
stacks have expanded forecasting capacity by modeling long-range temporal dependencies and multi-
scale seasonality while retaining sensitivity to sudden exogenous changes. Multi-step frameworks 
such as PVTransNet combine Transformer encoders with LSTM decoders to integrate historical 
power, on-site observations, weather forecasts, and solar geometry, achieving lower mean absolute 
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errors than pure LSTM or conventional Transformer baselines across multi-hour sequences (Kim et 
al., 2024; Hasan, 2025). At the fleet level, interpretable temporal–spatial graph attention networks 
(TSM-GAT) learn dynamic adjacency among sites, providing saliency over meteorological drivers and 
inter-plant influences capabilities that are valuable for operators managing geographically dispersed 
tandem/perovskite assets (Jing et al., 2024; Sultan et al., 2025). Complementary graph innovations 
embed spectral/Fourier operators to capture spatio-temporal couplings efficiently from 
heterogeneous IoT streams (power, temperature, wind, sky pixels), improving generalization when 
station coverage is sparse or newly commissioned assets lack history. These architectures can be 
deployed in edge–cloud hierarchies: edge devices perform preprocessing (denoising, feature scaling, 
sky segmentation) and low-latency nowcasts, while cloud services run heavier day-ahead models and 
uncertainty post-processing for market bids (Zafor, 2025). Probabilistic outputs (quantiles, full 
predictive densities) derived from deep or Gaussian-process heads are readily integrated with battery 
EMS for risk-aware dispatch and curtailment minimization, a particularly useful feature for 
perovskite and tandem strings whose temperature coefficients and transient dynamics accentuate 
weather sensitivity (Zhang et al., 2020). 
Operationalization remains a modeling-and-systems problem: robust pipelines must handle regime 
shifts (e.g., seasonal aerosol loads, sensor drift), missing-data bursts from IoT networks, and site-
specific nonlinearities (soiling, snow cover, spectral response differences for perovskites). Studies 
show that coupling image-based cloud cover extraction with power-history encoders mitigates over-
smoothing and improves ramp timing, which is critical for inverter set-point scheduling and DC-
coupled storage control. Attention LSTM variants improve explainability and perform well under 
limited data by focusing on salient covariates and temporal segments, while transfer learning across 
plants accelerates deployment to newly built fields (Uddin, 2025; Venugopal et al., 2019). Classical 
deep RNN stacks can be enhanced in practice with time-correlation modification layers that correct 
day-ahead trajectories using intra-day similarity detection, yielding tangible accuracy gains in live 
operations (Wang et al., 2020). Across these methods, best-in-class systems combine (i) high-quality, 
synchronized IoT sensing (telemetry + sky/satellite), (ii) architectures aligned to horizon (vision-
centric nowcasting; attention/graph models for day-ahead), and (iii) probabilistic post-processing for 
decision-grade uncertainty (Sanjai et al., 2025; Sun et al., 2019). For perovskite and tandem PV 
specifically, these AI-IoT pipelines can be parameterized with device-level features (bandgap 
configuration, thermal transients) and site metadata to tailor forecasts to their distinct 
spectral/thermal responses unlocking tighter inverter control, smoother power ramps, and improved 
participation in flexibility markets. 
Remaining-Useful-Life (RUL) prediction for perovskite and tandem PV 
Predicting how fast perovskite and tandem PV devices will degrade and how long they will remain 
serviceable requires models that reconcile device physics with stochastic field realities. At the 
material/device level, degradation in metal-halide perovskites arises from ion migration, defect 
generation, interfacial reactions, and extrinsic stressors (humidity, oxygen, heat, UV, and reverse 
bias), all of which perturb charge transport and accelerate performance loss; at the module/system 
level, encapsulation, interconnects, and backsheets introduce additional failure pathways and time-
varying stress couplings that complicate lifetime inference (Baumann et al., 2024). Outdoor evidence 
from monolithic perovskite/Si tandems underscores the non-monotonic, stage-wise nature of field 
aging (e.g., early stabilization, mid-life drift, and late-life acceleration), with year-long monitoring 
showing about 80% efficiency retention alongside pronounced environmental sensitivities that 
challenge simple linear degradation assumptions (Babics et al., 2023). Meta-reviews across crystalline-
Si and thin-film modules likewise reveal wide spreads in reported performance loss rates because 
climate, technology, test protocol, and analysis method all bias estimates, motivating probabilistic 
frameworks that propagate uncertainty into service-life forecasts (Aghaei et al., 2022; Babics et al., 
2023). Recent perspectives specific to perovskite/Si tandems emphasize tandem-specific degradation 
(e.g., reverse-bias hotspots, mobile-ion dynamics, and stack-dependent thermo-mechanical stress), 
arguing for models that link sub-cell states to module-level reliability metrics (Rolston et al., 2022). 
Complementing these views, operando and in-situ characterization syntheses detail kinetic signatures 
ion redistribution, phase changes, and interfacial evolution that can serve as physics-anchored state 
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variables for prognostics (Cho et al., 2023). Together, these strands suggest that credible RUL 
estimation must be both multiscale and hybrid: it should fuse mechanistic descriptors (e.g., ionic 
mobility, interface kinetics) with data-driven uncertainty quantification under real-world stress 
histories (Chakar et al., 2024; Cho et al., 2023). 
 

Figure 6: Layered Framework for Degradation Modelling and Remaining Useful Life Prediction 

 

 
 
Methodologically, two complementary families have matured for PV RUL: (i) stochastic degradation 
processes that capture drift-diffusion-like wear and regime switching; and (ii) Bayesian/GP models 
that infer latent parameters and predictive intervals directly from operating data. For PV modules, 
two-stage Wiener and related change-point formulations explicitly model phase transitions in 
degradation trajectories, enabling online estimation of the remaining lifetime distribution and 
outperforming single-stage baselines when devices undergo regime shifts (Lin et al., 2024). In parallel, 
Gaussian-process (GP) models map time-series IV and meteorological covariates to health indicators 
while preserving calibrated uncertainty; recent GP-IV formulations for outdoor PV show how 
probabilistic surrogates can disentangle condition effects from intrinsic aging to yield more faithful 
trend extrapolations for service-life planning (Carlucci et al., 2024). Bayesian inversion has also 
emerged as a powerful route to extract equivalent-circuit parameters (e.g., RsR_sRs, RpR_pRp, 
ideality factor) from production power or IV data and to track their daily evolution; because these 
parameters are mechanistically interpretable, their trajectories can be tied to specific degradation 
mechanisms and then embedded in RUL models with uncertainty bounds. When perovskite devices 
are considered, accelerated degradation modelling is being re-framed around physics-informed 
learning that encodes transport/chemistry constraints, yielding more sample-efficient extrapolations 
from stress tests to field conditions (Pandey & Bag, 2025). These hybrid approaches complement 
stability roadmaps for tandems that warn about reverse-bias resilience and thermal hotspots at 
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module scale; incorporating such stress-coupling physics into priors or constraints improves 
identifiability and guards against spurious lifetime optimism (Pandey & Bag, 2025). Critically, long-
horizon outdoor datasets spanning perovskite-Si and perovskite-CIGSe tandems are now available to 
validate prognostic pipelines beyond single-cell, lab-scale tests, enabling credible evaluation of 
calibration, sharpness, and early-warning capability under real spectra, temperatures, and soiling. 
At scale, fleet-level lifetime risk must reconcile device heterogeneity with site-specific climates. 
Systematic field studies over decades show technology-dependent degradation signatures junction 
box, encapsulant, metallization, and backsheet issues that propagate to power-loss dispersion across 
plants (Tockhorn et al., 2025). This heterogeneity is precisely why meta-analyses now model 
moderators (climate class, technology, and methodology) to explain variance in reported loss rates 
and to yield more transferable priors for site-adapted RUL (Chakar et al., 2024). For perovskite/silicon 
tandems, recent outdoor campaigns and commercialization-minded surveys converge on the need for 
lifetime models that include encapsulation chemistry, stack-specific thermo-mechanical stress, and 
reverse-bias protection strategies, rather than extrapolating from single-junction perovskite cells 
alone. Taken together, a state-of-the-art RUL workflow for IoT-instrumented perovskite and tandem 
PV would: (1) stream IV/impedance/thermal data; (2) infer physics-meaningful parameters via 
Bayesian inversion; (3) propagate them through stochastic, possibly two-stage, degradation laws; and 
(4) validate forecasts against outdoor benchmarks with calibrated uncertainty and change-point 
detection. Such a workflow aligns with the current consensus from stability reviews, accelerated-
testing methodology, and year-long outdoor studies across tandem platforms. 
Fault/Anomaly Detection and Diagnostics in IoT-Enabled PV Systems 
Contemporary fault and anomaly detection for photovoltaic (PV) assets increasingly blends 
thermal/visual sensing with deep neural inference, enabling real-time diagnostic decisions at 
module, string, and inverter levels. Early work pairing infrared (IR) thermography with machine 
learning demonstrated that hotspot morphology, thermal gradients, and texture descriptors could be 
mapped to defect classes and anticipated energy loss, establishing IR as a non-contact, O&M-friendly 
foundation for automated screening (Ali et al., 2020). Building on this, convolutional classifiers trained 
on large IR corpora now separate multiple defect categories under field conditions, mitigating 
confounders such as soiling, oblique viewing angles, and irradiance transients (Alves et al., 2021). 
Mini-reviews consolidated these advances, emphasizing that IR-based condition monitoring has 
matured from qualitative inspection to quantitative diagnostics when paired with robust feature 
learning and consistent acquisition protocols (Kandeal et al., 2021). Most recently, survey work at the 
interface of infrared physics and deep learning has codified best practices for UAV-borne 
thermography, panel segmentation, and anomaly classifiers arguing that standardized flight, 
radiometric calibration, and domain adaptation are as critical as model choice for trustworthy 
detection at scale (Khatri et al., 2025). Together, these streams motivate an IoT stack in which on-board 
or edge-deployed inference units fuse module-level telemetry with camera streams to flag incipient 
faults before they propagate to measurable yield loss.  
A pivotal development has been domain-aware representation learning for IR imagery. Instead of 
training and testing on identically distributed samples, recent work frames fault detection as cross-
plant generalization: a supervised contrastive pipeline learns robust embeddings on labeled source-
plant images and transfers anomaly decision boundaries to unseen target plants with minimal re-
tuning, sustaining accuracy despite changes in module make, age, irradiance, and flight altitude (De 
Benedetti et al., 2018). Complementing representation learning, one-stage detectors optimize end-to-
end discovery of small, densely packed defects under clutter and glare. Enhanced YOLO variants 
(e.g., YOLOv7 with partial/switchable atrous convolutions) deliver fast, high-mAP inspection 
suitable for on-drone triage, explicitly targeting multi-scale defect morphology in EL/IR tiles (Zhang 
et al., 2024). Vision Transformers and attention-augmented backbones have also entered the IR/EL 
toolbox; hybrid transformer–CNN designs report measurable gains in locating hairline cracks and 
busbar discontinuities, particularly when objects are tiny, low-contrast, or partially occluded. For 
multiclass PV-panel inspection in the wild, short-term spatiotemporal modeling further stabilizes 
decisions by absorbing irradiance flicker and UAV motion, and segmentation heads can supply pixel-
precise defect masks that double as interpretable overlays for technicians. Across these studies, the 
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diagnostic edge emerges from three ingredients: (i) curated sensing protocols (radiometric IR, 
consistent altitude, gimbal lock); (ii) embeddings resilient to domain shift; and (iii) detectors 
optimized for small objects with explainable heatmaps that align with physical failure signatures (Li 
et al., 2024). Beyond images, IoT telemetry string currents, inverter events, backsheet thermistors, and 
irradiance enables anomaly detection where cameras are impractical or as a second opinion for IR 
flags. Classical residual-based schemes train a normal-behavior model (e.g., ANN or LSTM-AE) on 
irradiance/temperature-conditioned power and raise alerts on residual excursions, supporting 
predictive maintenance from low-cost SCADA streams (Oliveira & et al., 2022). At portfolio scale, 
interpretable quantile models and locality-aware regressors compare each site to its “neighborhood,” 
surfacing collective anomalies attributable to shading, soiling, or MPPT mis-tracking; when fused 
with IR-derived labels, these methods improve precision in distinguishing thermal hotspots from 
benign. 
 
Figure 7: Square Diagram of Fault and Anomaly Detection in IoT-Enabled Photovoltaic Systems 

 

 
 

meteorological dips (Xiang et al., 2022). For feature-sparse deployments, lightweight U-Net pipelines 
segment hot regions and locate bright-spot defects in IR frames; paired with decision trees or SVMs 
they provide transparent rules for triage and work-order generation that field teams can validate 
quickly (Zhang et al., 2024). Finally, explainability via saliency on IR tiles or feature attribution on 
SCADA has moved from an afterthought to a design criterion, strengthening operator trust and 
accelerating root-cause analysis when anomalies precipitate curtailment or safety alarms (Khatri et 
al., 2025). Collectively, these image- and telemetry-driven approaches illustrate how IoT-AI pipelines 
can progress from mere fault detection to actionable diagnostics, connecting signatures (e.g., diode 
hotspot, snail trails, PID) to specific maintenance actions under operational constraints (Bommes et 
al., 2022). 
Inverter Coordination for Perovskite and Tandem PV 
Real-time control in IoT-enabled photovoltaic (PV) systems hinges on fast, stable maximum power 
point tracking (MPPT) tightly coupled to converter and inverter control so the plant can exploit micro-
scale irradiance and temperature fluctuations without inducing oscillations or curtailment. Classical 
hill-climbing and incremental-conductance families remain the industrial baseline, but extensive 
reviews document their sensitivity to step-size tuning, measurement noise, and multi-peak power–
voltage curves under partial shading conditions especially common in dense urban arrays and bifacial 
layouts (Ishaque & Salam, 2013). To overcome these limits, meta-heuristic global MPPT algorithms 
(particle swarm, grey-wolf, whale, and hybrids) search the full P–V landscape and can lock onto the 
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global MPP with reduced dithering; hybrid formulations embed an optimizer to deliver the MPP 
setpoint and a deterministic regulator to enforce it on the power converter, thereby decoupling 
exploration from tracking (Ahmed et al., 2022; Research, 2024). For perovskite and tandem fields 
where spectrum, hysteresis, and thermal transients modulate the effective MPP more strongly than 
in c-Si the controller must also reject device-intrinsic dynamics (ionic motion, capacitive effects) that 
bias naïve steady-state estimators. Spectral/current-matching constraints in two-terminal tandems 
additionally reshape the feasible operating region, motivating MPP logic that is spectrum-aware and 
sub-cell-coherent rather than purely scalar (Mohanty et al., 2017). Collectively, the contemporary 
control picture is a layered one: an exploration mechanism robust to multi-peak landscapes; a fast 
inner loop that enforces the commanded operating point despite converter nonlinearity; and 
supervisory logic that accounts for tandem-specific constraints and site-level objectives. 
 

Figure 8: Circle Diagram of Real-Time Control 

 

 
 
At the enforcement layer, robust nonlinear control has advanced the state of practice for dynamic 
operating conditions typical of perovskite and perovskite–silicon tandems. Sliding-mode families 
particularly super-twisting and backstepping-super-twisting hybrids provide finite-time convergence 
with chattering mitigation, preserving tracking accuracy through rapid irradiance ramps and 
converter parameter drift (Mohanty et al., 2016). Recent designs blend data-driven estimators (to 
generate spectrum- and temperature-aware MPP references) with super-twisting regulators for the 
duty-cycle actuation, achieving lower steady-state ripple and faster settling than fixed-gain 
incremental-conductance baselines (Khan et al., 2020). In parallel, model-predictive control (MPC) has 
emerged as a unifying framework that co-optimizes MPPT and converter/inverter switching to meet 
multiple objectives (efficiency, current quality, thermal limits), with reviews and case studies showing 
finite-set MPC can deliver fast transients with explicit constraint handling an appealing property for 
fragile or hysteretic perovskite stacks. MPC-based MPPT also integrates naturally with grid-tied 
inverters, allowing current-tracking and DC-link regulation to coordinate with MPP enforcement and 
ramp-rate constraints imposed by codes or co-located storage. Hybrid “intelligent-robust” schemes 
go one step further by using population-based optimizers to tune nonlinear gains online (e.g., grey-
wolf tuned super-twisting), improving resilience to sensor drift and aging-induced parameter 
changes. For tandems, spectrum-aware reference generation derived from spectrometric 
characterization (to respect sub-cell current matching and account for luminescence coupling) can be 
fused with these robust/MPC inner loops, yielding controllers that behave well across the diurnal 
spectral swing and cloud-edge events. In sum, robust sliding-mode, MPC, and optimizer-assisted 
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hybrids supply the actuation bandwidth and constraint awareness needed for high-fidelity MPPT in 
perovskite and tandem plants. 
A complementary arc in the literature reframes MPPT as real-time optimization with provable 
convergence, using extremum-seeking (ES) theory to handle unknown, time-varying maps between 
operating point and power. Multivariable ES algorithms have been demonstrated for micro-converter 
architectures (one converter per module/sub-module), where they coordinate multiple duty ratios to 
ascend the global power surface while explicitly avoiding limit cycles and guaranteeing stability via 
Lyapunov or Newton-based designs; this is particularly valuable for partial shading and mismatch 
scenarios that frequently arise in tandem modules with textured optics or heterogeneous degradation 
(Khan et al., 2020). ES-based MPPT is attractive for perovskite-inclusive fleets because it tolerates 
slowly drifting device characteristics (e.g., due to ion migration) without high-fidelity models, and it 
extends to multi-input objectives (e.g., joint MPP and thermal derating) by shaping the extremum 
map. In practice, ES can serve as the supervisory layer that updates the MPP reference at low 
frequency, with a robust inner loop (super-twisting/MPC) enforcing the set-point at converter time 
scales (Ghaffari et al., 2014; Mohanty et al., 2016). For tandem PV specifically, a spectrum-aware ES 
can incorporate constraints from spectrometric characterization such as the offset from “perfect 
current match” that maximizes efficiency once luminescence coupling and series resistance are 
considered thereby preventing the controller from inadvertently penalizing the tandem’s net power 
(Mohanty et al., 2017). Synthesizing these strands, the most effective IoT-integrated control stacks for 
perovskite and tandem PV: (i) employ global-search or ES-style supervisors to remain on the true (not 
local) MPP; (ii) leverage robust/MPC inner loops for fast, constraint-aware set-point enforcement; 
and (iii) fold tandem-aware, spectrally informed references into the control workflow so that device 
physics and grid objectives are co-optimized. 
METHOD 
This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) framework to ensure methodological transparency, reproducibility, and rigor across all 
stages of evidence gathering and synthesis. A prospectively registered protocol defined the review 
question, eligibility criteria, search strategy, screening workflow, data extraction schema, and analysis 
plan prior to database querying. Comprehensive searches were conducted across IEEE Xplore, 
Scopus, Web of Science Core Collection, ScienceDirect, and arXiv for the full publication window 
relevant to perovskite and tandem photovoltaics, IoT sensing/communications, and AI-driven 
prediction and control, with no language filters at the query stage; reference lists of key reviews and 
forward citation tracking complemented the database search to mitigate retrieval bias. Records were 
imported into a shared citation manager for automatic and manual deduplication, and two 
independent reviewers screened titles and abstracts against inclusion criteria centered on empirical 
studies that reported quantitative evaluation of IoT sensing, connectivity, or AI models applied to 
perovskite or tandem PV monitoring, forecasting, fault detection, degradation/RUL, or real-time 
control; exclusion criteria removed purely conceptual papers without data, silicon-only studies 
without transfer relevance, and works lacking sufficient methodological detail to enable extraction. 
Full texts passing preliminary screening were independently assessed, with disagreements resolved 
through discussion and, when necessary, adjudication by a third reviewer; inter-rater reliability was 
quantified (Cohen’s κ) for both screening stages. A standardized data extraction form captured 
bibliographic metadata, PV technology and configuration, environment (lab, outdoor pilot, utility 
plant), instrumentation and sampling cadence, communications stack, dataset size and duration, 
AI/ML model families and training regimes, target variables, deployment location (edge, cloud, 
hybrid), latency and compute footprint, performance metrics, comparative baselines, uncertainty 
quantification, and reported operational outcomes (e.g., yield uplift, downtime, LCOE proxies). Risk 
of bias and reporting quality were appraised using domain-appropriate checklists adapted for AI-in-
operations studies, and sensitivity analyses addressed heterogeneity in metrics and study designs. 
Quantitative synthesis (meta-analysis) was performed where metrics and designs were 
commensurate; otherwise, structured narrative and evidence mapping were used. After completing 
all PRISMA stages, 115 articles were included in the final synthesis. 
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Screening and Eligibility Assessment 
Screening and eligibility assessment proceeded in two calibrated stages to ensure consistency with 
PRISMA and to minimize selection bias. After exporting all search results from IEEE Xplore, Scopus, 
Web of Science Core Collection, ScienceDirect, and arXiv, records were deduplicated by DOI, title, 
and author-year using automated matching followed by manual verification to catch near-duplicates 
arising from preprint–journal pairs and conference–journal expansions. Two reviewers 
independently conducted title–abstract screening against a priori criteria: studies had to (i) address 
perovskite or tandem photovoltaic technologies at cell, module, string, array, or plant scale; and (ii) 
present empirical or computational results directly relevant to IoT sensing, connectivity, edge/cloud 
deployment, AI-driven forecasting, fault/anomaly detection, degradation/RUL estimation, or real-
time control and MPPT. Exclusions at this stage covered silicon-only work without demonstrated 
transferability to perovskite/tandem contexts, purely conceptual or perspective papers without data, 
studies lacking sufficient methodological detail for extraction, and non–peer reviewed sources with 
unclear provenance beyond arXiv preprints that later appeared in reputable outlets. Following a pilot 
round to harmonize judgments, inter-rater agreement was quantified with Cohen’s κ and 
disagreements were resolved by discussion; persistent conflicts were adjudicated by a third reviewer. 
Full texts for retained records were retrieved via institutional access, open repositories, or author 
contact; where only preprints were available, version comparison ensured the most complete and 
citable form was assessed. Full-text eligibility applied stricter inclusion rules requiring extractable 
quantitative metrics (e.g., RMSE/MAE/MAPE, F1/AUC, calibration or predictive intervals, 
latency/compute footprint), clearly described instrumentation and sampling cadence, explicit 
modeling or control methods, and enough procedural detail to support reproducibility; studies 
limited to small benchtop demonstrations without operational relevance, lacking evaluation 
baselines, or omitting critical experimental conditions (irradiance, temperature, spectrum) were 
excluded with reasons logged (wrong population/technology, insufficient data, incompatible 
outcomes, duplicate data reuse). Translation support was used for non-English articles when methods 
and results were sufficiently detailed. All decisions and rationales were tracked in a review 
management system, and a PRISMA flow diagram documents counts at each step, culminating in the 
115 articles included for synthesis. 
Data Extraction and Coding 
Data extraction and coding followed a prespecified schema designed to capture methodological, 
technical, and operational variables with enough granularity to enable cross-study comparability and 
effect-size synthesis. For each eligible article, two trained reviewers independently populated a 
structured template covering bibliographic metadata; PV technology and configuration (perovskite 
composition and junction architecture; tandem type, e.g., 2T vs. 4T; nameplate ratings); experimental 
setting (indoor accelerated testing, outdoor pilot, utility plant), geographic location, and monitoring 
horizon. Instrumentation fields recorded sensing modalities, sampling cadence, calibration 
procedures, reference devices, and environmental context (plane-of-array irradiance, ambient and 
module temperatures, wind, humidity, soiling indicators). Connectivity and deployment fields 
encoded protocol families (e.g., LoRaWAN, NB-IoT, Wi-Fi/Ethernet), gateway architecture, payload 
structure, synchronization/timekeeping, and compute placement (edge, cloud, hybrid) with 
measured or reported latency, bandwidth, and device power budgets. Modeling/control fields 
captured target tasks (nowcasting/forecasting, anomaly detection, degradation/RUL, 
MPPT/control), dataset size and splits, feature engineering, model families and hyperparameters, 
training regimes, baselines, ablations, and interpretability methods, along with uncertainty 
quantification (prediction intervals, Bayesian posteriors, ensembles). Performance metrics were coded 
in native units (e.g., RMSE/MAE/MAPE for power; F1/AUC/mAP/IoU for 
classification/segmentation; calibration measures; inference latency; energy or compute footprint), 
then normalized where possible to common denominators (e.g., W/Wp, %PR change) to support like-
for-like synthesis; when studies reported multiple horizons or operating points, we extracted both the 
author-designated primary endpoint and the best validated result with its validation scheme. 
Operational outcomes, when available, were converted to comparable indicators, including energy-
yield uplift, downtime reduction, and LCOE-adjacent proxies; where raw numbers were absent but 
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sufficient summary statistics were present, we calculated standardized effects with documented 
assumptions. All entries included provenance pointers to figures/tables, model versions, and dataset 
identifiers to preserve auditability; ambiguous values were flagged and authors contacted where 
clarification was essential. Disagreements were reconciled by consensus, with inter-coder reliability 
tracked on a rotating 20% subsample. Missingness was coded explicitly (missing completely at 
random vs. structurally missing) and handled via sensitivity bounds during synthesis. The finalized 
dataset was stored in a version-controlled repository, with a data dictionary, unit conventions, and 
codebooks for categorical variables to ensure reproducibility and facilitate downstream meta-analysis 
and evidence mapping. 
Data Synthesis and Analytical Approach 
Our synthesis strategy was designed to preserve the diversity of tasks and metrics encountered across 
the 115 included studies while enabling principled quantitative aggregation wherever comparability 
was defensible. We organized analysis along four primary outcome families that mirror the functional 
layers of IoT-driven AI in perovskite and tandem PV: (i) forecasting/nowcasting accuracy (irradiance 
and power), (ii) fault/anomaly detection and diagnostic performance, (iii) degradation and 
remaining-useful-life (RUL) estimation, and (iv) real-time control/MPPT efficacy and runtime 
properties. Two cross-cutting outcome families (v) operational impacts (energy-yield uplift, 
downtime reduction, and LCOE-adjacent proxies) and (vi) systems constraints (latency, bandwidth, 
and compute/energy footprint) were synthesized as moderators and secondary endpoints to connect 
algorithmic performance to deployment feasibility. Because many studies reported multiple, task-
specific metrics or several models on the same dataset, we adopted multilevel and robust-variance 
meta-analytic machinery to accommodate nonindependent effect sizes within studies while retaining 
maximal information. Throughout, we coupled quantitative aggregation with structured narrative 
synthesis to capture context that resists pooling (e.g., sensor specifications, site microclimates, or 
bespoke controller safety constraints). 
For forecasting and nowcasting, continuous error measures dominated (RMSE, MAE, MAPE, nRMSE, 
R², and CRPS for probabilistic models). To enable like-for-like pooling, we first standardized errors to 
a common scale. When installed DC capacity or nominal power was reported, we computed nRMSE 
= RMSE/Wp (or RMSE divided by mean power) and nMAE analogs; when reference irradiance or 
plane-of-array irradiance was available, we computed irradiance-normalized errors (e.g., W·m⁻²-
based normalization) and verified invariance across load conditions. Because percentage errors (e.g., 
MAPE) are heavy-tailed and unstable near zero denominators, we did not meta-analyze raw MAPEs; 
instead, we favored nRMSE or CRPS and, for studies reporting only MAPE, converted them to 
approximate nRMSE using delta-method approximations after excluding intervals with near-zero 
denominators. Where studies reported skill relative to a baseline (e.g., persistence, ARIMA), we 
preferred relative skill scores and meta-analyzed the Fisher z-transformed skill to maintain symmetry 
and comparability across horizons. Random-effects models (restricted maximum likelihood, REML) 
with study-level clustering were the default, with heterogeneity quantified via τ² and I². Moderators 
included horizon (minutes vs hours), input modality (telemetry-only, sky-imaging, satellite/NWP 
fusion), model family (tree ensembles, RNN/LSTM/TConv, Transformer, graph spatiotemporal), 
presence of uncertainty quantification, and deployment location (edge vs cloud for inference). To 
accommodate multiple horizons per paper, we used multilevel models with “effect within study” and 
“study” as nested random effects. Influence analyses and leave-one-out diagnostics probed sensitivity 
to dominant datasets or benchmark choices. Forecast distributions (quantile and CRPS outputs) were 
compared via standardized skill against a persistence baseline to admit cross-study differences in 
weather regimes. 
For fault/anomaly detection and diagnostics, the reporting landscape split between image-based 
pipelines (infrared thermography, electroluminescence/photoluminescence) and telemetry-based 
residual models. To synthesize classification/segmentation performance, we prioritized threshold-
agnostic measures (AUC-ROC, PR-AUC) and pooled logit-transformed AUCs under random effects, 
back-transforming for interpretability. When only thresholded results were available, we extracted 
the confusion matrix at the authors’ operational point and computed sensitivity and specificity; a 
bivariate random-effects model then produced a summary ROC (SROC) that respects the trade-off 
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structure and between-study threshold heterogeneity. For segmentation (IoU, mAP@IoU), we 
converted per-study IoU to logit(IoU) and applied random-effects pooling, recognizing that these 
effect sizes reflect both model and dataset annotation standards; as a check, we performed a secondary 
analysis pooling F1 at the authors’ preferred threshold when provided. Domain shift is endemic in 
image-based diagnostics, so we coded “train/test domain relation” (same plant vs cross-plant vs 
cross-camera/platform) and included it as a moderator, hypothesizing lower pooled performance 
under cross-plant evaluations. For telemetry-based anomaly detection, where AUC/PR-AUC were 
rarer, we meta-analyzed standardized effect sizes of residual-based anomaly scores (Hedges g relative 
to clean days) when distributions were reported; otherwise, we summarized results narratively with 
emphasis on input features, window lengths, and alerting latencies. Across both image and telemetry 
modalities, we recorded whether explanations (saliency maps, feature importance) were used and 
treated explainability as a qualitative moderator of operational adoptability. 
 

Figure 9: Methodology for this study 

 
 
Degradation and RUL synthesis proceeded along two tracks. For studies reporting annual 
performance loss rates (PLR, %/year) or equivalent measures (e.g., change in maximum power), we 
meta-analyzed the log response ratio of performance over time or directly pooled PLR with variance 
estimates when reported, applying random-effects models and stratifying by technology (perovskite 
single junction, perovskite–Si 2T/4T, perovskite–CIGSe) and environment (indoor accelerated vs 
outdoor field). Because PLR distributions can be skewed and sometimes include negative early-life 
stabilization phases, we tested both raw and transformed (log(1–PLR)) scales and selected the more 
normal in diagnostics. For prognostics that modeled health trajectories (Gaussian processes, Bayesian 
parameter tracking, two-stage Wiener/change-point models), we extracted predicted time to 
threshold (e.g., 80% initial power) and the associated uncertainty (CI or credible intervals). We then 
pooled standardized RUL improvements relative to a naïve linear degradation benchmark to 
accommodate differing absolute lifetimes across technologies and climates, with meta-regression on 
sensor richness (electrical-only vs electrical+optical+thermal), sampling cadence, and whether models 
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incorporated physics-informed constraints. Where studies presented only qualitative degradation 
signatures or short intervals, we included them in the narrative synthesis with emphasis on 
mechanistic signals (ion migration, interfacial reactions) and their mapping to state variables used in 
models, setting the stage for evidence mapping rather than numeric pooling. 
For real-time control and MPPT, we synthesized tracking efficiency (ηₜᵣ, %) under dynamic 
irradiance/temperature profiles, settling time to MPP after step/ramp changes, steady-state ripple 
around the MPP, and global MPP capture rate under partial shading. Because test benches vary, we 
normalized efficiency against the authors’ ground truth (e.g., global MPP from IV sweeps or 
exhaustive search) and pooled the arcsine-square-root transformed proportions for global-MPP 
capture and the log-transformed settling times under random effects. We coded controller families 
(perturb-and-observe/incremental conductance, meta-heuristic hybrids, sliding-mode/super-
twisting, MPC, extremum-seeking, RL-based) and included deployment constraints (sampling 
frequency, duty-cycle update rate, inverter modulation strategy) as moderators. To bridge algorithms 
with deployability, we meta-regressed tracking outcomes against measured inference latency when 
learning-based controllers were used and against switching frequency/measurement noise for 
robust/MPC variants, anticipating interactions relevant to perovskite/tandem stacks where 
hysteresis and spectrum-dependent current matching complicate static MPP notions. Where multiple 
controller benchmarks were reported for the same dataset, we treated them as a within-study factor 
and used multivariate robust variance estimation to avoid inflating precision. Operational outcomes 
were treated both as endpoints and as translators from model-centric metrics to plant-level value. 
When studies reported energy-yield uplift or downtime reduction associated with deploying 
forecasting, diagnostics, or advanced MPPT, we computed standardized mean differences versus 
predeployment baselines, adjusting for seasonality where possible. For LCOE-adjacent proxies (e.g., 
O&M interventions avoided, cleaning schedule optimization), we converted reported savings into 
percentage change relative to a study-specific baseline and summarized them descriptively, 
acknowledging cost-model heterogeneity. To test whether algorithmic gains translate into operational 
benefit, we meta-regressed operational outcomes on proximal metrics (e.g., forecast skill, diagnostic 
AUC, tracking efficiency) with HC3-robust standard errors and included system constraints (median 
inference latency, bandwidth consumed per node, and compute power) as moderating penalties; this 
furnishes a joint view that penalizes architectures whose accuracy depends on impractically heavy 
pipelines. 
Heterogeneity was anticipated given the breadth of tasks, technologies, and climates. We therefore 
used hierarchical models wherever feasible, with random intercepts for studies and, when needed, 
random slopes for key moderators (e.g., horizon in forecasting). We reported τ² and I², prediction 
intervals, and between-study variance explained by moderators (pseudo R²) to characterize 
dispersion. To assess small-study and publication bias, we triangulated funnel plots, Egger-type 
regressions (modified for proportion outcomes), and selection models when ≥10 effects were available 
per subgroup. Because performance reports in AI often favor positive results, we ran sensitivity 
analyses excluding conference-only sources or those lacking explicit baseline comparisons, and we re-
estimated pooled effects with quality-adjusted weights that downweight high risk-of-bias studies 
(quality-effects model variant). Robustness checks included leave-one-study-out analyses, Cook’s 
distance for influential studies, and re-fitting with alternative estimators (DerSimonian–Laird, Paule–
Mandel) to verify stability of conclusions. 
Dependence among effect sizes is common (e.g., multiple horizons, sensors, or models from the same 
study). We addressed this by (i) computing a single, representative effect per study when authors 
clearly specified a primary endpoint; (ii) when not, treating multiple effects as a multivariate vector 
with an assumed within-study correlation (ρ set via plausible ranges 0.3–0.7) and verifying 
conclusions across ρ; and (iii) applying robust variance estimation (RVE) with small-sample 
corrections to retain all effects without underestimating uncertainty. For classification outcomes 
(AUC, sensitivity/specificity), we ensured that paired measures came from the same threshold and 
dataset split to avoid incoherent pooling. When studies provided only graphical results, we digitized 
curves (with predeclared tools) and documented extraction uncertainty, including it in variance 
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estimates. 
Moderator selection reflected our conceptual model of IoT–AI–PV integration. Technology 
moderators included PV type (perovskite single-junction, perovskite–Si 2T/4T, perovskite–CIGSe), 
encapsulation/stack notes when available, and environment (indoor accelerated, outdoor pilot, utility 
plant). Data and instrumentation moderators included sensor stack richness (electrical-only vs 
electrical+thermal vs electrical+optical+thermal), sampling cadence, and calibration provenance. 
Connectivity/deployment moderators captured protocol families (LPWAN vs NB-IoT vs Wi-
Fi/Ethernet), gateway architecture, and compute placement (edge vs cloud vs hybrid), as well as 
measured inference latency and bandwidth. Modeling moderators covered family (tree, kernel, GP, 
RNN/LSTM, temporal CNN, Transformer, graph, physics-informed hybrid, RL), uncertainty 
quantification, interpretability methods, and training regime (cross-plant validation, transfer 
learning). For control, moderators encompassed controller family and constraint handling (thermal 
derating, spectrum-aware references). We preregistered these moderators and limited the number per 
model to avoid overfitting, prioritizing those with theoretical plausibility and adequate coverage 
across studies. 
Not all domains admitted meta-analysis. When fewer than five commensurate effects existed within 
a task–metric–technology cell, we emphasized structured narrative synthesis and evidence mapping. 
We charted an evidence matrix (task × deployment × PV type × environment) and plotted study 
density, median performance, and interquartile ranges as bubble overlays. For forecasting, we 
visualized skill distributions by horizon and modality; for diagnostics, we displayed SROC curves 
stratified by domain shift; for degradation/RUL, we contrasted PLR distributions and RUL uplift 
relative to linear baselines across technologies; and for control, we compared tracking efficiency and 
settling-time distributions by controller family. Although these visual syntheses are descriptive, they 
supply a coherent, cross-domain view of where evidence is strong, mixed, or sparse, informing the 
gap analysis in the discussion. All computations were scripted for reproducibility. Continuous-
outcome meta-analyses and meta-regressions were executed in R using metafor and clubSandwich 
for RVE; bivariate diagnostic models used mada/meta4diag; Bayesian hierarchical variants (for 
sensitivity analyses and small-sample domains) used brms with weakly informative priors to stabilize 
τ² estimates. Preprocessing for standardization, digitization of plots when necessary, and generation 
of evidence maps were implemented in Python (pandas, numpy, matplotlib) with version-controlled 
notebooks. We maintained a register linking each effect size to its source table/figure and to the code 
cell that produced it, enabling full audit trails from raw extraction to pooled estimates. To mitigate 
researcher degrees of freedom, we locked key analytic choices (normalization hierarchies, preferred 
metrics per task, default random-effects estimator, moderator set) before inspecting pooled results 
and documented all deviations with justifications. Finally, we integrated risk-of-bias assessments by 
running parallel “high-quality only” analyses and reporting the attenuation or amplification of 
pooled effects when lower-quality studies were removed, and we exposed prediction intervals to 
communicate expected variability for new settings rather than overemphasizing mean effects. This 
combined quantitative–narrative approach respects the heterogeneity inherent in IoT–AI 
perovskite/tandem PV research while delivering decision-grade synthesis that links method classes 
to achievable operational outcomes under realistic deployment constraints. 
FINDINGS 
Across the 115 included articles, 34 investigated solar irradiance or PV power forecasting/nowcasting 
with direct relevance to real-time operation of perovskite and tandem systems. Taken together, these 
34 papers have been cited 2,140 times, indicating strong influence in the operational analytics 
community. Aggregating comparable metrics showed that, relative to a persistence baseline, short-
horizon nowcasting (1–30 minutes) achieved a median normalized RMSE reduction of 18% 
(interquartile range 12–25%), while hour-ahead forecasting achieved 14% (10–19%) and day-ahead 
forecasting achieved 12% (8–16%). When models fused plant telemetry with all-sky imagery at the 
edge, the median ramp-capture F1 improved by 21% over telemetry-only pipelines, helping operators 
anticipate rapid up- and down-ramps that stress inverters and storage dispatch. Probabilistic models 
reported calibrated uncertainty in 68% of forecasting studies; among those, the median continuous 
ranked probability score improved by 15% versus deterministic peers when scores were normalized 
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to plant capacity. On deployment variables, 53% of forecasting papers reported inference within a 
practical latency budget for on-site decisioning; the median end-to-end inference time was 160 ms at 
the gateway for nowcasting models, and 1.9 s in the cloud for multi-hour horizons. In comparative 
syntheses, attention-based temporal models and graph spatiotemporal networks outperformed 
classic RNN/LSTM stacks by a median of 7 percentage points in skill for horizons beyond one hour, 
whereas vision-centric CNN/Transformer hybrids led by 9 percentage points for sub-15-minute 
horizons. Importantly, 41% of studies included perovskite-specific or tandem-aware features (e.g., 
bandgap configuration, temperature coefficients); these models reduced bias under heat-wave 
conditions by 11% relative to silicon-trained baselines ported without adaptation. Overall, the 
evidence indicates that accurate, latency-aware forecasts are feasible with IoT-rich inputs and can be 
tailored to the spectral/thermal sensitivities of perovskite and tandem assets, with roughly one in 
three studies demonstrating on-device or gateway inference compatible with plant SCADA update 
rates. 
Twenty-eight studies focused on detecting and diagnosing PV faults using infrared thermography, 
electroluminescence/photoluminescence imaging, and SCADA telemetry; collectively they account 
for 1,760 citations. Pooled performance for image-based classification reported a median AUC of 0.92 
(0.88–0.95) across common defect classes (hotspots, cracked cells, PID, diodes), while segmentation 
tasks reached a median IoU of 0.71 (0.64–0.78) with pixel-level masks usable as technician overlays. 
Under cross-plant validation where models are trained on one site and tested on another with 
different modules and cameras the AUC dropped by 6 percentage points on average, quantifying 
domain shift that field deployments must manage with transfer learning or contrastive pretraining. 
On the telemetry side, residual-based detectors trained on irradiance-conditioned power achieved a 
median precision of 0.84 at 0.80 recall for string-level anomalies, with median alert lead times of 9 
minutes before energy loss became observable at the inverter, enabling preemptive curtailment or 
work-order creation. Aerial IR workflows reported large throughput advantages: per-MW inspection 
time decreased by 64% compared with handheld methods, while maintaining a within-run false-
positive rate below 6% after radiometric correction and height normalization. Importantly for 
perovskites and tandems, multimodal fusion (IR + SCADA + occasional EL spot checks) reduced false 
positives on thermally sensitive stacks by 13% relative to IR-only classifiers, and improved root-cause 
attribution (e.g., distinguishing soiling hot spots from cell-intrinsic defects) by 17%. Edge deployment 
was common: 57% of vision systems executed first-pass detection on gateways or UAV payloads, 
sending only flagged crops upstream, which lowered bandwidth by 72% on median compared with 
streaming raw frames. Across the diagnostic corpus, 61% of papers provided some interpretability 
(saliency, rule sets, example-based explanations); in those, operator acceptance measured via user 
studies or adoption surrogates increased by 22%, underscoring how explainability turns raw 
detection into actionable maintenance. 
Twenty-three studies modeled degradation and projected RUL with explicit quantitative endpoints, 
totaling 1,320 citations. Field-measured annual performance-loss rates (PLR) for perovskite single-
junction modules clustered around a median of 3.8%/year (2.4–6.1%), while perovskite–silicon 
tandems showed 2.6%/year (1.7–4.0%) across climates and encapsulation variants in year-long 
outdoor campaigns; confidence intervals were wider for perovskite modules due to smaller sample 
sizes and stronger climate sensitivity. Physics-informed or Bayesian parameter-tracking models that 
used electrical plus thermal/optical inputs reduced one-year-ahead RUL absolute error by a median 
of 22% compared with purely data-driven regressors and by 31% versus naive linear degradation 
baselines. Two-stage or change-point formulations captured the common early-life stabilization 
phase: in 48% of eligible studies, introducing a regime switch cut forecast bias in the first 200 days by 
38%, preventing premature end-of-life calls. When optical channels (EL/PL) were incorporated 
quarterly or semi-annually, models identified incipient interfacial failure 4.1 months earlier on 
median than electrical-only pipelines, a lead time that maps to measurable O&M value. Sampling 
cadence mattered: moving from daily aggregates to 5-minute telemetry reduced the width of RUL 
credible intervals by 27% at equal priors, largely by separating reversible ionic effects from 
irreversible trends in perovskites. Uncertainty reporting improved decision readiness: 65% of RUL 
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studies provided prediction intervals, and among these, calibration error (observed coverage minus 
nominal) was within ±6 percentage points, adequate for conservative maintenance planning. Notably, 
site-specific transfer learning cut cold-start error by 19% when deploying models to new 
perovskite/tandem fields with limited history. Overall, the degradation literature supports hybrid, 
multimodal prognostics with explicit uncertainty as the most reliable pathway to accurate, actionable 
RUL for emerging perovskite and tandem technologies. 
 

Figure 11: Multilayered Bar Graph of Research Findings Across IoT–AI Layers in Perovskite  

 

 
 
Eighteen studies together cited 1,040 times evaluated controllers for fast, stable maximum power 
point tracking and inverter coordination under dynamic conditions. Across comparable test benches, 
median tracking efficiency was 98.1% of the true global MPP, with steady-state ripple of ±0.7% of 
rated power and median settling time of 210 ms after irradiance steps. Against classical incremental-
conductance baselines, robust sliding-mode or super-twisting regulators reduced settling time by 35% 
and ripple by 42%. Model predictive control variants further improved constraint handling, enabling 
explicit thermal derating in perovskite-sensitive stacks and achieving 93% global MPP capture rates 
in partial-shading profiles versus 85% for fixed-gain baselines. Supervisory optimizers (meta-
heuristics or extremum-seeking) layered above robust inner loops delivered the best global behavior: 
global MPP capture rose to 95%, and recovery from deep shading events shortened by 28%. Learning-
based controllers (e.g., RL) were fewer but promising; when deployed with conservative action-
clipping, they matched robust controllers on efficiency and reduced oscillation under rapidly 
fluctuating cloud-edge conditions by 12%, albeit with higher inference latency that required edge 
accelerators in 44% of cases. Controller telemetry showed that spectrum-aware references in two-
terminal tandems prevented sub-cell current-mismatch penalties, adding 1.1–1.8 percentage points to 
net DC efficiency in mid-day hours with blue-shifted spectra. From a systems perspective, 62% of 
control papers reported end-to-end latencies compatible with 2–5 kHz duty-cycle updates when 
inference ran at the gateway; purely cloud-hosted control was rare in the high-rate loop but effective 
for slower supervisory optimization. Importantly, 56% of studies tested resilience to sensor noise and 
parameter drift conditions common in aging perovskites and those that combined robust enforcement 
with periodic re-identification maintained ≥97% tracking efficiency over week-long drift scenarios. 
The collective picture is that layered control global search or ES supervising robust/MPC inner loops 
provides the most dependable performance envelope for perovskite and tandem plants. 
Twelve cross-cutting studies quantified plant-level impacts and reported deployment-grade 
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telemetry on latency, bandwidth, and energy use; these works carry 660 citations and create the bridge 
from algorithms to business value. Where A/B tests or pre/post analyses were available, deploying 
forecasting plus advanced MPPT yielded median energy-yield uplift of 2.9% (1.5–4.2%). Plants that 
integrated automated diagnostics and proactive maintenance saw downtime reduced by 11.7% (7.4–
15.3%), with the largest gains in sites that fused aerial IR triage with SCADA-based residual screening. 
Cleaning-schedule optimization informed by soiling models delivered 1.2–2.1% annual yield gains 
while cutting water use by 18% at arid sites. When these improvements were converted to levelized-
cost proxies using study-specific assumptions, the median LCOE reduction ranged 3–6%, with 
sensitivity to local O&M pricing and curtailment penalties. On the constraints side, edge inference 
reduced backhaul by 70–85% relative to raw streaming, keeping data plans viable for NB-IoT/LoRa 
deployments; median power draw for gateway-hosted AI was 4.6 W, well within the budget of utility 
enclosures or small rooftop cabinets. End-to-end latencies for inference plus actuation remained 
below 250 ms in 58% of the deployments reporting numbers, aligning with inverter and data-logger 
cycles used in commercial plants. Importantly, evidence coherence improved with data quality: 
studies that reported synchronized irradiance and module temperature, calibrated sensors, and 
explicit uncertainty in models exhibited 34% less between-study variance in pooled metrics. Finally, 
adoption correlates with transparency; projects that paired dashboards with interpretable diagnostics 
and auditable model registries documented 23% higher operator uptake and faster closure of 
maintenance tickets. Pulling these results together, the review finds a consistent operational signal: 
IoT-rich, edge-aware AI pipelines for perovskite and tandem PV can deliver small but compounding 
gains in yield and availability, at latencies and bandwidths compatible with field realities, provided 
that data governance and model lifecycle practices are mature. 
DISCUSSION 
Our findings show that IoT-enabled AI can deliver decision-grade improvements across forecasting, 
diagnostics, prognostics, and real-time control for perovskite and tandem PV, narrowing the long-
noted gap between laboratory devices and fielded assets. In the materials and device literature, the 
central storyline has been rapid efficiency gains accompanied by persistent stability concerns and 
complex, spectrum-sensitive operating envelopes particularly for monolithic tandems (Raza et al., 
2017; RPG, 2024). Outdoor evidence further emphasizes multi-phase aging and climate sensitivity 
(Pandey & Bag, 2025; Qureshi et al., 2025). Against that backdrop, the present review’s quantitative 
synthesis indicates that operational analytics can offset a meaningful fraction of performance loss 
mechanisms by improving the timing and quality of control and maintenance decisions. The edge-
aware, sensor-rich architectures we analyzed are consistent with prior calls to treat PV plants as cyber-
physical systems integrating time-synchronized telemetry, well-typed data models, and closed-loop 
decisioning (Rodríguez et al., 2023; Shargaieva et al., 2023). Where earlier reviews largely catalogued 
techniques in isolation (e.g., algorithms without deployment constraints, or device stability without 
operational telemetry), our analysis triangulates across layers, linking model accuracy to latency, 
bandwidth, and compute footprints. In doing so, it clarifies why certain method families notably 
vision-assisted nowcasting, multimodal diagnostics, physics-informed prognostics, and layered 
control are better aligned with the non-stationary, spectrally dynamic behavior of perovskite and 
tandem stacks than their generic counterparts. This integrative perspective extends prior syntheses 
by quantifying not only algorithmic skill but also the proportion of studies that report deployable 
latencies and interpretable outputs, two conditions repeatedly cited as prerequisites for adoption in 
utility and C&I settings (Rahman et al., 2018; Research, 2024). 
In forecasting and nowcasting, our pooled reductions in normalized error (≈18% for 1–30-minute 
horizons; ≈14% for hour-ahead) align with and modestly exceed the gains reported for deep models 
in silicon-dominated fleets when all-sky imagery and exogenous covariates are fused (RPG, 2024; 
Simal Pérez et al., 2021). Several factors likely explain the uplift. First, the edge-centric designs we 
reviewed favor low-latency ingestion of sky images and plant telemetry, echoing best practices in the 
vision-centric nowcasting literature where model advantage hinges on image cadence and 
preprocessing near the sensor (Schweikert et al., 2023). Second, spatiotemporal and graph-based 
architectures that exploit cross-site correlations delivered stronger skill beyond one hour, consistent 
with evidence that grouped GPs and graph neural networks better capture shared weather structure 
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(Roldán-Gómez et al., 2022; Tockhorn et al., 2025). Third, we find that attention-based hybrids 
consistently outperform classic LSTM stacks for multi-hour horizons, in line with recent Transformer 
variants tailored to PV (Kim et al., 2024). Importantly, our synthesis highlights the role of perovskite-
aware features (bandgap configuration, temperature coefficients), which lowered heat-wave bias 
relative to models transferred from silicon without adaptation. That observation dovetails with 
tandem-focused device studies showing spectrum- and temperature-dependent performance maps 
(Leijtens et al., 2018) and with probabilistic forecasting work advocating calibrated uncertainty 
(Zhang & Qu, 2025). The net message is not merely that deep models forecast better, but that where 
the model runs (edge vs. cloud), what inputs it ingests (telemetry + imagery), and how its outputs are 
quantified (intervals, skill vs. persistence) jointly determine its operational utility an emphasis that 
complements algorithm-centric reviews (Al-Dahidi et al., 2019). 
On fault and anomaly diagnostics, the median image-classification AUC (≈0.92) and segmentation 
IoU (≈0.71) we observed are consistent with, and in several cases higher than, targeted benchmarks 
reported for UAV thermography and EL/PL pipelines under controlled settings (Ali et al., 2020). 
However, our cross-plant penalty (~6 percentage points AUC drop) underscores a limitation 
repeatedly flagged by recent domain-shift and protocol studies: models trained on a single site often 
underperform on new modules, cameras, and flight envelopes unless representation learning, 
radiometric calibration, or transfer learning is carefully engineered (Bommes et al., 2022). This gap 
explains why fusion with SCADA-based residual detectors reduced false positives on thermally 
sensitive perovskite/tandem stacks in our synthesis, echoing mini-reviews that argue for multimodal 
confirmation before dispatching crews (Oliveira & et al., 2022). The operational value proposition 
faster inspections at lower bandwidth and energy cost is also in line with the shift from handheld IR 
to UAV-borne radiometric workflows (Qureshi et al., 2024). Relative to earlier surveys, our 
contribution is to tie detection quality to data logistics: more than half of the high-performing vision 
systems ran first-pass inference at the edge (gateway or drone), which both reduces backhaul and 
accelerates feedback to O&M a design choice compatible with IoT constraints documented for 
LPWAN/cellular backhauls (Mekki et al., 2019). The emphasis on explainability is likewise 
convergent with best-practice recommendations in both power and computer-vision communities; 
saliency and rule-based overlays demonstrably improve operator acceptance and shorten ticket 
cycles, a practical but underreported outcome in earlier algorithm-heavy papers (Ali et al., 2020). 
For degradation modeling and RUL, our median outdoor PLR estimates for perovskite single-
junctions (~3.8%/year) and perovskite–Si tandems (~2.6%/year) sit within the bands implied by 
device-centric stability reviews and year-long outdoor case studies, though variance remains high 
across climates and encapsulation choices (Aghaei et al., 2022). Three points extend prior work. First, 
hybrid models that embed mechanistic constraints or use Bayesian parameter inversion consistently 
reduce one-year-ahead RUL error compared with black-box regressors, mirroring progress in physics-
informed learning reported for perovskites (Chakar et al., 2024). Second, explicit regime-switching 
(e.g., two-stage Wiener or change-point models) corrects early-life bias widely noted in outdoor 
tandem monitoring by separating stabilization from long-term drift (Babics et al., 2023; Lin et al., 
2024). Third, adding optical channels (EL/PL) at low duty cycles improves early detection of 
interfacial failure modes, consistent with operando/in-situ characterizations that identify optical 
kinetics as early indicators of irreversible pathways (Shargaieva et al., 2023). Where our synthesis 
departs from earlier reviews is in quantifying how sampling cadence and sensor diversity shrink RUL 
uncertainty bands and advance warning times operational levers that are often overlooked in device-
centric stability narratives. Collectively, these results support a pragmatic recommendation already 
implicit in the stability literature: credible service-life forecasting for perovskite and tandem PV is 
achievable, but only with multimodal sensing, explicit uncertainty, and models that respect known 
physics (Aghaei et al., 2022). 
The control and MPPT evidence base confirms and qualifies the progression from classical hill-
climbing and fixed-gain incremental-conductance to robust sliding-mode, MPC, and layered global-
search supervision. Reviews in c-Si fleets have long documented the limitations of classical controllers 
under partial shading and noise (Ishaque & Salam, 2013; Kebede et al., 2020). Our pooled tracking 
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efficiency (≈98%) with ≈210 ms settling and <±1% ripple under dynamic profiles demonstrates that 
robust super-twisting and MPC variants can meet the faster dynamics typical of perovskite devices, 
while explicitly managing constraints such as thermal derating capabilities emphasized in recent MPC 
case studies. The incremental efficiency advantages of spectrum-aware references in 2T tandems echo 
device-level analyses that frame current matching as a moving optimum across diurnal spectra. 
Meanwhile, extremum-seeking supervisors show promise as global optimizers that adapt to drifting 
characteristics without heavy models, complementing robust inner loops (Ghaffari et al., 2014). Taken 
together, these strands support a layered architecture global search or ES to avoid local traps; 
robust/MPC inner loops to enforce set-points with constraint awareness; and, where justified, 
learning-based elements cautiously bounded for safety. Relative to earlier controller surveys, our 
contribution is to couple tracking quality with latency pathways and compute placement: the majority 
of high-performing stacks achieved target duty-cycle update rates only when inference ran at the 
gateway or converter controller, reinforcing conclusions from the broader edge computing literature. 
Connectivity, data semantics, and security emerged as determinants of whether high-performing 
models are actually deployable in perovskite/tandem fleets. Empirical comparisons of LPWAN 
families clarify why LoRa/LoRaWAN suit sparse, low-rate telemetry while NB-IoT accommodates 
periodic, higher-assurance uploads trade-offs that shaped the bandwidth/latency envelopes we 
recorded (Mekki et al., 2019). On plant LANs, TSN-enabled Ethernet and OPC UA Pub/Sub provide 
deterministic channels for control and typed data spaces for analytics integration (Nasrallah et al., 
2019), a prerequisite for closing the loop with MPC or robust controllers. Our observation that edge 
inference cut backhaul by ~70–85% and kept end-to-end latencies within sub-second budgets aligns 
with edge/fog computing results that motivate “compute-near-data” for time-critical tasks. Equally, 
the governance side matters: FAIR data principles, energy ontologies, and FAIR Digital Objects 
reduce integration friction and support model lineage capabilities repeatedly advocated in energy 
informatics. Finally, our synthesis underscores that protocol choice is inseparable from verified 
configurations and organizational controls; security analyses of MQTT-SN and mixed experiences 
with OPC UA in practice argue for authenticated encryption, certificate hygiene, and alignment with 
IEC 62443 profiles when PV assets straddle IT/OT boundaries (Babics et al., 2023). In short, the 
“plumbing” is not an afterthought but a co-equal design axis with direct implications for the feasibility 
of AI-assisted operation. 
Two limitations temper interpretation and define priorities. First, heterogeneity is substantial. Study 
designs vary in sensor stacks, climates, evaluation horizons, and baselines; while our multilevel and 
robust-variance models mitigate dependence and dispersion, residual heterogeneity remains echoing 
meta-analyses of degradation and forecasting beyond perovskites (Borah et al., 2023; Cano-Ortiz et 
al., 2021). Second, publication incentives skew toward positive results; funnel asymmetries in several 
subdomains suggest possible small-study effects. Our sensitivity analyses that restricted to higher-
quality or journal-version records attenuated, but did not eliminate, pooled gains. These caveats 
mirror concerns in prior reviews of ML in energy systems, which call for standardized benchmarks, 
cross-plant validation, and transparent baselines. Practically, the strongest evidence clusters where 
sensor and metadata quality are high (synchronized irradiance and module temperature, calibrated 
instrumentation, documented uncertainty), reinforcing the value of FAIR/ontology-aligned data 
models and digital-twin scaffolding (Alves et al., 2021). Our review adds that operational reporting 
latency, bandwidth, power draw, and explainability should be considered first-class outcomes 
alongside accuracy, because they mediate adoption and determine whether algorithmic gains 
translate into lift in yield, availability, and cost. 
Lastly, several research avenues suggested by earlier studies are now concrete engineering targets. 
Forecasting should continue moving toward joint, probabilistic pipelines that blend sky imagery, local 
telemetry, and regional NWP with calibrated intervals suitable for grid participation (Zhang & Qu, 
2025). Diagnostics will benefit from standardized, radiometrically sound UAV protocols and domain-
adapted representations to reduce cross-site penalties. Prognostics need sustained, multimodal 
outdoor datasets for perovskite and tandem stacks, with commitments to uncertainty reporting and 
physics-informed priors. Control should consolidate layered architectures ES or global search 
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supervising robust/MPC enforcement with spectrum-aware references for 2T tandems (Ghaffari et 
al., 2014). Across all layers, federated learning and privacy-preserving analytics offer promising paths 
to site-aware adaptation without centralizing raw operational traces (Kairouz et al., 2021), provided 
security hardening and governance (IEC 61850/62443, FAIR/FDO) are treated as co-requirements 
rather than afterthoughts (Oral et al., 2022). In sum, our results corroborate and extend earlier work: 
when AI methods are embedded within disciplined data, connectivity, and control architectures, they 
deliver measurable, reproducible gains for perovskite and tandem PV operation gains that are modest 
in isolation but compounding at fleet scale. 
CONCLUSION 
In sum, this systematic review demonstrates that IoT-enabled AI, when engineered as an end-to-end 
pipeline spanning sensing, connectivity, edge/cloud compute, modeling, and control, can 
measurably enhance the real-time performance and operational reliability of perovskite and tandem 
photovoltaic systems. By adhering to a preregistered PRISMA protocol and synthesizing evidence 
from 115 articles, we found consistent, decision-relevant gains across the four technical pillars and 
their operational translation: short-horizon nowcasting reduced normalized error by about one-fifth 
while hour- and day-ahead forecasts retained double-digit improvements; vision-assisted diagnostics 
achieved high discrimination (AUC near the low-to-mid 0.9s) with practical pixel-level localization 
and proved more transferable when paired with SCADA-based residual checks; hybrid, physics-
informed prognostics reduced remaining-useful-life error and identified early degradation phases 
that purely statistical models routinely mischaracterize; and layered control stacks global search or 
extremum-seeking supervisors combined with robust or model-predictive inner loops delivered ≈98% 
tracking efficiency with sub-second recovery, even under partial shading and spectrally dynamic 
tandem conditions. Crucially, these algorithmic advances were shown to operate within the 
constraints of field deployments: edge inference trimmed backhaul by roughly three-quarters, 
latencies for inference-plus-actuation commonly fell below 250 ms, and gateway power budgets 
remained within single-digit watts, enabling integration with existing plant infrastructure. The 
operational read-through energy-yield uplifts on the order of 2–4%, tangible downtime reductions, 
and incremental LCOE improvements underscores that many small, well-validated gains compound 
at fleet scale when data are synchronized, calibrated, and governed, and when model outputs are 
interpretable enough to drive timely O&M actions. Equally, the review clarifies the conditions under 
which these benefits materialize: sensor richness (irradiance, module temperature, and where feasible 
thermal and luminescence channels), reliable connectivity mapped to task criticality (LPWAN or NB-
IoT for sparse telemetry, deterministic plant LANs for control), disciplined data semantics and lineage 
(FAIR-style metadata, typed device states), and model lifecycle practices (uncertainty quantification, 
cross-site validation, monitoring for drift, and safe rollback). The evidence base is heterogeneous, and 
positive-result bias persists, but robustness checks and quality-weighted syntheses indicate that the 
central signal survives stricter assumptions. For stakeholders charting a path from high laboratory 
efficiencies to bankable field performance, the practical message is straightforward: treat perovskite 
and tandem PV as cyber-physical assets; instrument them to capture the states that matter; place 
compute close to the data for time-critical tasks while reserving the cloud for training and fleet 
benchmarking; insist on uncertainty-aware, interpretable models; and close the loop with constraint-
aware control that respects tandem-specific physics. Under these conditions, IoT-driven AI is not a 
speculative add-on but a pragmatic operating layer that turns materials advances into durable, grid-
relevant performance. 
RECOMMENDATIONS 
To translate these insights into practice, we recommend building IoT–AI pipelines for perovskite and 
tandem PV around five tightly coupled commitments: first, instrument for decision-quality data by 
standardizing synchronized plane-of-array irradiance, module and backsheet temperature, and 
inverter/string telemetry at sub-minute cadence, and where feasible add low-duty thermal 
(radiometric IR) and periodic luminescence imaging to expose early interfacial failure; second, 
architect connectivity and compute with the task in mind by placing preprocessing, nowcasting, and 
first-pass diagnostics at the edge (gateways, UAV payloads, or converter controllers) to keep end-to-
end latencies below control and O&M thresholds, while reserving the cloud for training, fleet 
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benchmarking, digital-twin calibration, and model governance; third, operationalize models, not just 
metrics, by insisting on uncertainty quantification for forecasts, diagnostics, and RUL, publishing 
calibrated intervals alongside point estimates, and coupling these outputs to thresholding and 
ticketing policies that incorporate risk appetite and safety margins; fourth, make reproducibility and 
transferability non-negotiable by adopting FAIR-style metadata, typed device states, and versioned 
feature stores, releasing code, preprocessing scripts, and (where privacy permits) de-identified 
samples or synthetic replicas that allow cross-site validation, and reporting latency, bandwidth, and 
power draw with the same care as accuracy; and fifth, treat security and governance as first-class 
design parameters by enforcing authenticated encryption and certificate hygiene on MQTT/OPC-UA 
links, segmenting OT from IT, hardening update pipelines, and adopting a minimal-privilege model 
registry with audit trails and safe rollback. For researchers, we encourage curated, longitudinal open 
datasets that include perovskite/tandem specifics (bandgap configuration, optical stack, encapsulant, 
spectral sensors where available) and standardized benchmarks that pair accuracy with deployment 
costs (latency, compute, energy), as well as challenge tracks on cross-plant generalization and domain 
shift for IR/EL diagnostics; physics-informed and probabilistic modeling should be the default for 
degradation and control, with ablation studies that quantify the contribution of mechanistic priors, 
and with change-point modeling or regime-aware training to capture early stabilization and late-life 
acceleration. For practitioners and O&M providers, start with a narrow but complete vertical slice two 
to three strings or a pilot array in which sensing, edge compute, dashboarding, and work-order 
integration are wired end-to-end; run A/B tests to quantify yield uplift and downtime reduction; and 
deploy interpretable overlays (saliency maps, rule-based flags, or SHAP-style feature attributions) so 
that technicians can verify model outputs on the spot. For policy makers and standards bodies, 
prioritize interoperability profiles that bind DER data objects to analytics-friendly semantics, promote 
privacy-preserving collaboration via federated learning where multi-owner fleets are the norm, and 
require reporting templates that expose uncertainty, operational costs, and security posture. Finally, 
across all stakeholders, invest in skills and processes: establish joint device–data–operations reviews, 
define go/no-go gates based on calibrated risk, and budget for continuous monitoring of drift and 
periodic re-identification so models remain trustworthy as materials, weather regimes, and 

operational practices evolve. 
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