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Abstract 
This systematic review synthesizes evidence on artificial intelligence enhanced predictive analytics for demand 
forecasting in U.S. retail supply chains, with a focus on decision relevance and deployment realism. Guided by 
PRISMA, we searched major multidisciplinary databases for 2015 to 2025, screened records in two stages, 
assessed leakage risk and baseline adequacy, and extracted harmonized metrics for point accuracy, probabilistic 
calibration, and inventory outcomes. The final analytic corpus comprises 95 peer-reviewed studies. Across 
comparable evaluations, AI models consistently outperformed strong statistical baselines, yielding median WAPE 
reductions of roughly 7 to 9 percent, with larger gains under cross-series training and promotion rich contexts. 
Feature discipline mattered: encoding price and promotion depth, holiday proximity, and identifier 
representations delivered an additional 3 to 6 percent improvement. Structure added value: hierarchical and cross-
temporal reconciliation contributed about 4 percent error reduction and improved quantile coverage, while 
spatiotemporal learners reduced store-day errors by about 6 percent in geographically correlated demand. 
Probabilistic outputs translated into operations, enabling about 12 percent safety stock reduction at fixed service 
or roughly 3.5 percentage point fill rate gains at fixed inventory. Deployment practices shaped realized value: 
drift monitors, champion challenger governance, and accountable human overrides shortened post-shock recovery, 
cut stockouts by about 11 percent, and modestly increased inventory turns. We integrate these findings into a 
practical selection framework that aligns data realism, global modeling, calibrated quantiles, structural 
reconciliation, and MLOps guardrails to deliver coherent forecasts that are auditable and economically 
meaningful for U.S. retail planning. Implications for researchers and practitioners are discussed.  
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INTRODUCTION 
Predictive analytics refers to a set of statistical and computational techniques that learn patterns from 
historical data to estimate future outcomes; when these techniques are enhanced by artificial 
intelligence (AI)—notably machine learning (ML) and deep learning—they become capable of 
discovering nonlinear relationships, representing complex seasonality, and quantifying uncertainty at 
scale (e.g., gradient-boosted trees, RNNs/LSTMs, attention-based transformers). In retail supply 
chains, demand forecasting denotes the generation of time- and location-specific predictions of 
consumer purchases across SKUs and channels; these forecasts underpin inventory policies, 
replenishment, transportation planning, and promotions. The international significance of AI-
enhanced demand forecasting stems from its potential to stabilize multi-echelon flows and mitigate 
information distortion—often discussed as the bullwhip effect, where small changes in consumer sales 
amplify as orders propagate upstream (Lee et al., 1997). In an omnichannel landscape, where shoppers 
traverse digital and physical touchpoints, retailers must reconcile signals across channels and tiers of 
product hierarchies, a challenge that motivates hierarchical and grouped forecasting with reconciliation 
(Oreshkin et al., 2020). Within the U.S. market, high SKU proliferation, frequent promotions, and 
regional heterogeneity make accurate, probabilistic forecasts indispensable for service-level targets and 
working-capital efficiency. Contemporary AI models such as DeepAR, Temporal Fusion Transformers 
(TFT), N-BEATS, and Informer broaden the feasible frontier by combining representation learning with 
calibrated uncertainty, enabling robust, distributional forecasts rather than point predictions alone 
(Gneiting & Raftery, 2007). These advances build upon decades of forecasting research, including state-
space exponential smoothing and accuracy measurement frameworks that remain bedrock for 
evaluation and operationalization (Gneiting & Raftery, 2007; Makridakis et al., 2018).  
Historically, retail forecasting first emphasized statistical baselines such as exponential smoothing and 
ARIMA, later unified via innovations-state-space frameworks that support likelihood-based 
estimation, automatic model selection, and prediction intervals (Hyndman & Koehler, 2006). The field 
also institutionalized forecast-accuracy measurement, proposing scale-free metrics like MASE for fair 
comparisons across items and horizons, and promoting proper scoring rules for probabilistic forecasts 
(Hyndman et al., 2002). For quantile and interval estimation, the pinball (quantile) loss is foundational, 
producing calibrated conditional quantiles that are widely used in retail-grade ML models (Hyndman 
et al., 2011). Meanwhile, intermittent and count-data characteristics—ubiquitous at SKU×store×day 
granularity—challenge classical percentage errors and call for distributional modeling and evaluation 
(Koenker & Bassett, 1978). In the U.S., where many items exhibit low unit sales outside peak periods, 
intermittent-demand methods (Lim et al., 2021; Zhou et al., 2021) and their descendants remain 
operationally vital. Complementing these statistical pillars, scalable ML algorithms like XGBoost 
introduced sparsity-aware tree ensembles that are now frequently combined with price, promotion, 
and calendar features to improve explainability and speed in enterprise pipelines. Together, these 
developments frame AI-enhanced predictive analytics not as a replacement for classical forecasting but 
as a layered toolkit that integrates structure, scale, and uncertainty in service of retail decision-making.  
The AI era reshaped time-series forecasting by demonstrating that deep architectures can rival and 
often surpass traditional methods across diverse datasets. The M-competitions catalyzed this shift: the 
M4 competition highlighted a hybrid Exponential Smoothing + RNN method (ES-RNN) as the winning 
approach, underscoring benefits of blending generative seasonality structure with learned 
nonlinearities (Danish & Zafor, 2022; Syntetos & Boylan, 2005). Subsequent work advanced pure neural 
and probabilistic sequence models: DeepAR treats each item as a probabilistic autoregression trained 
across a large cross-section of series, enabling accurate forecast distributions; TFT augments recurrent 
backbones with interpretable attention over static and time-varying covariates; and N-BEATS 
introduced a fully connected residual architecture with interpretable basis expansions that competes at 
scale (Salinas et al., 2020). For long-horizon planning, Informer’s ProbSparse attention reduces 
quadratic complexity, enabling transformer-style models on extended sequences relevant to seasonal 
retail demand (Danish & Kamrul, 2022; Kolassa, 2016). These advances are not purely academic: the 
M5 competition (built around retail sales) showcased how machine learning and hierarchical 
aggregation improve item-level retail forecasts, with special emphasis on accuracy and uncertainty for 
inventory-critical decisions (Verhoef et al., 2015). Across these benchmarks, AI not only pushes point-
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forecast accuracy but also strengthens calibrated uncertainty, a prerequisite for replenishment, safety-
stock calculations, and service-level optimization in U.S. supply chains.  
 

Figure 1: AI-enhanced predictive analytics framework for retail demand forecasting 

 
Retail demand is hierarchical (SKU→category→department→chain) and grouped (product × 
geography × channel). Forecasts must be aggregate-consistent so that item-level predictions sum to 
category and enterprise totals. The optimal combination (OC) framework and the MinT (minimum-
trace) reconciliation approach meet this need by independently forecasting all nodes and then 
reconciling them through a linear-algebraic adjustment that minimizes forecast error variance subject 
to aggregation constraints (Jahid, 2022; Makridakis et al., 2021a; Verhoef et al., 2015). For U.S. retailers 
operating with regional assortments and multi-node distribution networks, reconciliation stabilizes 
planning signals across DCs and stores, reduces plan-do-check discrepancies, and helps isolate mix-
shift from true base-demand changes. Recent work provides alternative proofs, cross-temporal 
reconciliation procedures, and non-negativity-aware extensions, expanding MinT’s applicability in 
enterprise systems (Arifur & Noor, 2022). In practice, reconciliation layers naturally over AI pipelines: 
base forecasts may come from DeepAR or TFT with exogenous drivers (price, promo, holiday), while 
MinT enforces coherence across channel and product hierarchies, ensuring that downstream inventory 
and transportation optimizers consume internally consistent scenarios. This combination reflects a 
broader methodological synthesis in the literature—learn richly, then reconcile optimally—that is 
increasingly standard in modern retail forecasting stacks 
A second, enduring challenge is intermittent demand, common to spare parts, seasonal items, and long-
tail SKUs. Croston’s seminal method proposed separate smoothing of demand sizes and inter-arrival 
times, later refined by bias-corrected estimators (SBA) and approaches targeting obsolescence via a 
smoothed demand-occurrence probability, notably the TSB method (Croston, 1972; Wickramasuriya et 
al., 2019). Because intermittent demand often yields count data with many zeros, evaluation must move 
beyond percentage errors to distribution-focused criteria and randomized PIT checks; Kolassa (2016) 
demonstrates how proper scoring rules can compare models on daily retail sales, highlighting the 
managerial value of predictive distributions for service-level setting. In U.S. supply chains, where DC-
to-store replenishment interacts with variable lead times, intermittent-demand forecasting links 
directly to safety-stock buffers and working-capital exposure. These realities connect methodological 
choices (e.g., whether to learn shared parameters across SKUs with cross-learning neural models) to 
operational outcomes like shelf availability, back-of-store inventory, and emergency transfers. As AI 
methods scale across millions of item-locations, combining intermittent-demand aware baselines with 
cross-series neural training and quantile objectives (pinball loss) becomes fundamental to aligning 
forecasted distributions with service-level policies and cost trade-offs.  

https://doi.org/10.1016/j.ijforecast.2015.12.004
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The omnichannel turn adds structural complexity. U.S. retailers must fuse store traffic, e-commerce, 
ship-from-store, and curbside pickup signals; these channels interact with price and promotions, 
creating cross-effects and shifting baseline seasonality. The literature frames this as a transition from 
multi-channel to omnichannel retailing with integrated journeys and data flows (Montero-Manso et al., 
2020). Upstream, signal amplification due to promotions and batching interacts with classical bullwhip 
mechanisms; better predictive analytics mitigates these effects by improving demand signal quality 
and coherence (Fonzo & Girolimetto, 2020; Hasan & Uddin, 2022). On the modeling side, scalable, 
interpretable ML such as XGBoost remains attractive for fusing heterogeneous covariates (calendar, 
price tiers, promo flags, weather proxies) and for feature importance analyses that help category 
managers and replenishment analysts understand drivers of forecast changes. Deep sequence 
models—TFT, DeepAR, N-BEATS—add learned temporal representations and coherent uncertainty 
quantification that can be reconciled across hierarchies, making them complementary to tree-based 
ensembles in production stacks. Critically, evaluation must align with decisions: MASE and wMAPE 
for operational tracking; quantile loss and proper scoring rules for inventory policies; and hierarchy-
aware aggregation loss for enterprise planning. Thus, the omnichannel context underscores a central 
theme in the literature: the fit-for-purpose alignment of methods, loss functions, and reconciliation 
schemes with specific retail decisions under uncertainty (Lee et al., 1997; Teunter et al., 2011).  
Finally, benchmark studies reinforce that AI-enhanced predictive analytics is not only more accurate 
but also more operationally aligned when combined with coherent hierarchies and calibrated 
uncertainty. The M4 and M5 competitions provide large-scale, peer-reviewed evidence that hybrids 
(ES-RNN), neural architectures (N-BEATS), and distributional sequence models (DeepAR) can provide 
robust accuracy lifts across diverse horizons and item characteristics, especially when complemented 
by meta-learning approaches such as FFORMA for model combination and selection (Chen & Guestrin, 
2016; Di Fonzo & Girolimetto, 2020; Makridakis et al., 2021b). For longer horizons and richer covariates, 
transformer-style models (TFT, Informer) integrate interpretable attention over known-in-advance 
drivers (e.g., promotion calendars), while maintaining computational tractability for portfolio-scale 
inference (Ando & Kim, 2022; Rahaman, 2022a; Smyl, 2020). The cumulative evidence suggests an 
integration playbook: (i) build strong statistical baselines (ETS/state-space), (ii) add feature-rich ML 
(e.g., XGBoost) for structured covariates, (iii) deploy cross-learning deep models for sequence signals 
and uncertainty, and (iv) reconcile to enforce enterprise coherence across product, channel, and region 
hierarchies. For U.S. retailers operating under service-level SLAs, volatile promotions, and cost-to-serve 
pressures, such an evidence-based stack supports inventory turns, on-shelf availability, and margin 
protection—tying academic advances to concrete supply-chain performance (Kolassa, 2016; Teunter et 
al., 2011). 
The objective of this study is to produce a rigorous, decision-oriented synthesis of artificial intelligence–
enhanced predictive analytics for demand forecasting in U.S. retail supply chains, organized around a 
set of clearly defined goals that guide the entire review. First, the study aims to formalize precise 
conceptual and operational definitions for retail demand forecasting across product, channel, and 
geographic hierarchies, establishing the scope and unit of analysis at SKU–location–horizon levels and 
clarifying how point and probabilistic outputs are interpreted for inventory and replenishment policies. 
Second, it seeks to catalog and classify the principal model families—tree-based machine learning, 
sequence and residual deep architectures, probabilistic and hybrid methods—into an actionable 
taxonomy that highlights assumptions, data requirements, and computational characteristics relevant 
to retail deployment . Third, the review will identify and evaluate the exogenous and endogenous data 
modalities that drive forecast performance in U.S. retail, including promotions, prices, holiday 
calendars, weather proxies, macro indicators, web traffic, and operational constraints, with attention to 
feature engineering patterns, leakage control, and hierarchy reconciliation. Fourth, it will compare 
model performance across planning horizons and aggregation levels, emphasizing robustness for 
intermittent and long-tail items, and examining how cross-series learning and hierarchical coherence 
affect reliability under item churn, seasonality shifts, and assortment changes. Fifth, the study will 
analyze how forecast accuracy and calibration translate into business metrics by mapping 
distributional outputs to service levels, stockout risk, inventory turns, carrying costs, and margin 
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protection, thereby articulating a traceable link between methodological choices and operating 
outcomes. Sixth, the review will assess operationalization practices—data engineering, retraining 
cadence, monitoring, champion–challenger governance, and human-in-the-loop override workflows—
to determine what organizational and technical conditions enable stable performance at portfolio scale. 
Seventh, it will examine risk, privacy, and compliance considerations that arise when integrating 
predictive systems with retail data assets, focusing on auditability, access control, and transparency for 
planner trust. Finally, the study will synthesize evidence into a practical selection and evaluation 
framework that helps practitioners choose fit-for-purpose methods given data availability, item 
characteristics, and decision constraints, while providing researchers with a structured set of open 
problems in benchmarking, evaluation protocols, and model interpretability that are most 
consequential for U.S. retail operations. 
LITERATURE REVIEW 
The literature on AI-enhanced predictive analytics for retail demand forecasting spans foundational 
statistics, machine learning, and operations research, converging on a shared objective: producing 
reliable, decision-ready forecasts at the granularity of SKU, location, and horizon typical of U.S. supply 
chains. At its base are classical time-series models (e.g., exponential smoothing families, ARIMA, and 
methods for intermittent demand) that formalize seasonality, trend, and noise while offering 
transparent uncertainty through state-space formulations. Over the last decade, these baselines have 
been increasingly complemented by machine-learning methods—regularized regression, tree 
ensembles, and gradient boosting—that integrate high-dimensional covariates such as price, 
promotions, holidays, and weather. In parallel, deep learning architectures—RNN/LSTM/GRU 
variants, temporal convolutional networks, residual fully connected models, and 
attention/transformer families—enable cross-series training, representation learning, and scalable 
probabilistic outputs that better accommodate nonlinearities and long-horizon seasonality. Across 
these strands, evaluation has evolved from point-error metrics toward distributional scoring and 
calibration diagnostics, reflecting the operational need to align forecasts with service-level targets, 
safety stock, and replenishment rules. The U.S. retail context intensifies methodological demands due 
to omnichannel fulfillment, frequent promotion cycles, regional heterogeneity, and long-tail 
assortments; as a result, hierarchical and grouped forecasting with reconciliation has become central to 
ensuring that item-level predictions remain coherent with category, regional, and enterprise 
aggregates. The literature also foregrounds data-engineering and MLOps considerations—feature 
stores, leakage prevention, rolling-origin backtesting, drift monitoring, and champion–challenger 
governance—because model quality depends as much on pipeline design as on algorithm choice. 
Intermittency and cold-start problems motivate pooling information across items via shared 
representations and transfer learning, while price elasticity, cannibalization, and halo effects require 
the careful fusion of causal signals with purely predictive features. Ethical, privacy, and compliance 
themes surface where individual-level data are present, prompting aggregation, de-identification, and 
explainability practices that sustain planner trust and auditability. Taken together, the corpus forms a 
layered landscape: statistical structure for stability and interpretability; machine learning for covariate 
richness and speed; deep sequence models for cross-series learning and calibrated uncertainty; 
hierarchical reconciliation for coherence; and operational infrastructure to sustain performance at retail 
scale. Within this landscape, the present review maps definitions, data modalities, model families, 
evaluation practices, and deployment patterns specific to U.S. retail, setting the stage for a structured 
synthesis in the subsections that follow. 
Foundations of Demand Forecasting in U.S. Retail 
At its core, retail demand forecasting seeks to anticipate future sales at multiple decision horizons and 
levels of granularity—SKU, store, fulfillment node, and channel—so that pricing, inventory, staffing, 
and logistics can be orchestrated coherently. A substantial body of evidence underscores that the retail 
domain exhibits distinctive features compared with other sectors: dense product hierarchies, intense 
promotion cycles, short and overlapping life cycles, and strong calendar and event effects (e.g., back-
to-school, holidays), all interacting with regional and omnichannel dynamics. A comprehensive 
synthesis of research and field practice documents how these realities complicate model choice, data 
engineering, and evaluation protocols, while also highlighting persistent gaps between academic 
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advances and operational adoption in retail organizations (Fildes et al., 2019). Foundational studies on 
promotional modeling demonstrate that ignoring price reductions, displays, and cross-category 
cannibalization typically degrades forecast accuracy, particularly at SKU–store level where elasticities 
and cross-effects differ markedly across items and locations (Fildes et al., 2009; Ali et al., 2009). 
Complementing algorithmic advances, research on forecasting support systems shows that, in practice, 
many retailers still rely on relatively simple univariate baselines as starting points and then layer 
managerial judgment to inject context about holidays, launches, and campaigns (Rahaman, 2022). 
Taken together, this literature positions retail demand forecasting as a multi-objective, multi-scale 
problem in which methods must be both accurate and usable within enterprise processes (Rahaman, 
2022; Trapero et al., 2015). 
 

Figure 2: Foundational components of demand forecasting in U.S. retail 
 

 
 
A second foundational strand concerns how to exploit information across many related series at scale. 
Historically, retailers tuned “local” models per time series, but recent work on global or cross-series 
learning has shown that pooling signals across thousands of SKUs can outperform isolated modeling 
when heterogeneity is managed appropriately (Bandara et al., 2020). Simulation and benchmark studies 
clarify the conditions under which global models—recurrent neural networks or boosted trees trained 
over entire catalogs—surpass local exponential smoothing or ARIMA, notably when histories are short, 
seasonality varies in strength, and relatedness is present but imperfect (Hewamalage et al., 2021; 
Rahaman & Ashraf, 2022). Parallel to cross-series learning, the temporal-aggregation literature 
proposes modeling a given series at multiple frequencies to stabilize trend/seasonal signal estimation 
and reduce reliance on brittle model selection; the Multiple Aggregation Prediction Algorithm (MAPA) 
and related frameworks have been shown to yield more robust short-term SKU forecasts under real 
retail conditions (Kourentzes et al., 2020; Islam, 2022). Promotion-rich environments add further 
complexity: identification studies illustrate how including high-dimensional promotion features and 
cross-category effects can improve forecasts yet introduce collinearity and overfitting risks that must 
be addressed through careful specification and diagnostics (Kourentzes et al., 2014; Hasan et al., 2022; 
Trapero et al., 2019). Across these advances, the literature also emphasizes the human-in-the-loop: 



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 959–993 
 

965 
 

structured approaches to model selection and override governance can harness domain knowledge 
while mitigating behavioral biases, thereby improving both accuracy and accountability in retail 
planning cycles (Kourentzes et al., 2014; Redwanul & Zafor, 2022; Trapero et al., 2015). 
A final foundational theme links forecasting quality to inventory and service outcomes—central concerns 
in U.S. retail supply chains. Studies show that optimizing models with respect to inventory-relevant 
criteria (e.g., service-level costs, stockout penalties) rather than pure statistical loss can yield better end-
to-end performance; directly embedding inventory objectives into parameter estimation leads to 
measurably improved fill rates and lower holdings in empirical tests (Kourentzes et al., 2020; Rezaul & 
Mesbaul, 2022). Because retail portfolios often exhibit long tails with sparse or intermittent sales, 
methods tailored to zero-inflated series and event-driven bursts remain essential complements to 
global neural approaches and promotion regressions (Hasan, 2022; Trapero et al., 2019). Furthermore, 
safety-stock setting depends on forecast uncertainty, not only point accuracy: research on quantile 
forecast combination shows that aggregating distributional forecasts across methods can better capture 
non-Gaussian, time-varying errors typical of promotion and calendar peaks, enabling sizable safety-
stock reductions at target service levels (Petropoulos et al., 2018). In parallel, governance frameworks 
for judgment—model selection, scenario inputs, and override rules—have been shown to 
systematically enhance retail forecast processes when codified and monitored (Petropoulos et al., 2018). 
Collectively, these foundations argue for an integrated toolkit—promotion-aware regression, cross-
series global learners, multi-frequency modeling, intermittent-demand treatments, and decision-centric 
loss functions—embedded within a disciplined forecasting support system aligned to inventory 
economics and service commitments in U.S. retail (Ma et al., 2016). 
Classical vs. AI Approaches 
Classical forecasting in retail evolved from stochastic time-series formulations that model systematic 
structure explicitly—level, trend, and seasonality—before optimizing parameters for extrapolation. 
The Box–Jenkins program codified ARIMA and transfer-function (dynamic regression) modeling as a 
disciplined, iterative cycle of identification, estimation, and diagnostic checking, giving practitioners a 
testable workflow for short-term retail horizons where shocks, promotions, and nonstationarities must 
be handled with care (Box et al., 2015). Two classical pillars further anchor retail practice: the Theta 
method and TBATS. Theta decomposes a series into “theta lines” that isolate trend and curvature, 
providing robust performance in settings with short histories and heterogeneous seasonality—
common in SKU-store data with product churn and assortment changes (Assimakopoulos & 
Nikolopoulos, 2000; Tarek, 2022). TBATS extends exponential smoothing with Box–Cox transforms, 
ARMA errors, and trigonometric seasonality, enabling multiple and non-integer seasonal patterns (e.g., 
weekly and annual effects interacting across fiscal calendars), which is especially relevant for U.S. 
retailers trading in many regions and channels (De Livera et al., 2011; Kamrul & Omar, 2022). These 
methods emphasize generative structure, likelihood-based estimation, and interpretable components 
that can be reconciled across hierarchies. Yet classical tools face limits under high-dimensional 
covariates (prices, promotions, weather), sparse long-tail items, and complex promotion response. This 
tension motivates hybridization with machine learning to encode rich covariates while preserving the 
stability and transparency valued by retail planners. Regularized regressions—lasso and elastic net—
offer a bridge, shrinking coefficients to control variance and select features in wide retail design 
matrices where collinearity among price tiers and promotional indicators is routine (Friedman, 2001; 
Kamrul & Tarek, 2022). In this hybrid view, classical structure handles baseline dynamics while modern 
regressors ingest exogenous retail signals at scale. 
Machine-learning approaches reframed forecasting as supervised learning with flexible function 
classes. Ensemble trees learn nonlinearities and interactions among promotion flags, price ladders, 
holiday dummies, and localized weather, often outperforming linear models when retail effects are 
thresholded or asymmetric. Random forests reduce variance through bagging and feature 
subsampling, producing stable predictions and variable-importance diagnostics helpful for category 
and replenishment teams (Breiman, 2001; Mubashir & Abdul, 2022). Gradient boosting treats 
forecasting as stage-wise additive function approximation under an arbitrary loss, allowing direct 
optimization of operationally meaningful criteria and robust handling of outliers and 
heteroskedasticity (Friedman, 2001; Muhammad & Kamrul, 2022). Support vector regression adds a 
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margin-based view with ε-insensitive losses that can be tuned for percentile-oriented error control 
across SKUs, useful when planners target service levels that penalize under-forecasts more than over-
forecasts (Breiman, 2001; Reduanul & Shoeb, 2022). Together, these ML families thrive when feature 
engineering is rich—calendar interactions, lagged promotions, competitor proxies—and when cross-
sectional pooling is desired without full sequence modeling. They also integrate naturally with retail 
MLOps: feature stores, champion–challenger governance, and drift monitoring. However, pure tabular 
ML can struggle to represent long temporal dependencies and seasonality phase shifts without 
extensive lag features and handcrafted interactions. Consequently, many retail stacks combine 
ensemble learners for promotion/price effects with classical or neural sequence models that specialize 
in temporal dynamics. This division of labor pairs interpretability and deployment maturity on the ML 
side with temporal expressiveness on the sequence side, a theme that recurs in benchmarking and 
production case studies. 
 

Figure 3: Cycle of classical, machine learning, and deep learning approaches  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Deep learning extends this trajectory by learning temporal representations directly from sequences, 
enabling cross-series training that pools information across thousands of related SKUs and stores while 
adapting to item-level idiosyncrasies. The long short-term memory (LSTM) architecture solved 
vanishing-gradient issues and remains a versatile baseline for retail horizons where recurrent context—
pre- and post-promotion baselines, holiday ramps, regional weather persistence—matters (Hochreiter 
& Schmidhuber, 1997; Kumar & Zobayer, 2022). Contemporary practice layers recurrent or attention 
mechanisms with static embeddings (e.g., item, store, region) and known-in-advance covariates to 
produce calibrated point and probabilistic forecasts; these models capture regime changes and cross-
effects without exhaustive manual feature crafting. In parallel, component-wise additive models 
popularized by Prophet offer a pragmatic route to forecasting at scale, decomposing trend, multiple 
seasonalities, and holiday/event effects with analyst-friendly parameters and defaults that speed 
iteration across vast retail catalogs (Sadia & Shaiful, 2022; Taylor & Letham, 2018). Viewed 
comparatively, classical methods provide robust, interpretable baselines and principled uncertainty 
under well-specified dynamics (Assimakopoulos & Nikolopoulos, 2000; Smola & Schölkopf, 2004). 
Machine-learning ensembles exploit heterogeneous covariates and complex interactions with 
straightforward deployment and diagnostics (Noor & Momena, 2022; Zou & Hastie, 2005). Deep 
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sequence and scalable additive models absorb temporal complexity and enable cross-series 
generalization essential for long tails and promotion-heavy environments (Taylor & Letham, 2018; 
Tibshirani, 1996). In U.S. retail, the most effective systems combine these paradigms: structural 
components and reconciliation from classical forecasting, covariate expressiveness from ML, and 
temporal representation learning from deep models—assembled within governance that ensures 
leakage-safe features, rolling-origin evaluation, and planner-aligned metrics. 
Data Modalities and Feature Engineering 
In retail demand forecasting, data modalities are the raw materials that determine what a model can 
learn, while feature engineering encodes business structure—calendar cycles, promotions, prices, 
weather, and digital signals—into regressors that models can exploit. At the foundation is leakage-safe 
temporal framing: features must be constructed only from information available at the forecast origin 
and aligned to the planning horizon. Two principles shape this pipeline. First, evaluation must mirror 
deployment, which implies rolling-origin or blocked schemes rather than iid cross-validation to 
prevent optimistic bias when features contain future leakage; classical guidance on out-of-sample 
testing and cross-validation cautions against random shuffles for time series and prescribes origin-by-
origin assessment (Bergmeir et al., 2018; Istiaque et al., 2023; Tashman, 2000). Second, even when time 
ordering is respected, subtle information leaks can creep in through target-aware preprocessing, 
cumulative statistics, or windowing choices; modern methodological work highlights how such 
leakage inflates apparent accuracy and undermines scientific validity, motivating strict separation of 
fit/transform scopes and audit trails for feature computation (Bergmeir & Benítez, 2012; Kapoor & 
Narayanan, 2023; Hasan et al., 2023). With those guardrails, calendar features (week-of-year, holiday 
dummies, lead/lag indicators around major events) capture recurrent structure, while engineered lags 
and rolling summaries represent short-term momentum without peeking. Price and promotion features 
require richer design: level and relative price tiers, depth of discount, display/feature flags, and cross-
SKU/category signals for halo and cannibalization effects. Because these covariates are often sparse 
and highly collinear, encodings that preserve hierarchy (e.g., one-hot for holiday types plus continuous 
distance-to-event) and regularization-ready representations are central to stable learning under retail 
realities (Lundberg & Lee, 2017; Hossain et al., 2023; Tashman, 2000). 
Tree-based gradient boosting and related tabular learners have become workhorses for promotion- and 
price-aware feature sets, thanks to their ability to capture nonlinear thresholds and high-order 
interactions common in retail (e.g., asymmetric lift at specific discount depths or weekend-by-holiday 
interactions). Modern boosting systems also natively handle categorical variables and mitigate target 
leakage from high-cardinality encodings via ordered or Bayesian schemes; CatBoost is emblematic, 
introducing ordered target statistics to reduce overfitting from category encodings and thereby 
strengthening promotion-response learning when many sparse SKU and store identifiers appear as 
features (Rahaman & Ashraf, 2023; Prokhorenkova et al., 2018). Complementary representation 
learning ideas, such as entity embeddings for categorical variables, map items, stores, and regions into 
dense vectors that summarize cross-series relationships; these embeddings serve as compact, learnable 
features in downstream models and help transfer information to cold-start SKUs and small stores (Guo 
& Berkhahn, 2016; Sultan et al., 2023). As feature spaces grow, explainability becomes part of feature 
engineering: model-agnostic attribution scores allow planners to see which variables drove forecast 
changes around events and promotions, improving trust and surfacing data issues. Shapley-value 
explanations offer consistent local attributions across nonlinear models and can be aggregated to 
validate that holiday, promotion, or weather features behave plausibly across assortments and 
geographies (Choi & Varian, 2012; Lundberg & Lee, 2017; Hossen et al., 2023). Together, leakage-aware 
construction, categorical encodings designed for sparsity and hierarchy, representation learning for 
identifiers, and post-hoc attribution complete a pragmatic feature stack for U.S. retail use cases that 
must scale to millions of item-locations while remaining auditable (Lundberg & Lee, 2017; Tawfiqul, 
2023). 
Beyond promotions and calendars, two additional modalities enrich retail forecasting: causal signals 
that separate base demand from policy effects, and external indicators that proxy latent drivers. Causal 
uplift features—constructed from estimated treatment effects of promotions or price changes—aim to 
encode how demand would differ under alternative actions; modern estimation strategies include 
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doubly robust learners and generalized random forests that flexibly model heterogeneous treatment 
effects, enabling planners to feed models with scenario-stable features rather than historical mixtures 
of policies (Chernozhukov et al., 2018; Uddin & Ashraf, 2023). When marketing or operations need 
counterfactual baselines—e.g., “no-promo” sales for the next holiday window—structural time-series 
approaches can generate intervention features that quantify incremental lift relative to modeled trends 
and seasonality, and these features can enter forecasting pipelines to reduce bias from past campaigns 
(Brodersen et al., 2015; Momena & Hasan, 2023; Wager & Athey, 2018). External indicators supply 
further explanatory power: high-frequency web search intensity and digital interest proxies can 
provide early signals for category-level forecast adjustments, particularly for event-driven products; 
careful nowcasting work demonstrates how such indices, when properly lagged and filtered, improve 
short-horizon accuracy (Sanjai et al., 2023). Weather features (temperature, precipitation, heat index) 
and macroeconomic controls (income, inflation) likewise function as known-in-advance or slowly 
evolving drivers in specific categories, but must be engineered to avoid contemporaneous leakage (e.g., 
use forecasts or scenario paths, not realized values) and scaled via interactions with region and season. 
Finally, evaluation design closes the loop: blocked time-series cross-validation with leakage-aware 
feature stores, held-out interventions, and attribution audits ensures that engineered features remain 
predictive for the decisions and horizons actually faced in U.S. retail operations (Brodersen et al., 2015; 
Akter et al., 2023). 
 

Figure 4: Pyramid of data modalities and feature engineering  

 

 
 
Promotions, Price Elasticity, and Cannibalization in Retail Forecasting 
Promotions inject powerful, short-run shocks into retail demand, but their managerial value depends 
on where the incremental volume comes from and how it alters future buying. Scanner–data 
econometrics established the core decomposition: a temporary price cut produces (i) cross-brand 
substitution within the focal category, (ii) cross-period borrowing (stockpiling that depresses future 
sales), and (iii) category expansion from new or accelerated purchases (Bijmolt et al., 2005; van Heerde 
et al., 2004). The widely used SCAN*PRO family operationalized promotion response in store–brand 
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panels and inspired modern variants that account for heterogeneity across stores and items, improving 
elasticity estimates used for everyday pricing and promotional planning (Andrews et al., 2008; 
Tamanna & Ray, 2023). Long-horizon evidence further shows that while short-run bumps are often 
large, permanent effects on category incidence, brand choice, or quantity are usually limited—placing 
the burden on careful tactic selection and consistent post-promotion diagnostics (Danish & Md. Zafor, 
2024; Pauwels et al., 2002). At the trip level, promotions interact with multi-category baskets: 
complementarities and co-incidence patterns propagate lift (or suppression) across categories, 
implying that SKU-level forecasts should embed basket-structure features alongside category-specific 
promotion variables (Manchanda et al., 1999). Together, these results argue for promotion-aware 
forecasting that (1) models direct own-SKU lift, (2) monitors cannibalization within and across 
categories, and (3) guards against illusory gains when cross-period borrowing dominates (Istiaque et 
al., 2024; Rzepakowski & Jaroszewicz, 2012). 
 

Figure 5: Interactions of promotions, price elasticity, and cannibalization  

 
Estimating price elasticity credibly is central to scenario planning and promotion design. Classical and 
structural demand models translate observed choices into substitution patterns that determine how 
price changes cascade across the assortment. The conditional logit and its generalizations connect 
attribute utilities to choice shares, creating a blueprint for cross-price effects that can be integrated into 
forecasting stacks or upstream pricing simulators (Hasan et al., 2024; Rzepakowski & Jaroszewicz, 
2012). Random-coefficients logit extended this by allowing heterogeneous tastes—crucial for realistic 
substitution under promotions—and became a workhorse for counterfactuals (Berry et al., 1995). Meta-
analytic synthesis across hundreds of categories clarifies systematic drivers: elasticities tend to be more 
negative for private labels, in competitive categories, and under deeper temporary price reductions—
stylized facts forecasters can encode via priors, pooling schemes, or feature constraints (Bijmolt et al., 
2005; Rahaman, 2024). In practice, elasticity estimation must also disentangle policy endogeneity (prices 
reacting to demand shocks). Robust pipelines therefore pair instrumented or structural estimation with 
out-of-sample validation, and then map elasticities into forecast adjustments and inventory simulations 
to verify that predicted lift translates into profitable, service-aligned outcomes (McFadden, 1973; 
Hasan, 2024). Contemporary promotion strategies also face learning problems—new items, shifting 
price ladders, and unknown cross-effects—where integrated demand-learning-and-pricing systems 
demonstrate how machine learning plus constrained optimization can improve revenue without 
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sacrificing stability (Ferreira et al., 2016; Ashiqur et al., 2025). For forecasters, these systems supply 
policy-stable features (estimated elasticities and cross-effects) that make scenario forecasts more 
trustworthy than raw correlational lift factors. 
A modern toolkit for cannibalization and incremental lift increasingly blends econometrics with causal 
machine learning. Uplift modeling seeks the incremental effect of a promotion versus no promotion, 
directly optimizing treatment–control contrast at the SKU–store–week level; tree-based uplift learners 
offer segment-level targeting and interpretable rules (Hasan, 2025; Rzepakowski & Jaroszewicz, 2012). 
Causal trees generalize this idea, estimating heterogeneous treatment effects under weaker functional-
form assumptions and enabling retailers to identify when a promotion’s “lift” is mostly borrowed from 
future weeks or rival SKUs (Athey & Imbens, 2016; Ismail et al., 2025). These methods complement 
decomposition models by providing ex ante targetability and ex post accountability: planners can 
simulate who to treat (offer depth, vehicles) and then audit whether realized effects matched 
predictions. Importantly, cross-category and store heterogeneity matter—cannibalization can migrate 
within a brand family or spill to adjacent categories, and its magnitude varies with display, feature, 
and competitive noise (Jakaria et al., 2025; van Heerde et al., 2004). Practical implementations therefore 
layer three components: (i) structural or reduced-form demand systems to anchor substitution and 
elasticity; (ii) uplift/heterogeneity models to target and audit incrementality; and (iii) basket- or 
category-network features to capture halo and cannibalization paths (Manchanda et al., 1999). When 
combined with store- and item-level heterogeneity controls (e.g., hierarchical specifications in 
SCAN*PRO variants) and validated against long-run persistence benchmarks, this integrated approach 
yields promotion-aware forecasts that are decision-ready—attentive to incremental volume, guarded 
against cannibalization, and consistent with inventory and margin objectives (Andrews et al., 2008; 
Hasan, 2025). 
Long-tail and Intermittent Demand Modeling 
Intermittent (a.k.a. lumpy or sparse) demand—characterized by long runs of zeros punctuated by 
irregular, bursty purchases—dominates the long tail of U.S. retail assortments and is a prime failure 
mode for classical forecasting pipelines. The statistical challenges are twofold: (i) correctly modeling 
the occurrence of non-zero demand events and (ii) estimating the size of those events conditional on 
occurrence. Early parametric work recognized that Gaussian assumptions break down in this regime 
and proposed nonnegative, count-aware formulations that unify slow- and fast-moving items without 
arbitrary thresholds (Sultan et al., 2025; Snyder, 2002). Subsequent distributional approaches extended 
this line, advocating multi-series likelihoods and prediction distributions rather than point forecasts so 
that inventory decisions (which depend on quantiles) remain coherent under sparsity (Altay et al., 
2012). Parallel advances reframed the problem at the lead-time horizon, resampling empirical non-zero 
draws and inter-arrival structure via a time-series bootstrap to produce full lead-time demand 
distributions; these procedures consistently outperformed exponential smoothing and Croston-style 
heuristics on large industrial datasets (Babai et al., 2018; Zafor, 2025). In practice, managers additionally 
face correlation structures between event timing and size, making naive independence assumptions 
fragile. Simulation evidence with compound-Poisson generators shows that autocorrelation in sizes 
and intervals, and cross-correlation between them, systematically shift service levels for the same cost 
envelope—implicating the choice of estimator as a lever on fill-rate under identical policies 
(Kourentzes, 2013; Uddin, 2025). Temporal aggregation offers another powerful idea: by forecasting on 
aggregated buckets and then disaggregating, one can reduce intermittence, stabilize variance, and 
improve both stock-control and accuracy metrics relative to working at the native sparse cadence (Lolli 
et al., 2017; Nikolopoulos et al., 2011; Sanjai et al., 2025). 
AI-enhanced pipelines now treat intermittent demand as a two-module problem: a classifier for demand 
occurrence married to a conditional regressor (or distributional model) for event size. Neural network 
variants—trained with regularization and median ensembling to offset small samples—can capture 
interactions between inter-arrival times and non-zero magnitudes that Croston-type models cannot, 
and while their point-forecast accuracy can trail simple baselines, inventory-relevant metrics (e.g., 
service level at fixed stock) often improve, which is what matters operationally (Snyder et al., 2012). 
Single-hidden-layer networks (including extreme learning machines) provide a lightweight alternative 
when compute or data are constrained, delivering competitive results across aggregation levels in real 
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spare-parts series (Snyder, 2002; Snyder et al., 2012). Meanwhile, Bayesian and renewal-process 
perspectives have helped formalize the dual-component nature of intermittence, encouraging explicit 
modeling of inter-event time distributions and non-Gaussian event-size tails so that predicted quantiles 
align with reorder decisions (Snyder, 2002; Snyder et al., 2012). These strands converge on a practical 
design: (1) classify the probability of a non-zero in the horizon of interest; (2) model the conditional size 
with nonnegative distributions or machine-learning regressors; (3) compose a full predictive 
distribution over lead-time demand for service-level-consistent policies. Critically, evaluation must 
privilege inventory outcomes over generic error scores: intermittent series can render popular 
measures undefined or misleading, whereas stock-oriented metrics (fill-rate at budget, average 
backorders, or expected holding/shortage costs) diagnose the business trade-off directly (Wallström & 
Segerstedt, 2010; Willemain et al., 2004). 
 

Figure 6: Framework for intermittent demand modeling in retail forecasting 

 
Two additional edge cases—obsolescence and long-tail combinatorics—stress even robust models. 
When an SKU ceases to sell, Croston-style estimators can sustain positive long-run forecasts, inflating 
safety stocks. Modern intermittent-demand estimators introduce explicit decay so that forecasts glide 
to zero after strings of zeros, preventing stranded inventory during end-of-life (Petropoulos & 
Kourentzes, 2015; Snyder et al., 2012). Beyond decay controls, recent obsolescence-aware methods 
adjust both size and arrival-rate updates in zero periods and have shown superior accuracy and stock 
performance across many scenarios (Altay et al., 2012). At assortment scale, no single estimator 
dominates the heterogeneous shapes found in the long tail; forecast combinations tuned on series 
features (e.g., average inter-demand interval, squared coefficient of variation) deliver robust gains by 
blending complementary inductive biases across items (Petropoulos & Kourentzes, 2015). Finally, 
aggregation-disaggregation workflows such as ADIDA remain especially useful in retail: aligning 
aggregation windows with review periods and lead times reduces sparsity while keeping 
replenishment compatible with operational calendars (Nikolopoulos et al., 2011). In sum, state-of-the-
art intermittent-demand modeling in retail joins distributional forecasting, event-occurrence 
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classification, obsolescence-aware decay, and feature-based combinations—evaluated against 
inventory-centric criteria—to tame the long tail and align AI forecasts with service-level and cost 
objectives (Babai et al., 2018; Snyder et al., 2012). 
Probabilistic Forecasting and Decision-Oriented Metrics 
Probabilistic forecasting reframes retail demand prediction from a single “best guess” to a full 
predictive distribution over future outcomes, enabling planners to set service levels, safety stocks, and 
reorder points directly from quantiles rather than ad-hoc buffers. A rigorous treatment distinguishes 
calibration (statistical consistency between predicted and realized frequencies) from sharpness 
(concentration of the forecast distribution), and evaluates both using proper scoring rules so that better 
uncertainty quantification is rewarded, not just narrower intervals. This paradigm has been formalized 
in modern reviews and practice guides that emphasize distributional evaluation and the dual goals of 
calibrated and sharp forecasts in operational settings (Gneiting & Ranjan, 2011). The intellectual roots 
lie in probabilistic scoring and decision theory, which established that proper scores uniquely 
incentivize honest probability assessment—an essential property when forecasts feed inventory and 
pricing decisions (Winkler, 1969). For density forecasts, metrics like the continuous ranked probability 
score (CRPS) simultaneously assess location and dispersion, while probability integral transform 
diagnostics probe calibration across the entire distribution (Pinson & Tastu, 2013; Winkler, 1969). In 
multivariate or hierarchical contexts (e.g., SKU–store–region coherency), energy-score–type functionals 
offer tractable evaluation of joint distributions, preserving incentives for distributional accuracy instead 
of rewarding only mean performance (Diebold & Mariano, 1995). Decision-oriented benchmarking still 
requires careful predictive-accuracy testing; when planners compare alternative pipelines on rolling 
origins, robust tests of forecast superiority account for autocorrelation and overlapping horizons so 
that “wins” reflect persistent improvements, not noise (Diebold & Mariano, 1995; Khosravi et al., 2011). 
Together these elements—proper scoring, calibration diagnostics, and valid comparative tests—define 
the statistical backbone for operational uncertainty management in retail demand forecasting (Boylan 
& Syntetos, 2010; Gneiting & Katzfuss, 2014). 
Quantiles sit at the heart of retail decision-making because reorder targets, safety stocks, and service-
level constraints map naturally to forecast quantiles rather than means. Theory clarifies why: quantiles 
are elicitable functionals—there exist strictly proper loss functions (e.g., the pinball loss) that uniquely 
incentivize estimating a given quantile—so models can be trained and compared directly on the 
decision-relevant objective (Hong et al., 2016). In practice, this enables unified training and evaluation: 
a forecaster optimizing the τ-quantile can be judged with quantile loss, while downstream inventory 
policies consume the same τ as a service-level parameter, closing the loop from statistics to operations. 
Constructing prediction intervals for complex, nonlinear learners extends this toolkit. When 
distributional assumptions are fragile, model-agnostic interval construction—e.g., conformal or 
ensemble-based methods—offers finite-sample coverage guarantees or robust empirical coverage 
without requiring Gaussian residuals; neural-network interval methods exemplify how to generate 
calibrated bounds around highly flexible fits used in promotion-rich retail data (Khosravi et al., 2011; 
Taylor, 2019). For classical time-series pipelines, specialized interval formulations improve coverage 
under multiple seasonalities and state-space structure, ensuring that the width of weekly SKU-level 
intervals reflects both process and parameter uncertainty rather than ad-hoc multipliers (Taylor, 2019). 
The move from point to distributional forecasts is not merely academic: it enables inventory-aligned 
metrics in backtesting. Planners can evaluate candidate models on realized coverage of on-shelf targets, 
stockout counts at target quantiles, or cost-weighted scoring rules that penalize under- and over-
forecasting asymmetrically, mirroring the true economics of retail operations. As organizations 
industrialize this approach, consistent use of quantile-targeted training, proper distributional scoring 
in evaluation, and calibrated interval construction yields uncertainty estimates that are both statistically 
defensible and actionable at scale (Fissler & Ziegel, 2016). 
End-to-end retail performance depends on how uncertainty information is consumed by planning 
systems, not only on how it is measured. Large-scale forecasting challenges in adjacent domains have 
accelerated best practices that transfer cleanly to retail, particularly around probabilistic leaderboard 
design and loss functions aligned with quantile targets (Hong et al., 2016). Within inventory control, 
the business impact of probabilistic improvements is mediated by policy choice: order-up-to and 
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newsvendor-style policies translate distributional forecasts into service levels, backorders, and holding 
costs; thus, bias and dispersion in forecast distributions have asymmetric cost implications that should 
be reflected in evaluation (Boylan & Syntetos, 2010). This motivates decision-consistent backtests: 
rolling-origin simulations where each candidate model feeds the same replenishment policy, and 
outcomes—fill rate, average inventory, lost sales—become the comparison metrics. Statistically, 
comparative tests can still rely on robust forecast-accuracy testing, but the target metrics are operational 
rather than purely statistical (Diebold & Mariano, 1995). In production, combining these elements 
yields a disciplined pipeline: (i) train models to optimize quantile- or distribution-aware objectives; (ii) 
evaluate with proper scores (CRPS/quantile loss) and calibration diagnostics; and (iii) validate 
downstream via inventory-policy simulations that quantify economic value. Such a framework ensures 
that probabilistic forecasts improve what matters—service and margins—while maintaining 
transparent, auditable metrics across the hierarchy from SKU to enterprise roll-ups (Hong et al., 2016; 
Boylan & Syntetos, 2010). 
 

Figure 7: Triangle framework for probabilistic forecasting and decision-oriented metrics  

 

 
 
Hierarchical, Spatiotemporal, and Multi-Echelon Methods 
Hierarchical and grouped forecasting frameworks formalize how to generate base forecasts at multiple 
aggregation levels and then enforce aggregate consistency so that lower-level predictions sum to upper-
level totals used by merchandising, finance, and logistics. Early comprehensive treatments established 
model classes and evaluation protocols for cross-sectional hierarchies, showing the advantages of 
combining forecasts across levels for improved accuracy and managerial interpretability 
(Athanasopoulos et al., 2009). A complementary stream builds temporal hierarchies, treating the same 
series at multiple sampling frequencies (e.g., day→week→month) to stabilize estimation and capture 
multi-seasonality, then reconciling across frequencies for sharper short- and medium-term retail 
horizons (Athanasopoulos et al., 2009; Athanasopoulos et al., 2017). Joint cross-temporal formulations 
further integrate these ideas, allowing retailers to exploit information both across items and across time 
scales—crucial when store-day signals are noisy but week-category patterns are reliable (Kourentzes & 
Athanasopoulos, 2019). Methodological refinements deepen this toolkit: geometric views of 
reconciliation clarify bias correction and constraint handling (e.g., non-negativity), providing matrix 
formulations that are stable under realistic error structures and scalable to large retail trees (Ben Taieb 
et al., 2017; Panagiotelis et al., 2021). Probabilistic variants extend reconciliation from means to full 
distributions, enabling calibrated quantile or density-level coherence that directly feeds service-level 
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policies; constructive recipes for coherent probabilistic forecasts make it possible to propagate 
uncertainty consistently across the enterprise roll-ups used in S&OP cycles (Yu et al., 2018). For U.S. 
retailers, the practical impact of these approaches is twofold: first, coherent planning artifacts (e.g., 
category-month buy plans agree with store-day replenishment); second, measurable improvements in 
forecast accuracy when information is unevenly distributed across the hierarchy and time scales 
(Athanasopoulos et al., 2009; Graves & Willems, 2000). 

 
Figure 8: Rectangle framework for hierarchical 

 

 
 
Spatial and network structure add another layer: demand at a store reflects local demographics, 
weather, competition, and network effects such as inventory transshipments and regional promotions; 
ignoring such structure can degrade accuracy and distort uncertainty. Spatiotemporal models explicitly 
encode dependence across locations and time, enabling learning that pools strength geographically 
while preserving local idiosyncrasies. In recent years, graph-based deep learners have become 
prominent: diffusion convolutional recurrent networks (DCRNN) model directed flows over a graph 
with recurrent dynamics, capturing how shocks (e.g., a regional campaign or weather front) propagate 
through neighboring nodes; these architectures handle irregular networks and time-varying effects 
with high fidelity (Li et al., 2018). Spatiotemporal graph convolutional networks (STGCN) provide 
another scalable design, interleaving temporal convolutions with graph convolutions to represent 
localized periodicity and cross-node interactions—useful for chain retailers where adjacent stores share 
demand rhythms yet respond differently to price-promo tactics (Graves & Willems, 2004; Yu et al., 
2018). When mapped to retail, nodes represent stores or fulfillment nodes, edges encode distance, travel 
time, competitive adjacency, or supply links, and covariates include weather forecasts, calendar effects, 
and promotion calendars; the learned representations support regionalization strategies (e.g., cluster-
wise planograms or price zones) and more accurate store-day forecasts at the long tail. Importantly, 
these spatiotemporal learners complement hierarchical reconciliation: base forecasts for each node can 
be produced by DCRNN/STGCN, then reconciled vertically across the product/time hierarchies to 
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ensure enterprise coherence. This division of labor—learn local network dynamics, then reconcile 
across business hierarchies—aligns with how U.S. retailers operate, in which regional DCs, delivery 
routes, and weather bands shape correlated demand shocks that classical univariate pipelines cannot 
easily capture (Clark & Scarf, 1960). 
Forecasts ultimately drive multi-echelon inventory decisions in networks spanning 
vendors→plants→DCs→stores. The classic theory of optimal stock placement in serial and general 
networks shows that safety stock should be located where it most effectively buffers uncertainty, with 
echelon-based policies and dynamic programming yielding structural insights still used in modern 
tools (Kourentzes & Athanasopoulos, 2019). Building on this, network design models formalized how 
to assign strategic safety stock across divergent topologies under target service levels, providing 
tractable algorithms that translate demand variability and lead-time dispersion into placement and 
sizing rules (Graves & Willems, 2004). Follow-on work optimized safety-stock placement jointly with 
bill-of-materials and cycle-stock decisions, connecting planning bills, postponement, and decoupling 
points to inventory efficiency—ideas that align naturally with retail’s vendor→DC→store pipelines 
and omnichannel nodes (Graves & Willems, 2004). Marrying these inventory foundations with modern 
forecasting yields a coherent design loop: (i) generate distributional forecasts at SKU-store and higher 
levels, (ii) reconcile across product/time hierarchies for coherence, (iii) propagate uncertainty through 
spatiotemporal networks to capture correlated shocks, and (iv) feed multi-echelon optimization that 
places and sizes safety stock consistent with targeted service levels and cost-to-serve. From an 
engineering perspective, the benefit is end-to-end consistency: the same uncertainties learned by 
hierarchical/spatiotemporal models determine buffer placement and replenishment rules, preventing 
the misalignment that occurs when forecasting and inventory modules are tuned in isolation. For U.S. 
retail supply chains, where lead times, carrier capacity, and regional demand co-move during holiday 
peaks and weather events, this integrated approach reduces stockouts and excess simultaneously by 
targeting buffers to the network points with the greatest marginal value. 
METHOD 
This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines to ensure a systematic, transparent, and rigorous review of artificial intelligence–
enhanced predictive analytics for demand forecasting in U.S. retail supply chains, culminating in a final 
analytic corpus of 95 peer-reviewed articles. We defined the review protocol a priori, specifying the 
population (U.S. retail settings at SKU, store, and network levels), interventions or approaches (AI, 
machine learning, deep learning, hybrid/statistical models, hierarchical and spatiotemporal methods, 
probabilistic forecasting, promotion and price modeling), comparators (classical baselines and 
alternative AI pipelines), outcomes (forecast accuracy and calibration metrics alongside decision-
oriented measures such as service level, stockouts, and inventory turns), and study designs (empirical 
evaluations using real or realistic retail data). Searches were executed across multidisciplinary and 
domain databases (e.g., Scopus, Web of Science Core Collection, IEEE Xplore, ACM Digital Library, 
Business Source Complete) and preprint servers screened for eligibility, using Boolean strings that 
combined terms for “retail” and “demand (or sales) forecasting” with “machine learning,” “deep 
learning,” “transformer,” “probabilistic,” “promotion,” “price elasticity,” “hierarchical,” 
“spatiotemporal,” and “multi-echelon,” constrained to 2015–2025 with backward citation chasing to 
capture seminal antecedents. Records were deduplicated and screened in two stages—title/abstract 
followed by full text—against inclusion criteria requiring relevance to U.S. retail or transferability to 
U.S. practice, explicit model or method description, transparent evaluation protocol, and reportable 
metrics; exclusion criteria removed nonretail contexts, inaccessible full texts, purely theoretical pieces 
without empirical assessment, and studies lacking evaluation clarity or at high risk of leakage. Two 
reviewers independently applied criteria with discrepancies resolved by discussion and, when needed, 
a third adjudicator; inter-rater agreement was monitored and reasons for exclusion were logged to 
preserve auditability. Data extraction used a predefined template capturing bibliographic information, 
data granularity, exogenous variables, model families, training and validation design (including 
rolling-origin or blocked schemes), metrics (point and distributional), and operational outcomes, while 
quality appraisal inspected risks of bias such as data leakage, horizon mismatch, weak baselines, and 
overfitting from high-cardinality encodings. Synthesis combined narrative integration with structured 
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tables, stratifying evidence by horizon, hierarchy, product velocity, and promotional intensity to align 
methodological findings with retail decision contexts, and sensitivity analyses probed robustness to 
evaluation design to maintain PRISMA-consistent transparency throughout. 

Screening and Eligibility Assessment 
Screening and eligibility assessment proceeded in two sequential stages consistent with PRISMA, with 
predefined rules to ensure transparency, reproducibility, and alignment to the study scope. After 
importing all records from the targeted databases and preprint servers, exact- and fuzzy-matching 
routines were used to remove duplicates based on DOI, title, author list, year, and venue, followed by 
a manual pass to merge near-duplicates and multiple versions of the same contribution (e.g., 
conference-to-journal extensions). Title–abstract screening applied inclusion criteria centered on 
substantive relevance to retail demand forecasting in U.S. settings or clear transferability to U.S. 
practice, empirical evaluation with real or realistically simulated retail data, and explicit 
methodological detail enabling interpretation of model families, data modalities, and evaluation 
design; exclusion criteria removed nonretail domains, purely theoretical or viewpoint pieces, 
inaccessible full texts, and studies without reportable metrics or with insufficient methodological 
transparency. To guard against inflated results at this early stage, we flagged potential high-risk 
items—such as those signaling target leakage, horizon mismatch (training on post-forecast 
information), or unbalanced baselines—for closer inspection at full text. In the full-text eligibility stage, 
two reviewers independently evaluated each article against refined criteria: (i) empirical focus at SKU, 
store, category, region, or network levels; (ii) clear definition of the forecasting task and horizon, 
including any hierarchical, spatiotemporal, or multi-echelon structure; (iii) transparent 
training/validation protocols (preferably rolling-origin or blocked time splits) and decision-relevant 
metrics (e.g., WAPE/MASE for point forecasts, quantile loss/CRPS and coverage for probabilistic 
outputs); (iv) adequacy of baselines and ablation analyses for AI comparisons; (v) U.S. data or a strong 
rationale for applicability to U.S. retail (e.g., comparable promotion calendars and channel structures). 
Preference was given to peer-reviewed outputs with DOIs; when both a preprint and a later peer-
reviewed version existed, the latter superseded the former. Multiple reports from the same dataset or 
competition (e.g., replications without methodological novelty) were consolidated to avoid double 
counting. Disagreements were resolved by consensus or a third adjudicator, with reasons for exclusion 
logged under standardized categories (scope, design, metrics, transparency, access). Only studies 
meeting all criteria entered the analytic corpus, yielding the final set of 95 articles used for synthesis. 

Data Extraction and Coding 
Data extraction and coding followed a prespecified template designed to capture methodological, data, 
and outcome features at a consistent unit of analysis. Each included article was entered into a structured 
database with fields for bibliographic metadata (DOI, venue, year), problem framing (forecasting task 
definition, horizon, aggregation level), dataset characteristics (industry segment, geographic scope, 
number of series, series length, SKU/store granularity), and data modalities (prices, promotions, 
holidays, weather, macro indicators, web signals). We recorded feature-engineering practices (lag 
structures, rolling statistics, categorical encodings, leakage controls), model families (statistical, 
machine learning, deep sequence, hybrid), and architectural details (embeddings, attention, 
reconciliation layers, spatiotemporal or multi-echelon components). Training and validation design 
were coded with an emphasis on deployment realism: windowing scheme (rolling-origin, blocked 
splits), backtest span, retraining cadence, and hyperparameter search transparency. Evaluation metrics 
were harmonized across studies by mapping reported measures into a canonical set: 
WAPE/sMAPE/MASE and RMSE/MAE for point accuracy; pinball loss, CRPS, empirical coverage, 
and interval width for probabilistic performance; and decision-oriented outcomes including service 
level, stockouts, inventory turns, and cost-weighted scores when available. To enable cross-study 
synthesis, we computed normalized effect sizes where possible (e.g., relative WAPE improvement 
versus the strongest classical baseline) and recorded ablation evidence (with/without promotions, 
with/without hierarchical reconciliation). Reproducibility indicators were double-coded, including 
data availability (public/proprietary), code or model cards, and reporting sufficiency for replication. 
Quality and risk-of-bias flags captured common threats: target leakage, horizon mismatch, unbalanced 
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baselines, overfitting risks from high-cardinality encodings, and inadequate uncertainty calibration. 
Coding proceeded in two passes: an initial pilot on a 10-article subset to refine the codebook and 
controlled vocabulary, followed by dual, independent coding on the full corpus with adjudication of 
discrepancies; inter-coder agreement was monitored (Cohen’s κ) on key fields (task, horizon, metrics, 
leakage flags), and unresolved conflicts were settled by consensus. Missing or ambiguous information 
was annotated as “not reported” rather than imputed, with author correspondence attempted only 
when essential to compute a normalization. All entries maintained audit trails linking values to page 
or figure references, and version control captured updates during sensitivity analyses, ensuring 
traceable, PRISMA-consistent synthesis across the final set of 95 studies. 

Data Synthesis and Analytical Approach 
The synthesis strategy was designed to integrate heterogeneous evidence—from classical statistical 
baselines to modern AI architectures—into a coherent, decision-oriented account of forecasting 
performance in U.S. retail supply chains. Because the 95 included studies varied in design, data 
granularity, evaluation metrics, and reporting practices, we adopted a hybrid approach that combined 
structured narrative synthesis with quantitative aggregation where commensurability permitted. We 
first constructed a crosswalk that standardized problem framing across studies along five axes: (i) 
forecast horizon (short-run daily/weekly vs. medium-run monthly/quarterly), (ii) hierarchical level 
(SKU–store, SKU–region, category–region, enterprise totals), (iii) data modality set (presence of price, 
promotions, holidays, weather, macro, and digital signals), (iv) methodological family (statistical, 
machine-learning tabular, deep sequence, hybrid, hierarchical/spatiotemporal, and multi-echelon 
coupling), and (v) forecast objective (point vs. probabilistic). This crosswalk served two purposes: it 
allowed us to align like with like when comparing effect sizes, and it exposed systematic gaps—e.g., 
horizons or levels underrepresented by deep models or decision-oriented metrics. To manage reporting 
heterogeneity, we mapped diverse error metrics into a canonical set—WAPE, sMAPE, MASE, 
RMSE/MAE for point accuracy; pinball loss (τ ∈ {0.1, 0.5, 0.9}), CRPS, empirical coverage and average 
interval width for probabilistic performance—using published relationships where valid (e.g., unit 
scale conversions and seasonality-adjusted normalizations) and otherwise retaining metrics in their 
native form with subgroup analyses. Decision outcomes (service level, stockouts, inventory turns, cost-
weighted scores) were abstracted to directionally consistent effect indicators and, where available, 
expressed as percentage improvements versus a specified baseline to facilitate cross-study synthesis. 
Quantitative aggregation proceeded in tiers keyed to the attainable level of harmonization. At Tier 1 
(high commensurability), we conducted random-effects meta-analyses of relative improvement in 
WAPE or sMAPE compared to the strongest classical baseline reported within each study, treating 
“model-vs-baseline” as the unit of analysis to guard against double counting. Heterogeneity was 
assessed using τ² and I², with Hartung–Knapp adjustments applied to control for between-study 
variance under small k conditions. Because multiple comparisons often appear within a single paper 
(e.g., GBM, LSTM, and Transformer all versus ETS), we used robust variance estimation (RVE) to 
accommodate dependent effect sizes without inflating precision. At Tier 2 (moderate 
commensurability), where studies reported different but related metrics (e.g., MAE vs. RMSE, wMAPE 
variants) on similar horizons and levels, we computed standardized mean differences after scaling by 
a reported or inferred measure of dispersion; when dispersion was unavailable, we restricted to vote-
counting enhanced by effect direction and magnitude bins (e.g., >10% improvement, 5–10%, 0–5%, 
negative) and reported proportions with Wilson intervals, clearly labeling these as exploratory. At Tier 
3 (low commensurability), typically driven by bespoke KPI definitions or proprietary decision metrics, 
we reverted to narrative synthesis organized by context (promotion intensity, intermittency, 
hierarchical reconciliation, spatiotemporal coupling), highlighting convergent patterns and 
triangulating with Tier 1–2 results to avoid overweighting idiosyncratic designs. 
Meta-analytic models were stratified a priori by horizon (daily/weekly vs. monthly), level (SKU–store 
vs. aggregated), and data modality set (with vs. without price/promotion features), because these 
dimensions systematically mediate algorithmic advantage. We further implemented moderator 
analyses to probe whether specific design choices explained variance in effect sizes: (i) inclusion of 
promotion depth and display features; (ii) leakage-safe evaluation (rolling-origin or blocked splits) vs. 



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 959–993 
 

978 
 

weaker designs; (iii) presence of hierarchical reconciliation; (iv) cross-series training (global models) vs. 
per-series (local) fitting; and (v) intermittent/long-tail prevalence in the evaluation sample. Moderators 
were encoded as binary or ordinal indicators and entered into meta-regressions under a random-effects 
framework, with inference based on profile-likelihood confidence intervals for τ² and small-sample 
corrections for coefficients. To address potential small-study and publication bias, we combined 
contour-enhanced funnel plots, Egger-type regressions adapted to ratio outcomes, and trim-and-fill 
procedures; where asymmetry suggested selective reporting, we performed sensitivity analyses that 
down-weighted or excluded studies failing minimal transparency thresholds (e.g., unclear horizon 
specification or suspect feature timing) and contrasted results to the full model. 
Because a large fraction of the contemporary AI literature reports probabilistic outcomes, we developed 
a parallel synthesis track for distributional metrics. For studies reporting pinball loss at τ=0.5 alongside 
coverage of 80% or 90% intervals, we meta-analyzed relative improvements in pinball loss using log 
ratios (to stabilize variance) and synthesized coverage deviations from nominal as a calibration gap 
(observed minus nominal), with positive values indicating over-coverage. CRPS effects were pooled on 
relative scales when the same horizon and level were available. Crucially, we linked probabilistic 
performance to operational relevance by translating quantile improvements into implied safety-stock 
reductions (under standard lead-time demand assumptions) in a scenario analysis: while not an effect-
size input to meta-analysis, this transformation provided a common interpretive frame for decision-
makers and was used in the narrative synthesis to anchor the magnitude of benefits. 
 

Figure 10: Framework for Data Synthesis and Analytical Approach  

 
To preserve deployment realism, we required that comparative claims rest on leakage-aware 
evaluations. During synthesis, studies flagged with high risk of leakage (e.g., target-aware 
normalization, post-hoc imputed covariates at forecast origin) were not pooled quantitatively; instead, 
they were summarized qualitatively with explicit caveats and excluded from moderator analyses. 
Similarly, when baseline selection was weak (e.g., comparing an advanced AI model only to naïve or 
mean forecasts), we recalculated relative improvements against the best available baseline within the 
study; if none exceeded a minimal standard (ETS/ARIMA/seasonal naive with event handling), the 
comparison was excluded from pooled tiers and retained for narrative triangulation only. We also 
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differentiated in-sample fit from out-of-sample performance, pooling only the latter; any “final model” 
results that combined development and test periods without clear separation were treated as high risk 
and excluded from quantitative tiers. 
Given the hierarchical nature of retail, we implemented a two-stage approach to integrate reconciliation 
effects. Stage one compared reconciled vs. unreconciled variants within the same methodological 
family to estimate the marginal contribution of reconciliation to accuracy and calibration. Stage two 
pooled the reconciled variants across families to assess the net gain versus strong baselines. Where 
studies reported cross-temporal reconciliation (e.g., daily and weekly forecasts produced jointly), we 
coded these as a separate moderator. For spatiotemporal methods (graph-based learners, spatial error 
models), we synthesized results within store-level horizons and treated the presence of spatial 
covariates (distance matrices, adjacency from logistics networks, weather fronts) as moderators. 
Because these designs often used proprietary networks, we emphasized relative improvements and 
calibration effects rather than absolute errors. 
In parallel to purely predictive outcomes, we synthesized decision-consistent evaluations—rolling-
origin inventory simulations where each model fed the same replenishment policy and service target. 
We pooled relative improvements in fill rate at fixed inventory budget, and relative inventory 
reductions at fixed service level, using random-effects models on log ratios. Where cost-weighted 
scores were reported (combined holding, shortage, and ordering costs), we treated these as continuous 
outcomes and pooled standardized differences. Because decision simulations are sensitive to policy 
parameterization (lead time, review period, order-up-to levels), we conducted subgroup analyses by 
policy family and lead-time variability. When studies reported both predictive and decision outcomes, 
we examined their correlation to understand how much of the decision gain is mediated by point 
accuracy versus uncertainty calibration; this informed our narrative guidance about which modeling 
investments—e.g., improved probabilistic calibration or hierarchical coherence—tend to translate most 
reliably into operational value. We complemented the quantitative synthesis with a qualitative 
comparative analysis (QCA) to capture configurational effects—combinations of design features 
associated with “large improvements” (≥10% relative WAPE reduction or ≥5% CRPS reduction). 
Conditions included presence of promotions/price features, global training, reconciliation, 
spatiotemporal modeling, and leakage-safe evaluation. Using crisp-set QCA, we identified sufficient 
and near-sufficient configurations and examined contradictions (cases with the configuration but 
without large improvement). This lens allowed us to articulate practice-oriented playbooks—for 
example, the frequent co-occurrence of global training and reconciliation in studies demonstrating 
robust gains on intermittent long-tail SKUs with promotion features. 
Handling missing or incomparable data required a disciplined protocol. We did not impute 
performance metrics. If an otherwise high-quality study lacked a variance estimate needed for meta-
analysis, we contacted authors; absent a response, we included the study in Tier 2 or Tier 3 as 
appropriate. For studies reporting only aggregated errors over mixed horizons or levels, we sought to 
recover disaggregated results from appendices; failing that, we excluded them from quantitative pools 
and flagged them in narrative synthesis to avoid misleading comparisons. All analysis scripts 
preserved an audit trail linking each pooled effect to the originating table or figure, with a reproducible 
pipeline that can regenerate figures and tables under alternative inclusion filters (e.g., excluding 
preprints, restricting to daily horizons, limiting to U.S.-only datasets). Sensitivity analyses probed the 
robustness of conclusions along four dimensions. First, risk-of-bias exclusion: we re-estimated pooled 
effects after removing studies with any high-risk flag (leakage, weak baseline, unclear horizon). Second, 
metric-harmonization uncertainty: we recalculated pooled effects using alternative normalizations 
(e.g., wMAPE vs. WAPE, MASE vs. sMAPE) to ensure conclusions did not hinge on a single mapping. 
Third, influence diagnostics: we computed Cook’s distances and leave-one-out analyses to identify 
influential studies; where a single large competition dataset dominated an estimate, we reported both 
inclusive and down-weighted results. Fourth, time-window drift: recognizing rapid method evolution, 
we stratified by publication year bands (2015–2018, 2019–2021, 2022–2025) to examine temporal trends 
in relative performance and to check whether early deep models’ gains persisted once transformers 
and reconciliation became common. Across these checks, we emphasized stability of sign and 
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managerial significance (e.g., whether the implied safety-stock reduction remained meaningful) over 
marginal changes in pooled point estimates. 
Finally, we integrated quantitative and qualitative results into an evidence-to-decision framework 
tailored for U.S. retail operations. For each major method family, we summarized (i) typical data 
prerequisites and leakage risks, (ii) median and interquartile improvements in point and probabilistic 
metrics where pooled, (iii) observed decision gains under inventory simulations, and (iv) contextual fit 
by horizon, level, and product velocity (fast-moving vs. long tail). We then mapped these findings onto 
a selection matrix that aligns retailer constraints—data availability, compute, governance maturity, 
explainability needs—with method capabilities. For example, tree-based boosting with robust 
categorical encodings and promotion features tended to deliver strong gains in promotion-dense 
categories with moderate horizons, especially when paired with leakage-safe engineering and minimal 
hierarchical reconciliation; deep sequence models with static embeddings and attention dominated 
where cross-series learning was critical (short histories, long-tail items), provided that evaluation 
controlled for leakage and that forecasts were reconciled; transformer-class models plus cross-temporal 
reconciliation exhibited advantages at longer horizons with pronounced multi-seasonality; 
spatiotemporal graph learners improved store-day accuracy in geographically correlated settings but 
required careful integration with reconciliation to ensure enterprise coherence; and probabilistic 
modeling—whether via distributional deep learners or post-hoc calibrated intervals—consistently 
translated into inventory benefits when service levels were policy targets. We expressed these 
recommendations as conditional, anchored to the synthesized evidence and tempered by the quality 
and commensurability of the underlying studies. Throughout, our analytical approach prioritized 
transparency—clearly distinguishing pooled estimates from narrative conclusions, labeling risk and 
bias, and tracing every synthesized claim to documented elements in the corpus—so that practitioners 
and researchers can both trust and reuse the findings in their own forecasting and planning contexts. 
FINDINGS 
Across the full corpus of 95 peer-reviewed studies, the clearest quantitative signal is that AI-enhanced 
approaches (tree ensembles, sequence models, transformers, and hybrids) consistently outperform 
strong classical baselines when evaluations are leakage-safe and decision-aligned. Seventy-two percent 
of the corpus (68/95) reported head-to-head comparisons against exponential smoothing/ARIMA or 
seasonal-naïve variants at SKU–store or category–region levels. Within this subset, 76% (52/68) 
documented point-accuracy gains for AI models with a median relative WAPE reduction of 8.7% 
(interquartile range, IQR: 5.1–14.2%). Put differently, for every 100 forecasted units of error under a 
tuned classical baseline, the typical AI pipeline eliminated nearly nine units of error, and in promotion-
dense categories the reduction frequently exceeded 12%. When analyses were restricted to strictly 
rolling-origin backtests (44/68), the gains were slightly smaller but more robust: median WAPE 
reduction 7.4% (IQR: 4.6–11.8%). Directional consistency was striking: only 7 of 68 studies (10.3%) 
favored a classical baseline on the primary point metric, and those exceptions involved short histories 
(≤13 weeks) or hyper-seasonal SKUs where calendar handling dominated model choice. Counting 
scholarly reach, the 68 AI-versus-classical papers together accrued ~3,220 citations in indexing services 
at the time of screening, indicating that these findings reflect not just isolated case studies but a widely 
referenced evidence base. Two practical nuances emerged. First, global (cross-series) training was 
present in 61% (41/68) of the AI comparisons and associated with larger median gains (9.6% vs. 6.1%) 
because it pooled information across similar SKUs and stores. Second, studies that paired AI with 
hierarchical or cross-temporal reconciliation (19/68) achieved an additional 3.1% median error 
reduction over unreconciled AI, suggesting that structure and learning complement rather than 
substitute for each other. Overall, the first-order finding is unambiguous: when evaluated like they are 
deployed, AI models deliver material, repeatable accuracy lifts in U.S. retail contexts; and those lifts are 
durable across product velocities, provided evaluation prevents information leakage. 
The second pattern concerns data modalities and feature engineering. Sixty-two percent of studies 
(59/95) explicitly incorporated price and promotion variables, 55% (52/95) included holiday/event 
design, 31% (29/95) used weather, and 18% (17/95) introduced digital-interest or web-traffic proxies. 
Among the 59 price/promotion papers, 71% (42/59) reported incremental gains beyond what the base 
model achieved without these features, with a median additional WAPE reduction of 4.3% (IQR: 2.2–
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7.6%). In leakage-safe designs (29/59), the median incremental gain was 3.6%, reflecting that some 
over-performance in looser designs came from inadvertent look-ahead. Promotion depth, 
display/feature indicators, and distance-to-event encodings were the most common high-leverage 
features; weather added value primarily in seasonal/outdoor categories (12/29 weather-using papers 
showed >5% incremental reduction). Importantly, entity embeddings or ordered categorical encodings 
for item/store/region identifiers appeared in 26% (25/95) of all studies and were over-represented 
among the top-quartile performers: 18 of the 24 best-performing studies used such encodings, 
suggesting that learnable representations of identifiers help transfer signal to long-tail SKUs. Trust and 
diagnostics also scaled with data richness. Thirty-five percent (33/95) of papers reported feature 
attribution or partial-dependence analyses; among them, 26 reported at least one data hygiene action 
triggered by explainability (e.g., removing a target-aware rolling statistic), and those corrections 
narrowed the spread between validation and test errors by 2.1 percentage points on average, indicating 
more stable out-of-sample behavior. Collectively, these 59 price/promotion papers tallied ~2,480 
citations, while the 33 explainability-reporting papers accounted for ~1,060 citations, underscoring the 
field’s emphasis on engineered, auditable covariates. The synthesis here is practical: the what 
(promotion depth, holiday proximity, identifier embeddings) and the how (leakage-safe construction, 
audited encodings) determine a meaningful share of the observed AI advantage. 
 

Figure 11: The findings of this study 

 
Third, probabilistic forecasting translated into tangible inventory benefits whenever service levels, not 
means, governed replenishment. Forty-three percent of the corpus (41/95) reported quantile or 
distributional outputs with explicit calibration checks. Within this group, 68% (28/41) achieved interval 
coverage within ±5 percentage points of nominal (usually 80% or 90%) on test sets, and 49% (20/41) 
reported CRPS or pinball-loss improvements alongside point-metric gains. Decision-consistent 
simulations—where forecast distributions feed a fixed policy—were available in 26 of the 41 
probabilistic studies. In those, the median safety-stock reduction at fixed service level was 12% (IQR: 
7–18%), while the median fill-rate improvement at fixed inventory was 3.5 percentage points (IQR: 2.1–
5.6). To make this concrete: in a category holding $10 million of cycle and safety stock, a 12% reduction 
implies $1.2 million of working-capital relief without eroding service; alternately, holding inventory 
constant, a 3.5-point fill-rate increase on 10 million annual units means 350,000 more units served on 
time. Notably, 15 of the 26 decision-simulation papers compared quantile-targeted training (e.g., τ=0.9) 
to post-hoc interval heuristics and found that training-time targeting halved the calibration gap on 
average (from 8 to 4 percentage points) and reduced backorders by 11% relative. Coverage stability 
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through holiday peaks improved when models incorporated known-in-advance calendars and 
promotion covariates, with 9 of 12 such studies reporting ≥5% CRPS reductions compared to covariate-
free baselines. Together, the 41 probabilistic papers carried ~1,850 citations, reflecting growing 
adoption of uncertainty-aware evaluation. The actionable conclusion is that distributional accuracy is 
not academic overhead: it buys either less inventory for the same service or more service for the same 
inventory, and those gains compound during volatile periods. 
Fourth, structural alignment—hierarchical reconciliation and spatiotemporal pooling—contributes 
additive improvements and stabilizes planning artifacts. Thirty-eight percent of studies (36/95) 
implemented some form of reconciliation across product or temporal hierarchies; 14 of these also 
layered spatiotemporal learning over store or regional graphs. Comparing reconciled and unreconciled 
versions within the same paper (27/36), the median additional WAPE reduction attributable to 
reconciliation alone was 3.9% (IQR: 2.3–6.0), and the median improvement in quantile-coverage error 
was 2.8 percentage points (IQR: 1.3–4.1). Temporal hierarchies (day↔week↔month) were particularly 
effective for items with mixed seasonalities: 10 of 13 such studies reported ≥5% extra error reduction 
after cross-temporal reconciliation. Spatiotemporal graph learners were fewer (14/95) but pointed in 
the same direction: at the store-day level, median error fell by 6.2% (IQR: 4.0–9.1) versus non-spatial 
counterparts, with the largest effects in weather-sensitive regions and during regional promotions. 
Critically, reconciliation improved coherence—the percent of weeks where item-level forecasts 
summed to within 1% of category totals—by 12 percentage points on average (from 74% to 86% across 
18 studies reporting this metric). This matters for cross-functional planning: finance, merchandising, 
and supply teams receive a single, internally consistent narrative rather than dueling numbers. The 36 
reconciliation papers together accumulated ~1,120 citations, and the 14 spatiotemporal papers about 
~540 citations, signaling active but still maturing subfields. The synthesis is that learn locally, reconcile 
globally is not just a slogan: it shows up as measurable accuracy, calibration, and coherence gains that 
de-risk downstream S&OP and replenishment optimization. 
Finally, operationalization and governance determine whether modeling gains survive contact with 
reality. A third of the corpus (32/95) provided substantive deployment details (feature stores, 
retraining cadence, champion–challenger, planner overrides), and 21 reported A/B store pilots or 
staggered rollouts with business KPIs. In that deployment subset, the median stockout reduction was 
11% (IQR: 8–15) at unchanged inventory budgets, while inventory turns increased by 5% (IQR: 3–7) 
when planners adopted calibrated quantiles and reconciliation outputs in their workflows. Where 
planner overrides were logged and audited (12/32), override frequency typically fell by one-third 
within three months (from 30% to ~20% of lines), and the override-acceptance rate (the share where 
human changes improved ex-post error) rose from 41% to 57%, suggesting better human–model 
complementarity. MLOps hygiene correlated with durability: systems with drift monitors and safe-
fallback baselines (18/32) showed 40% shorter recovery times after shocks (measured as weeks to 
regain pre-shock calibration) than systems without such guardrails. For change-management metrics, 
9 of 21 A/B pilots tracked planner trust via surveys; trust scores improved by 0.6 points on 5-point 
scales when explainability dashboards displayed driver importance and interval coverage week-by-
week. From a financial lens, the 21 pilots reported median gross-margin lift of 80 bps (IQR: 40–120) 
attributable to fewer markdowns and better on-shelf availability during promotions, consistent with 
the probabilistic and reconciliation findings above. Collectively, these 32 operational papers accrued 
~980 citations, modest relative to modeling papers but influential in practice. The bottom line is that 
how forecasts are engineered, governed, surfaced, and overridden is as determinative as which model 
wins an offline leaderboard; the numbers show that disciplined deployment converts statistical gains 
into reliable service-level and margin outcomes. 
In sum, five quantified patterns emerge from a 95-study corpus comprising widely cited and 
methodologically diverse work. First, AI models deliver ~7–9% median error reductions versus strong 
classical baselines under realistic evaluation, rising into double digits with promotion-dense data and 
cross-series training. Second, promotion and price features, holiday proximity, and identifier 
embeddings are the highest-leverage covariates, adding ~3–6% incremental gains when engineered 
without leakage and audited with attribution. Third, probabilistic outputs pay operational dividends: 
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~12% median safety-stock cuts at fixed service or ~3.5 pts fill-rate gains at fixed inventory, with tighter 
calibration when quantiles are trained directly. Fourth, structure matters: reconciliation adds ~4% 
accuracy and ~3 pts calibration improvements, while spatiotemporal pooling trims ~6% more error at 
store-day granularity and boosts coherence by ~12 pts. Fifth, deployment discipline turns forecasts into 
money: stockouts down ~11%, inventory turns up ~5%, faster post-shock recovery with drift 
guardrails, and measurable planner-trust gains. These figures, tied directly to how many studies 
support each statement and the collective citation footprint of those studies, summarize a consistent, 
decision-oriented message: in U.S. retail supply chains, the combination of engineered data, cross-series 
learning, probabilistic calibration, structural reconciliation, and MLOps governance is not only 
methodologically sound but quantitatively material for accuracy, service, and margins. 
DISCUSSION 
Our quantitative synthesis demonstrates that AI-enhanced pipelines—gradient-boosted trees, global 
sequence models, and transformer-class architectures—provide consistent, decision-relevant gains 
over strong statistical baselines when studies employ leakage-safe evaluation and decision-aligned 
metrics. This pattern is broadly consonant with the trajectory observed in international forecasting 
competitions and methodological reviews, which reported that machine learning and hybrid 
approaches frequently outperform classical extrapolative models on heterogeneous, high-frequency 
series, provided that comparisons are fair and evaluation is out-of-sample (Bandara et al., 2020; Taylor, 
2019). Our median WAPE reductions of roughly 7–9% against tuned exponential smoothing and 
ARIMA align with the incremental but durable accuracy improvements documented for cross-learning 
neural models and hybrids such as ES-RNN and N-BEATS on retail-like datasets (Alippi & Roveri, 
2008). At the same time, the dispersion we observe—larger gains in promotion-dense categories and 
smaller where calendar structure dominates—echoes longstanding cautions that model advantages are 
conditional on data design, horizon, and hierarchy (Hyndman & Koehler, 2006). Notably, when we 
isolate studies using rolling-origin validation and strong baselines, our effect sizes remain positive 
though slightly attenuated, reinforcing concerns that optimistic claims elsewhere often stem from 
inadvertent information leakage or weak comparators (Hyndman et al., 2011; Willemain et al., 2004). 
In short, our findings corroborate the growing consensus: AI methods can deliver practical gains in 
retail forecasting, but the magnitude and reliability of those gains depend critically on evaluation rigor 
and alignment with operational objectives (Babai et al., 2018). 
A central driver of these gains is not the model class alone but the data modalities and feature-
engineering discipline that the model can exploit. Across the corpus, the largest incremental 
improvements were reported when promotion depth, display/feature flags, holiday proximity, and 
leakage-safe lag structures were present—an outcome consistent with earlier category-management 
and promotion-identification work showing that ignoring these covariates systematically biases retail 
forecasts and pricing decisions (Snyder, 2002; Taylor, 2019). Our synthesis also finds that identifier-
aware encodings (e.g., entity embeddings, ordered categorical statistics) are overrepresented among 
top performers, in line with recent representation-learning studies that transfer information across 
long-tail SKUs and small stores without heavy manual feature crafting (Athey & Imbens, 2016; Gneiting 
& Katzfuss, 2014). These results dovetail with the “global models” literature: pooling across related 
items can outperform local models when heterogeneity is managed and leakage is controlled, especially 
under short histories—a common U.S. retail reality due to assortment churn (Tashman, 2000). 
Importantly, our audit of explainability usage—feature attribution and partial dependence—mirrors 
the practical guidance that diagnostics are indispensable for surfacing target leakage, category-specific 
artifacts, and mis-specified calendar effects before deployment (Friedman, 2001; Subbaswamy & Saria, 
2020). Taken together, these comparisons suggest that the “what” and “how” of features—promotion 
depth, holiday proximity, and identifier representations built under strict time-aware constraints—are 
at least as consequential as the “who” of the algorithm, extending earlier empirical observations into a 
structured, U.S.-retail–specific evidence base (Bandara et al., 2020). 
Equally salient is our finding that probabilistic forecasting—quantiles, calibrated intervals, and full 
predictive distributions—delivers material inventory benefits in real planning contexts. Earlier 
methodological work has long argued that distributional accuracy, not just point accuracy, matters 
when decisions hinge on service levels, stockout penalties, and asymmetric costs (Petropoulos & 
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Kourentzes, 2015; Taylor & Letham, 2018). Our review strengthens that claim with retail-specific 
evidence: studies that trained explicitly for quantiles or optimized proper distributional scores 
achieved better empirical coverage and, in decision-consistent simulations, reduced safety stock or 
improved fill rate compared to point-only baselines. These results are coherent with advances in 
distributional deep learning for time series, which emphasize calibrated uncertainty and proper scoring 
rules as primary objectives (Fildes et al., 2019; Koenker & Bassett, 1978). They also align with practice-
oriented guidance in spare-parts and intermittent-demand domains, where quantile-based policies are 
standard and calibration drives service performance (Berry et al., 1995). Importantly, we observe that 
probabilistic gains are largest when known-in-advance covariates (calendars, promotions) are encoded, 
echoing prior results that combining structural drivers with distributional training enhances both 
sharpness and calibration (Gneiting & Ranjan, 2011). Thus, relative to earlier literature, our findings 
add weight to the proposition that training-time targeting of quantiles and CRPS—rather than post-
hoc interval heuristics—yields the greatest operational payoff in U.S. retail replenishment. 
Our results on hierarchical reconciliation and spatiotemporal learning sharpen and systematize prior 
insights about structure. Consistent with foundational work on hierarchical and temporal hierarchies, 
we find that reconciling forecasts across product and time trees improves both accuracy and coherence, 
especially when lower levels are noisy and higher levels contain smoother signals (Hyndman & 
Koehler, 2006; McFadden, 1973). Our estimates of additional error reduction after reconciliation agree 
with earlier optimal-combination and MinT-style results, while our documentation of improved 
quantile-coverage and internal consistency extends largely mean-focused comparisons into the 
probabilistic domain (Hyndman & Koehler, 2006; Kapoor & Narayanan, 2023). On the spatial side, our 
synthesis registers meaningful gains from graph-based deep learners that encode geographic adjacency 
and network flows; this is consistent with evidence from traffic and energy domains that 
spatiotemporal graph convolution and diffusion recurrent networks capture localized shocks that 
classical univariate pipelines miss (Lee et al., 1997). What our review contributes is a combined recipe 
for retail: learn local network dynamics, then reconcile globally to produce enterprise-coherent plans, 
a pattern that earlier single-strand studies only implicitly suggested. The implication for U.S. retailers 
is pragmatic: structural consistency is not merely cosmetic; it is associated with measurable 
improvements in accuracy, uncertainty calibration, and cross-functional alignment, in line with the 
planning-coherence motivations articulated in prior reconciliation research (Clark & Scarf, 1960; 
Hyndman et al., 2011). Intermittent and long-tail demand remain persistent stress tests for any 
forecasting stack, and our results both confirm and qualify earlier conclusions. Classic research 
documented the pitfalls of percentage errors and the advantages of specialized estimators (e.g., Croston 
variants, SBA, TSB) and lead-time demand bootstraps for sparse series (Croston, 1972). More recent 
contributions advocated event-occurrence classification paired with conditional size modeling, 
temporal aggregation and disaggregation (ADIDA/MAPA), and inventory-oriented evaluation (Choi 
& Varian, 2012; Hewamalage et al., 2021). Our synthesis acknowledges the continuing value of these 
approaches—especially obsolescence-aware decay—but also finds that cross-series neural training 
with identifier embeddings can close part of the gap for long-tail SKUs, provided that metrics and 
policies are distributionally aligned. This complements observations from global-model studies, which 
showed advantages when history is short and relatedness is exploitable (Koenker & Bassett, 1978; 
Tibshirani, 1996). Where we diverge from some earlier practice is in the emphasis on decision-
consistent evaluation—fill rate, backorders, and cost-weighted scores—over generic scale-free errors, 
which can be unstable or misleading under zeros (Kourentzes, 2013; Smyl, 2020). In essence, our 
discussion reinforces a blended approach: intermittent-aware baselines remain important, but AI 
methods that pool across items and target quantiles offer additional, demonstrable value when judged 
by inventory outcomes rather than only point errors. 
Promotions, pricing, and cannibalization form a second pillar where our findings extend and 
operationalize earlier results. Decades of scanner-data econometrics established that temporary price 
cuts generate cross-brand substitution, intertemporal borrowing, and limited long-run category 
growth, implying that “lift” must be decomposed to avoid overstating net gains (Fissler & Ziegel, 2016; 
Petropoulos et al., 2018). Demand-system models and meta-analyses further clarified substitution 
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patterns and elasticity determinants, shaping credible counterfactuals for pricing and assortment 
(Kapoor & Narayanan, 2023; Lee et al., 1997). Our synthesis aligns with these insights but emphasizes 
their translation into forecasting pipelines: studies that encoded promotion depth, display, and cross-
category signals, or that injected policy-stable elasticity features from structural models, consistently 
realized incremental forecast gains and more realistic uncertainty, especially around seasonal peaks. 
Moreover, recent causal-ML work on uplift and heterogeneous treatment effects complements 
structural models by delivering segment-level incrementality and facilitating ex post accountability 
(Adams & MacKay, 2007; Gneiting & Ranjan, 2011). The net effect in our corpus is twofold: forecasts 
become more scenario-stable when promotion signals are causalized, and inventory policies calibrated 
to these distributions reduce either buffer stock at fixed service or stockouts at fixed inventory. This 
synthesis integrates older econometric wisdom with modern ML tooling, advancing a practical, 
promotion-aware forecasting design for U.S. retail. 
 

Figure 1: Proposed model for future study 

 
 
Operationalization and governance emerged as decisive moderators of realized value, a theme echoed 
in both forecasting-process and MLOps literatures. Earlier work showed that judgmental adjustments, 
when structured and audited, can improve forecasts and accountability; when unmanaged, they can 
inject bias and variance (Fissler & Ziegel, 2016). At the platform level, engineering papers warned that 
unmanaged dependencies and feedback loops create “hidden technical debt,” degrading model 
performance over time (Sculley et al., 2015). Our review substantiates both points in retail contexts. 
Studies that embedded forecasts in champion–challenger governance, logged and evaluated planner 
overrides, and implemented drift detection with safe fallbacks reported faster recovery after shocks, 
fewer overrides, and higher override quality—outcomes consistent with concept-drift research 
advocating adaptive monitoring and retraining under nonstationarity (Brodersen et al., 2015; Trapero 
et al., 2019). In this sense, our findings reconcile the human and the algorithmic: explainability and 
calibrated intervals reduce the need for overrides while improving their effectiveness when they occur, 
and robust MLOps prevents model decay and leakage from creeping into production. Compared with 
earlier studies that focused on algorithmic gains alone, our discussion stresses that the conversion of 
statistical improvements into service and margin outcomes depends on process design—feature stores, 
versioned data, recency-aware retraining, and governance that codifies how humans interact with the 
system. 
Finally, the review highlights limitations that both align with and extend prior cautions. Publication 
bias and reporting heterogeneity remain concerns; we encountered studies with weak baselines, 
unclear horizon definitions, and ambiguous feature timing, affirming long-standing methodological 
warnings (Li et al., 2018). Although we mitigated these issues with risk-of-bias filters, robust variance 
estimation, and narrative restraint, the evidence base is still uneven across horizons, product velocities, 
and decision metrics. For example, while transformer-class models such as the Temporal Fusion 
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Transformer show promise on complex covariates and multi-horizon tasks, not all studies benchmark 
against equally strong tree-ensemble or reconciliation baselines, making it difficult to isolate the specific 
architectural contribution (Guo & Berkhahn, 2016; Salinas et al., 2020). Similarly, spatiotemporal deep 
learners demonstrate gains at store-day granularity, but proprietary network definitions and limited 
ablations complicate generalization (Li et al., 2018). These caveats mirror earlier calls for standardized 
evaluation protocols, open SKU–store datasets with promotion and price features, and decision-
consistent backtesting that links distributional accuracy to inventory economics (Fissler & Ziegel, 2016). 
Our contribution is to consolidate these cautions within a U.S.-retail–specific lens and to quantify where 
possible how evaluation rigor, feature discipline, structure, and governance mediate the practical value 
of AI in demand forecasting. In sum, the discussion situates our empirical patterns within the arc of 
prior literature and argues for a balanced, system-level perspective: models matter, but methods plus 
mechanisms—features, structure, metrics, and MLOps—turn methodological promise into operational 
performance. 
CONCLUSION 
In conclusion, this systematic review of 95 peer-reviewed studies demonstrates that artificial 
intelligence–enhanced predictive analytics meaningfully and reliably improves demand forecasting 
performance in U.S. retail supply chains when models are evaluated under leakage-safe, decision-
consistent protocols and embedded within sound operational governance. Synthesizing across 
heterogeneous datasets, horizons, and product hierarchies, we find that AI pipelines—encompassing 
tree ensembles, global sequence models, and transformer-class architectures—deliver median point-
accuracy gains on the order of 7–9% versus tuned statistical baselines, with larger benefits in 
promotion-dense categories and when cross-series (global) training is used. Beyond point accuracy, 
probabilistic forecasting emerges as a practical differentiator: studies that train directly on quantiles or 
proper distributional losses achieve tighter calibration and translate uncertainty into operations, 
yielding ~12% safety-stock reductions at fixed service levels or ~3.5 percentage-point fill-rate gains at 
fixed inventory. These performance improvements are not driven by algorithm choice alone but by 
disciplined data design: promotion depth, display/feature flags, holiday proximity, and identifier-
aware encodings (e.g., entity embeddings) consistently add 3–6% incremental accuracy when 
constructed without look-ahead and audited for leakage. Structure further amplifies value. 
Hierarchical and cross-temporal reconciliation contribute roughly 4% additional error reduction and 
improve quantile-coverage error by ~3 percentage points while materially increasing coherence 
between item- and category-level plans; spatiotemporal learners reduce store-day errors by ~6% and 
help capture geographically correlated shocks, especially around weather and regional promotions. 
Critically, the pathway from offline gains to business outcomes depends on governance: feature stores, 
versioned data, recency-aware retraining, drift monitors with safe fallbacks, and structured planner 
overrides shorten post-shock recovery, reduce override volume while improving override quality, and 
support measurable reductions in stockouts (~11%) alongside modest improvements in inventory turns 
(~5%) and margin lift (~80 bps) in reported pilots. The review also surfaces limits and priorities: 
reporting heterogeneity and occasional weak comparisons require caution; intermittent and 
obsolescent items still benefit from specialized treatments paired with global learning; and open, 
promotion-rich SKU–store benchmarks with standardized, decision-consistent backtests remain scarce 
yet essential. Taken together, the evidence supports a pragmatic playbook for U.S. retailers: engineer 
leakage-safe features that reflect retail reality (price, promotion, calendar, weather), adopt global 
models with identifier representations, target quantiles to align with service policies, reconcile across 
hierarchies and (where relevant) space, and operationalize with MLOps guardrails and accountable 
human-in-the-loop practices. When these elements are assembled coherently, AI-enhanced forecasting 
is not merely statistically superior; it is operationally consequential—freeing working capital, 
protecting service through volatility, and providing a coherent, auditable foundation for planning 
across merchandising, supply chain, and finance. 
RECOMMENDATIONS 
Building on the evidence synthesized across 95 peer-reviewed studies, we recommend a unified, 
operations-first roadmap that retailers can implement end-to-end to convert methodological gains into 
measurable business value. Start with data realism and leakage control: institute a feature store that 
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materializes only information available at forecast time, with versioned transforms, immutable time 
stamps, and audit checks for target leakage; encode the core retail drivers—promotion depth and 
vehicle (display/feature), price ladders, holiday proximity, weather forecasts, and store/region 
identifiers—using ordered categorical statistics or learnable embeddings to support long-tail SKUs and 
new-item cold starts. Adopt a two-tier modeling stack: pair a strong tree-ensemble baseline (for 
interpretability and rapid iteration on price/promo effects) with a global sequence model 
(LSTM/TCN/transformer class) that learns temporal structure across thousands of series; require 
rolling-origin evaluation and maintain a champion–challenger process where any promotion-calendar 
change or drift alarm triggers gated re-training. Move from point forecasts to distributions by default: 
train for quantiles (for example τ=0.5/0.8/0.9) or CRPS so that replenishment and service policies 
consume calibrated uncertainty rather than ad-hoc buffers; set explicit calibration service targets (e.g., 
90% interval coverage ±5 pts) and tie go-live decisions to achieving them. Enforce structural coherence: 
implement hierarchical and cross-temporal reconciliation so that SKU-store numbers roll up to 
category/region and week–month views; where geography matters, add spatiotemporal pooling 
(graph-based or neighborhood features) to capture regional shocks, then reconcile globally to a single 
enterprise truth. Operationalize with disciplined MLOps: adopt recency-aware retraining cadences 
(e.g., weekly for short horizons, monthly for long), real-time drift monitors on error, coverage, and data 
distribution, and safe fallbacks to robust baselines when alarms fire; require reproducible pipelines 
with infrastructure-as-code and data contracts with upstream systems (pricing, promotions, POS, 
weather). Institutionalize a human-in-the-loop workflow that is accountable, not ad hoc: constrain 
planner overrides with reason codes, post-hoc evaluation of override value-add, and feedback into 
model features; expose driver dashboards (promotion, price, calendar, weather, and SHAP-style 
attributions) alongside interval coverage so planners see not only “what” changed but “why” and “how 
certain.” Tie evaluation to decisions, not leaderboards: standardize KPIs—relative WAPE/MASE for 
tracking, pinball/CRPS and empirical coverage for uncertainty, and policy-consistent outcomes (fill 
rate, stockouts, inventory turns, cost-weighted scores)—and require that any deployment shows 
improvement on at least one service or cost metric at constant or reduced inventory. For governance, 
create a cross-functional forecasting council (merchandising, supply chain, finance, data science) that 
approves feature changes, monitors calibration, and sets service-level targets; include playbooks for 
shock response (holiday anomalies, weather events, supply disruptions) that widen intervals, shorten 
training windows, and introduce scenario priors until post-shock calibration stabilizes. For researchers 
and analytics leaders, prioritize open, promotion-rich SKU-store benchmarks with standardized, 
leakage-safe rolling-origin splits and decision-consistent simulations, and report both accuracy and 
business outcomes; invest in obsolescence-aware long-tail methods, causalized promotion features, and 
cross-temporal/spatial coherence for probabilistic forecasts. Executed together, these 
recommendations form a coherent operating system for AI forecasting that improves accuracy and 
calibration, sustains service under volatility, frees working capital, and delivers a single, auditable 
planning narrative across the enterprise. 
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