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Abstract 
 This study investigates the strategic application of artificial intelligence (AI) in agribusiness systems with 

the dual aim of enhancing market efficiency and mitigating zoonotic risks, addressing two of the most 

critical challenges confronting global food systems. AI has emerged as a transformative technological 

paradigm capable of integrating vast, heterogeneous datasets from agricultural production, supply 

chain logistics, and veterinary health networks to generate real-time, predictive insights. These 

capabilities hold significant potential to stabilize volatile markets and strengthen biosecurity within highly 

interconnected agri-food systems. To examine this potential systematically, the study employed the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, which 

ensured methodological transparency, reproducibility, and rigor. An initial search retrieved 1,247 

publications across major scholarly databases and institutional repositories. Following a structured 

screening and eligibility assessment process, 122 studies were selected for in-depth qualitative synthesis. 

These studies were thematically categorized into seven domains: conceptual and theoretical 

foundations; production-level optimization; market systems and supply chain efficiency; zoonotic risk 

detection and mitigation; global case studies and institutional experiences; data infrastructure, ethics, 

and governance; and synthesis of conceptual gaps. Simultaneously, AI enhances bio surveillance 

through anomaly detection, natural language processing of veterinary data, genomic epidemiology, 

and spatial risk modeling, enabling earlier detection and targeted containment of zoonotic threats. 

Evidence from global case studies highlights measurable improvements in yield stability, compliance 

reliability, and disease risk management, alongside reductions in losses and border clearance delays. 

The review also identifies critical enabling conditions—such as data interoperability, governance 

frameworks, and institutional capacity—that determine the long-term success of AI integration. 

Collectively, this synthesis reveals that AI can function as a unifying infrastructural layer that links 

efficiency and biosecurity goals, reframing them as mutually reinforcing rather than competing 

objectives. The study concludes that strategic AI deployment, underpinned by robust data systems and 

cross-sectoral governance, offers a viable pathway to building resilient, transparent, and risk-aware 

global agribusiness networks. 
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INTRODUCTION 
Artificial intelligence represents a suite of computational methods designed to emulate human 

cognitive capabilities such as learning, reasoning, problem-solving, and decision-making (Konar, 2018). 

Within the context of agribusiness systems, AI functions as an enabling infrastructure that enhances the 

efficiency, responsiveness, and resilience of complex supply chains spanning production, processing, 

distribution, and retailing. Agribusiness is inherently globalized, involving cross-border flows of inputs, 

commodities, and information, all of which require rapid, accurate decision-making to maintain 

competitive markets and safeguard public health. Market efficiency in this domain refers to the ability 

of agricultural markets to allocate resources optimally, reduce transaction costs, and ensure that prices 

accurately reflect the underlying conditions of supply (Siemens et al., 2022), demand, and quality. 

Zoonotic risk mitigation refers to the reduction of the probability and severity of pathogen transmission 

between animals and humans, particularly in environments where livestock production intersects with 

human consumption. Because agriculture is a primary interface where human activity overlaps with 

animal and environmental systems, it is a key site for both economic development and biosecurity 

concerns. Strategically deploying AI within these systems serves two critical global purposes: Kumar et 

al. (2025) optimizing market performance and safeguarding populations from emerging zoonoses. 

International organizations increasingly view these twin objectives as interdependent. Efficient markets 

reduce food insecurity and price shocks, while enhanced zoonotic surveillance reduces the likelihood 

that trade-related animal diseases become public health crises. This intersection frames AI not merely 

as a technological innovation, but as a strategic governance instrument embedded in regulatory, 

economic, and health infrastructures worldwide (Jarrahi, 2018). It underpins the capacity to translate 

vast data flows—sensor readings, market transactions, veterinary records, and logistics documents—

into actionable intelligence that aligns private incentives with public safety goals across national 

boundaries. 

Agribusiness systems operate across highly dispersed geographies and are characterized by volatility, 

seasonality, and sensitivity to environmental disruptions (Joshi et al., 2025). Traditionally, information 

gaps along supply chains have created price distortions, delayed responses to shocks, and contributed 

to waste and spoilage. AI helps resolve these inefficiencies by integrating high-frequency data from 

remote sensing, internet-connected farm equipment, transaction platforms, and logistics providers to 

generate continuous market intelligence. Machine learning models can assimilate disparate data—

such as soil moisture, vegetation indices, shipping delays, or cold storage capacity—into unified 

forecasts of supply conditions and market availability. This predictive capability enables traders, 

processors, and retailers to align procurement, production, and distribution schedules more accurately 

with actual conditions on the ground. Moreover, Trunk et al. (2020) state AI can detect anomalies in 

trade flows or storage inventories that may indicate localized disruptions before they affect global 

prices. This reduces the bullwhip effect, where small disturbances amplify as they move upstream 

through the supply chain. By shortening feedback loops, AI-driven market systems stabilize prices, 

reduce surplus accumulation, and prevent quality degradation, thereby increasing market efficiency. 

In cross-border contexts, where customs, inspection regimes, and phytosanitary rules often introduce 

delays, AI-supported systems can pre-clear shipments through risk-based assessments, Ragni (2020) 

accelerating throughput and lowering costs. These mechanisms support fairer competition by providing 

smaller producers access to the same real-time intelligence as large agribusinesses, helping integrate 

them into global markets. The strategic application of AI thus transforms markets from reactive to 

anticipatory, reducing information asymmetries and aligning resource allocation more closely with 

dynamic conditions of production and demand worldwide (Danish & Zafor, 2022; Kriegeskorte & 

Douglas, 2018). 

At the production stage, AI reshapes how crops and livestock are managed by converting sensor data 

into prescriptive insights. In crop systems, computer vision algorithms interpret aerial imagery from drones 

and satellites to detect nutrient deficiencies, water stress, and disease outbreaks long before they are 

visible to the human eye (Chen et al., 2018; Danish & Kamrul, 2022). These early signals allow 

targeted interventions, such as adjusting irrigation schedules or applying inputs precisely where needed, 

reducing costs while improving yields and quality. In livestock systems, AI analyzes data from 

microphones, accelerometers, and thermal cameras to detect subtle changes in animal behavior or 

physiology, such as coughing, lameness, or elevated temperatures, which are often early indicators of 

illness (Hassani et al., 2020; Jahid, 2022). Identifying such issues early reduces losses and also prevents 

potentially infected animals from entering the food chain. Over time, these micro-level improvements 

in production data feed into macro-level market systems, enhancing the reliability of supply forecasts 
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and quality grading. AI-based pest prediction models further protect production by combining historical 

infestation records with current climate conditions to generate risk maps, enabling preventive measures 

rather than reactive responses (Arifur & Noor, 2022; Stolpe & Hallström, 2024). These capabilities 

directly contribute to market efficiency by ensuring that products reaching buyers conform to expected 

quality and safety standards, thereby reducing disputes, rejections, and price penalties. Furthermore, 

embedding these quality metrics in digital supply chain platforms means that quality verification travels 

with the product, supporting both domestic and international trade. This integration ensures that 

efficiency is not merely about maximizing throughput, (Yan et al., 2024) but about aligning biological 

production processes with the quality specifications demanded by markets, ultimately raising both the 

value and reliability of agricultural goods. 

 

Figure 1: AI-Driven Agribusiness Efficiency Framework 
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Beyond production, AI reconfigures the information architecture through which agricultural 

commodities are traded, transported, and priced (Bhuyan et al., 2024; Hasan & Uddin, 2022). Digital 

marketplaces increasingly use predictive pricing algorithms and recommendation systems to match 

buyers and sellers efficiently, reducing search costs and improving price discovery under conditions of 

fluctuating supply and demand. Time-series forecasting models trained on historical market data, freight 

costs, and inspection outcomes can predict price volatility and supply disruptions, informing hedging 

strategies and inventory management (Rahaman, 2022a; Su & Zhong, 2022). Reinforcement learning 

systems are applied in perishable goods logistics to dynamically adjust pricing and allocation decisions 

based on remaining shelf life and transportation constraints. Graph analytics on transportation networks 

reveal critical nodes where congestion or temperature excursions could compromise product quality or 

biosecurity, allowing operators to reroute shipments preemptively. Blockchain-based traceability 

systems enhanced with AI anomaly detection reinforce trust by ensuring that origin claims, handling 

conditions, and sanitary certifications are consistent and tamper-resistant (Rahaman, 2022; Redhu et 

al., 2022). Natural language processing tools can scan evolving trade regulations, veterinary bulletins, 

and import alerts in multiple languages to help exporters and border authorities remain synchronized on 

admissibility rules and documentation requirements. Together, these applications create transparent, 

resilient, and adaptive supply chains that minimize both economic losses and health risks. By aligning 

logistics, market matching, and regulatory compliance, AI enables agricultural markets to function more 

like coordinated networks rather than fragmented chains. This structural transformation reduces 

transaction costs, (Yan et al., 2024) increases the velocity of trade, and enhances the overall efficiency 

and integrity of agribusiness systems at the international level. 

 
Figure 2: Agent-Centric Data Sharing Framework 
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AI enhances early detection of disease emergence by processing real-time veterinary health records, 

movement permits, sensor data from farms, and even informal reports from local markets. Machine 

learning models can identify abnormal clusters of illness or mortality that deviate from expected 

baselines, triggering rapid investigation before diseases spread further (Hassani et al., 2020; 

Rahaman, 2022b). Genomic analysis supported by AI accelerates the identification of pathogens and 

their variants, clarifying their origins, transmission routes, and potential impact on trade. Risk mapping 

models incorporate environmental, ecological, and demographic variables to highlight regions with 

high spillover potential, supporting the spatial targeting of surveillance and biosecurity measures 

(Rahaman & Ashraf, 2022; Townsend & Hunt, 2019). In processing and retail stages, computer vision 

and spectroscopy systems can non-invasively detect contamination indicators on carcasses and 

produce, reducing the risk of infected products reaching consumers. Integrating these technologies 

across supply chains creates layered defense systems that identify, contain, and neutralize zoonotic 

threats without halting commerce. This convergence aligns economic efficiency with public health 

security: preventing outbreaks preserves market stability by avoiding border closures, mass culls, and 

consumer confidence shocks (Finlay, 2020; Islam, 2022). AI thereby becomes not only a productivity-

enhancing tool but also a critical safeguard that allows agribusiness systems to operate safely in a world 

where the boundary between animal and human health is increasingly permeable. 

The global deployment of AI in agribusiness demonstrates how its impact depends on institutional 

context, infrastructure, and regulatory frameworks (Garg, 2021; Hasan et al., 2022). In some regions, 

remote sensing systems have been integrated into market information platforms to provide real-time 

production estimates that stabilize prices during droughts or floods by guiding trade flows. In other 

settings, computer vision-based quality grading has improved fairness and transparency in agricultural 

auctions by standardizing product assessments (Garg, 2021; Redwanul & Zafor, 2022). Livestock 

movement tracking systems enhanced with anomaly detection have helped prevent the spread of 

animal diseases along major trade corridors, preserving both market continuity and public health 

safeguards. Cold-chain optimization models have reduced spoilage and maintained product integrity 

during long-distance transport, directly lowering economic losses while reducing the likelihood of 

pathogen growth (Rezaul & Mesbaul, 2022; Verma et al., 2023). Regions with harmonized digital 

traceability systems have demonstrated faster response to food recalls and contamination events, 

minimizing market disruption and protecting consumer trust. These examples illustrate that AI tools only 

become effective when integrated into broader institutional systems such as veterinary services, 

customs authorities, market boards, and certification agencies. Algorithms alone do not deliver 

efficiency or safety; they must be embedded in rule-governed processes that translate data outputs 

into enforceable actions and recognized documentation (Hasan, 2022; Velankar et al., 2024). 
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Successful cases highlight the importance of standardization, data sharing agreements, and 

cooperative governance among public and private actors, which enable AI-generated insights to 

move fluidly across borders and organizational boundaries. This institutional embedding is what 

transforms AI from isolated tools into strategic systems that restructure how agribusiness operates 

globally. 

The effectiveness of AI in simultaneously enhancing market efficiency and mitigating zoonotic risks 

ultimately depends on the robustness of data infrastructure and governance mechanisms (Tarek, 2022; 

Zhang & Lu, 2021). Interoperable data architectures allow information to flow seamlessly across farm 

management systems, laboratory networks, logistics providers, and regulatory platforms. Common data 

standards and labeling protocols ensure that events such as disease suspicions, quality assessments, 

(Zhang & Lu, 2021)and temperature deviations are consistently defined and comparable across 

jurisdictions. This uniformity improves the accuracy, fairness, and transferability of machine learning 

models (Kouzalis et al., 2024; Kamrul &Omar, 2022). Equally important is the representativeness of 

training data, as biases or gaps can distort model outputs and inadvertently disadvantage smallholders 

or informal market actors who already face barriers to participation. Secure digital documentation 

systems anchor AI outputs within the formal evidence chain used for sanitary certification, customs 

clearance, and trade dispute resolution (Kamrul & Tarek, 2022; Sarker, 2022). Cybersecurity 

protections and identity verification technologies are essential to maintain trust, as the integrity of digital 

supply chain systems depends on the authenticity of the data feeding AI models. Institutional capacity 

within veterinary authorities, market regulators, and border agencies is also vital to interpret AI outputs 

and enforce the corresponding actions under sanitary and quality regulations. Governance frameworks 

that define data ownership, privacy, and accountability clarify responsibilities among stakeholders, 

making collaboration possible at scale. When these data and governance foundations are in place, AI 

systems can operate as integrated decision-support layers that enhance both the economic 

performance and health security of agribusiness networks. Their strategic deployment thus becomes 

not merely a technological upgrade but a systemic transformation of how global food and agriculture 

systems are coordinated, regulated, and safeguarded. 

LITERATURE REVIEW 

The strategic integration of artificial intelligence (AI) within agribusiness systems has emerged as a 

transformative domain at the intersection of technological innovation, market optimization, and global 

health security. Agribusiness networks are increasingly characterized by complex, transboundary supply 

chains that depend on timely, accurate information to balance efficiency with resilience. Historically 

(Bhat et al., 2025), inefficiencies in agricultural markets have stemmed from information asymmetries, 

fragmented logistics, and unpredictable biological risks, including the emergence and spread of 

zoonotic diseases. AI technologies—ranging from machine learning and computer vision to predictive 

analytics and natural language processing—offer novel means of reducing these frictions by converting 

diverse, high-frequency data streams into actionable insights. These capabilities allow market actors to 

forecast production, anticipate logistical disruptions (Madhav, 2025), and monitor sanitary conditions 

in ways that were previously unattainable. Simultaneously, the global nature of agri-food systems makes 

them potential conduits for zoonotic pathogens, as dense networks of animal production, 

transportation, and trade create multiple interfaces where spillover can occur. Traditional surveillance 

systems often detect outbreaks reactively, after pathogens have already propagated. AI-based risk 

modeling and early warning systems now enable proactive detection of anomalies, supporting 

containment strategies that minimize both public health impacts and market disruptions (Akimbekova 

et al., 2025). The literature addressing this convergence spans agricultural economics, supply chain 

analytics, animal health informatics, and global food safety governance. However, much of this 

scholarship remains fragmented, with limited synthesis of how AI applications can simultaneously 

enhance market efficiency and mitigate zoonotic risks within integrated agribusiness architectures. This 

literature review consolidates and analyzes existing research to construct a cohesive framework linking 

AI methodologies to economic efficiency outcomes and zoonotic risk mitigation mechanisms (Zaman 

et al., 2025). It organizes the body of knowledge into thematic clusters—technological foundations, 

production-level applications, market systems optimization, bio surveillance and risk modeling, case-

based institutional experiences, and governance frameworks. By mapping these domains, the review 

provides a structured foundation to understand how AI can be strategically embedded in agribusiness 

systems to serve dual objectives: improving global market performance and strengthening defenses 

against zoonotic threats. 
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Artificial Intelligence in Agribusiness Systems  

Artificial intelligence in agribusiness can be understood as a multifaceted technological paradigm that 

emulates human cognitive processes such as learning, reasoning, prediction, and decision-making to 

support complex agricultural environments (Gkikas et al., 2023). It encompasses machine learning 

techniques that recognize patterns in crop and livestock data, deep learning architectures that handle 

image and time-series analysis, expert systems that encode decision rules used by specialists, and 

predictive analytics that generate forecasts for yields, prices, and logistics flows. These AI paradigms are 

deployed across a vast range of agricultural contexts, from monitoring soil health and crop vigor to 

detecting early signs of livestock disease or stress (Annosi et al., 2024). What distinguishes AI from 

traditional computational approaches is its ability to continuously learn from incoming data and adjust 

its models dynamically as conditions change. Agricultural production systems are inherently uncertain, 

shaped by weather variability, biological cycles, and market fluctuations, which creates a decision-

making environment that is too complex for linear or static models (Vahdanjoo et al., 2025). AI 

addresses this challenge by identifying non-linear interactions among numerous variables and 

extracting meaningful patterns from noisy datasets, thereby producing real-time insights that guide 

operational actions. This situates AI not as a discrete tool used occasionally but as an embedded 

decision-support layer integrated throughout agricultural production, processing, and distribution 

systems. By transforming raw and diverse data into operational intelligence, AI enables agribusiness 

actors to respond adaptively to changing biological and market conditions, linking micro-level 

production processes with macro-level economic dynamics (Balasooriya & Sedera, 2025). 

Understanding AI in this way clarifies its role as an institutional infrastructure that underpins the 

functioning of modern agribusiness, enabling coordinated decision-making across complex networks of 

actors. 

 

Figure 3: AI Applications in Agricultural Monitoring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Agricultural data environments are uniquely challenging, characterized by heterogeneity, high volume, 

irregular quality, and strong spate-temporal variability, which makes them difficult to analyze using 

conventional statistical methods. Data streams originate from diverse sources including satellite imagery 

(Mubashir & Abdul, 2022; Yang et al., 2025), drone-based field scans, weather forecasts, soil profiles, 

animal biometric sensors, farm machinery, market transactions, and logistics records. Each of these 

sources operates at different spatial resolutions, temporal frequencies, and reliability levels, producing 

fragmented datasets that are difficult to align. AI overcomes these challenges through its ability to 

integrate, clean, and interpret large-scale unstructured data while capturing complex non-linear 

relationships that static models often overlook (Muhammad & Kamrul, 2022; Spanaki et al., 2022). 

In precision agriculture, for example, AI systems can process millions of image pixels to detect early signs 

of nutrient stress or disease before they are visible to human observers. In livestock production, AI 

integrates accelerometer, thermal, and acoustic data to detect subtle behavioral shifts that may 

indicate emerging illness. These capabilities transform AI into an interpretive layer that continuously filters 

noise, detects anomalies, and produces actionable recommendations from inherently unstable 

biological and environmental signals. Furthermore, AI systems can operate across scales, linking micro-
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level variations in plant or animal health to macro-level projections of supply flows, (Holzinger et al., 

2022) demand patterns, and market conditions. This makes AI fundamentally different from traditional 

farm management software, which generally relies on manually entered data and static decision rules. 

Instead, AI functions as a cognitive infrastructure embedded within agribusiness operations, translating 

fragmented and fast-changing data into real-time guidance that helps synchronize production with 

market demand while preserving quality and sanitary integrity throughout the supply chain (Arevalo-

Royo et al., 2025; Reduanul & Shoeb, 2022). This role as a decision-support layer illustrates why AI has 

become indispensable for navigating the complexity of modern agricultural systems. 

Agribusiness systems are best understood as complex adaptive networks rather than simple linear 

chains, and this systems perspective is essential to grasp the strategic role of AI within them (Ryan et 

al., 2023; Kumar & Zobayer, 2022). These networks consist of interconnected nodes—farmers, 

processors, logistics providers, wholesalers, retailers, regulators, and consumers—whose interactions 

produce emergent patterns of behavior, such as price fluctuations, inventory cycles, and quality 

dynamics. Each actor’s decisions influence others through feedback loops: production changes affect 

prices, which influence purchasing decisions and distribution strategies, which in turn shape new 

production cycles. Because these interactions occur in real time and often across global distances, 

small shocks can propagate rapidly through the network, amplifying disruptions and destabilizing 

markets (Camaréna, 2020; Sadia & Shaiful, 2022). Globalization further intensifies this complexity by 

linking disparate ecological, cultural, and regulatory contexts through shared flows of goods, data, and 

biological risks (Adetunji et al., 2023; Tamanna & Ray, 2023). Systems theory suggests that such 

networks cannot be controlled through centralized planning alone; they require adaptive coordination 

mechanisms capable of managing feedback and maintaining stability under changing conditions. AI 

fulfills this role by providing predictive insights that reduce information delays, dampen volatility, and 

enable decentralized actors to align decisions in near real time. Predictive demand models can 

modulate production upstream, while logistics algorithms dynamically reroute shipments downstream 

to absorb disruptions. By embedding predictive intelligence within the network’s feedback loops, AI 

transforms agribusiness systems from reactive structures into adaptive ones. This perspective also clarifies 

how localized zoonotic spillovers can cascade through the network to produce global shocks and how 

AI can act as a structural buffer by enabling faster detection and response (Ghosh & Kundu; SNoor & 

Momena, 2022). Conceptualizing agribusiness as a complex adaptive network therefore positions AI 

not as a peripheral optimization tool but as a central coordinating layer that governs interaction 

patterns and stabilizes systemic dynamics. 

The connection between AI, market efficiency, and zoonotic risk mitigation can be understood through 

the combined lens of information economics, risk governance, and cyber-physical systems theory 

(Bhuyan et al., 2024; Istiaque et al., 2023). Information economics holds that markets function 

efficiently when information is complete and accessible, whereas asymmetries or delays create 

mispricing, waste, and instability. AI addresses these inefficiencies by accelerating the flow and 

improving the accuracy of market-relevant information, which narrows price dispersion, reduces 

transaction costs, and enhances resource allocation (Hasan et al., 2023; Onyeaka et al., 2023). 

Simultaneously, risk governance emphasizes the importance of anticipating and mitigating hazards—

such as zoonotic disease emergence—before they disrupt systems. AI operationalizes this principle by 

transforming fragmented surveillance signals from farms, veterinary services, and transportation 

networks into early warnings that support targeted containment actions (Hassija et al., 2024; Hossain 

et al., 2023). The One Health perspective underscores that human, animal, and environmental health 

are interdependent, meaning that risk cannot be managed effectively within isolated sectors; AI 

enables the integration of data across these domains. Cyber-physical systems theory explains how AI 

fuses physical production and logistics operations with digital analytics layers to create self-regulating 

systems capable of adaptive responses. Taken together, these theoretical frameworks show that AI 

reduces uncertainty, which is the common barrier to both market efficiency and biosecurity (Rahaman 

& Ashraf, 2023; Sarker, 2022). When uncertainty is reduced, markets can operate with greater speed 

and stability, and health risks can be controlled before they cascade into economic crises. This reveals 

that efficiency and risk mitigation are not opposing goals but synergistic outcomes of the same 

intelligence-driven infrastructure (Gupta et al., 2025; Sultan et al., 2023). AI therefore functions not 

just as a technological enhancement but as a structural mechanism that aligns economic and sanitary 

imperatives within a unified operational system, positioning it as a strategic governance instrument in 

modern agribusiness networks. 

AI Applications for Production-Level Optimization 
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The integration of artificial intelligence into precision agriculture has fundamentally transformed how 

crops are monitored and managed, enabling unprecedented accuracy in assessing field conditions 

and crop health (Hossen et al., 2023; Sharma & Shivandu, 2024). Computer vision systems using 

imagery from drones, satellites, and field cameras allow continuous observation of plant growth, disease 

emergence, and nutrient status across large areas with high spatial resolution. These systems interpret 

visual patterns such as leaf discoloration, canopy density, or abnormal growth forms to detect stress 

before it becomes visible to the human eye, allowing farmers to respond proactively (Annosi et al., 

2024; Tawfiqul, 2023). Remote sensing data analyzed by AI models also enable the continuous 

monitoring of vegetation indices that indicate overall plant vigor, providing a dynamic picture of crop 

performance throughout the season. By automating what was previously a labor-intensive and 

inconsistent process, AI reduces the reliance on manual scouting while dramatically improving the 

speed and accuracy of detection. This capacity allows agricultural managers to identify localized 

problems early and apply corrective measures such as targeted spraying or spot fertilization, minimizing 

both losses and unnecessary chemical use (Fuentes-Peñailillo et al., 2024; Uddin & Ashraf, 2023). 

The ability to capture fine-grained spatial variation also supports more precise planting strategies, 

ensuring uniform development across fields and reducing the risk of uneven maturity that disrupts 

harvesting schedules. Through these mechanisms, AI-driven monitoring stabilizes crop output, reduces 

the volatility associated with biological and environmental uncertainty, and enhances the predictability 

of supply chains. This stability improves the consistency of product quality entering markets, 

strengthening buyer confidence and reducing post-harvest sorting losses. As such, computer vision and 

remote sensing represent foundational elements of modern precision agriculture, Mgendi (2024) 

functioning as the sensory and interpretive layer that links biological processes in the field to the 

decision-making frameworks that govern production planning and market alignment (Momena & 

Hasan, 2023). 

Artificial intelligence has also transformed input management in agriculture through the development 

of predictive models that guide irrigation scheduling, fertilization regimes, and yield forecasting (Sabir 

et al., 2024; Sanjai et al., 2023). These models synthesize diverse datasets—such as soil moisture levels, 

weather forecasts, crop phenology, and historical yield records—to predict resource requirements with 

high precision. Unlike traditional calendar-based scheduling, AI-driven systems dynamically adjust water 

and nutrient application based on real-time crop needs, ensuring that resources are used efficiently 

and only when necessary. This approach significantly reduces waste while maintaining or even 

improving yields, thereby enhancing both economic and environmental performance (Joshi et al., 

2025; Akter et al., 2023). Predictive irrigation models can anticipate periods of water stress before they 

occur, allowing pre-emptive watering that avoids crop damage while conserving water during low-

demand periods. Similarly, nutrient optimization models analyze plant growth patterns, soil composition, 

and environmental conditions to deliver site-specific fertilizer recommendations that prevent over-

application and reduce runoff. Yield forecasting models combine historical performance data with 

current environmental indicators to project future harvest volumes, enabling more accurate planning 

of storage, processing, and market logistics . These forecasts reduce uncertainty for both farmers and 

downstream supply chain actors, allowing them to align contracts, labor allocation, and transportation 

schedules with expected output. By linking input decisions directly to expected outcomes, AI-based 

predictive systems turn agronomic management from a reactive process into a proactive optimization 

framework. This capability not only stabilizes production but also mitigates the price fluctuations caused 

by unpredictable supply swings. Overall, predictive modeling ensures that resources are allocated in 

harmony with biological processes and environmental constraints, reducing production risk while 

supporting steady market flows and reliable income streams for producers (Danish & Zafor, 2024; 

Delfani et al., 2024). 

In livestock production systems, artificial intelligence has enabled a shift from reactive to preventive 

management through precision livestock farming, which integrates continuous sensor-based monitoring 

with predictive health analytics (Adetunji et al., 2023). Wearable devices, cameras, and 

environmental sensors collect high-frequency data on animal movement, feeding behavior, 

temperature, and vocalizations, creating detailed behavioral profiles for each individual animal. AI 

models analyze these data to detect deviations from normal patterns that signal emerging health issues 

such as lameness, respiratory distress, or heat stress well before they become clinically apparent 

(Delfani et al., 2024).  

Early detection allows for rapid intervention, improving recovery rates and preventing the spread of 

contagious diseases within herds. This proactive approach not only enhances animal welfare but also 
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boosts productivity by maintaining consistent growth rates and feed conversion efficiency. AI systems 

also support precision feeding strategies by predicting growth performance trajectories, enabling 

customized nutrition plans that maximize efficiency while minimizing waste. Computer vision tools can 

automatically assess body condition scores, detect signs of aggression or abnormal behavior, and 

monitor group dynamics, providing insights that were previously unattainable through human 

observation alone. These systems generate a continuous feedback loop where animal health data 

inform management decisions in real time, reducing the risk of large-scale disease outbreaks that could 

disrupt production and market access (Titirmare et al., 2024).  

 

Figure 4: AI Applications in Modern Agriculture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Importantly, by stabilizing herd health and productivity, AI systems contribute directly to biosecurity, 

reducing the likelihood that stressed or sick animals become vectors for zoonotic pathogens. This dual 

role—improving both efficiency and safety—illustrates how precision livestock farming powered by AI 

has redefined the operational model of animal agriculture, positioning it as an information-driven system 

where biological performance and health risk control are managed simultaneously through continuous 

monitoring and predictive analytics (Delfani et al., 2024; Dipongkar Ray et al., 2024). 

Artificial intelligence has also become a central element in post-harvest handling and quality 

assessment, areas where inefficiencies and variability have traditionally undermined profitability and 

market trust (Istiaque et al., 2024; Titirmare et al., 2024). Automated grading systems using computer 

vision can evaluate produce based on color, size, shape, and surface texture with speed and 

consistency that surpass human inspectors. This ensures that only items meeting market specifications 

proceed to distribution, reducing buyer disputes and improving overall brand reputation. In processing 

facilities, AI-powered imaging systems detect contaminants, foreign matter, and subtle quality defects 

in real time, (Delfani et al., 2024) preventing compromised products from entering the supply chain. 

Shelf-life prediction models analyze temperature histories, packaging conditions, and microbial growth 

data to estimate remaining freshness, enabling dynamic inventory management that minimizes 

spoilage. These predictive systems allow managers to prioritize the sale or redistribution of items nearing 

the end of their shelf life, reducing waste while maintaining product safety (Md Hasan et al., 2024; 

Shekhar et al., 2024). Integrating these tools into cold-chain logistics ensures that temperature-sensitive 

goods maintain quality from farm to retail, reducing losses that occur due to thermal fluctuations or 

handling delays. By continuously monitoring quality, AI systems create a verification loop that spans from 

processing through to retail shelves, replacing static, endpoint-based inspections with ongoing 

assurance. This reduces the risk of product recalls and enhances consumer confidence in food safety. 

Furthermore, automated post-harvest systems reduce labor requirements and processing times, 

increasing throughput without sacrificing accuracy (Md Mahamudur Rahaman, 2024; Thangamani 

et al., 2025). The combined effect is a substantial improvement in operational efficiency, product 

consistency, and market value capture. AI-driven post-harvest technologies therefore transform quality 
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management from a reactive and human-dependent process into a proactive, data-driven system 

that safeguards profitability while ensuring the reliability and safety of agricultural products entering 

domestic and international markets. 

AI in Market Systems and Supply Chain Efficiency 

Artificial intelligence has redefined market intelligence in agribusiness by enabling highly accurate and 

adaptive price forecasting models that synthesize vast datasets from diverse sources (Assimakopoulos 

et al., 2024; Hasan, 2024). Traditionally, market actors relied on delayed and fragmented information, 

such as historical pricing or anecdotal reports, which created lags in decision-making and amplified 

price volatility. AI overcomes these limitations by integrating satellite-based crop condition data, high-

frequency weather forecasts, real-time transaction logs, and consumption trends into unified 

forecasting systems.  

Figure 5: AI-Driven Agribusiness Market Framework 

 
 

These models can detect patterns and correlations that are invisible to conventional analytics, 

identifying early indicators of supply fluctuations and demand surges before they manifest in market 

prices (Giannakopoulos et al., 2024; Ashiqur et al., 2025). As a result, traders and planners can 

anticipate price movements and adjust procurement strategies, inventory levels, and contract terms 

proactively rather than reactively. This anticipatory capability reduces speculative behavior that often 

destabilizes agricultural markets during climatic shocks or sudden policy changes. Moreover, AI-driven 

price forecasting systems reduce information asymmetries that historically disadvantaged smaller 
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producers and buyers who lacked access to timely market data. By democratizing predictive insights, 

these tools create a more level playing field where all participants can align their operations with 

anticipated conditions. This transparency stabilizes price formation, narrows the gap between farm-

gate and retail prices, and minimizes opportunistic behavior in volatile markets. Additionally, more 

accurate price forecasts reduce the cost of hedging and financial risk management, enabling firms to 

allocate capital more efficiently. Overall, the integration of AI into market intelligence systems transforms 

price discovery from a reactive function into a predictive one, reducing volatility, strengthening 

confidence in transactions, and enhancing the overall efficiency of agribusiness markets (González-

Rodríguez et al., 2024; Ismail et al., 2025). 

AI has also become a cornerstone of logistics optimization and resource allocation in agribusiness supply 

chains, which are especially vulnerable to disruptions due to perishability and long-distance transport 

requirements (Jakaria et al., 2025; Titirmare et al., 2024). Traditional logistics systems often operate 

on static routing schedules and historical averages, which cannot adapt to sudden changes in 

demand, weather, infrastructure, or border regulations. AI addresses these challenges through route 

optimization models that continuously analyze real-time data such as traffic congestion, fuel prices, 

temperature variations, and delivery schedules to dynamically select the most efficient paths (Hasan, 

2025; Yang et al., 2025). In cold-chain logistics, AI-based monitoring systems track temperature and 

humidity conditions in transit and trigger alerts or automatic rerouting when deviations threaten product 

quality. Reinforcement learning algorithms further enhance this process by learning from past 

performance to continuously refine routing and allocation decisions, allowing goods to be redirected 

on the fly to match emerging demand or avoid delays. This adaptive routing reduces transit times, 

Vărzaru (2025) lowers fuel costs, and minimizes the spoilage losses that commonly occur when 

perishable goods experience delays. Additionally, dynamic resource allocation systems distribute 

storage space, labor, and vehicles in real time based on shifting supply-demand balances, preventing 

bottlenecks at warehouses and ports. These systems ensure that infrastructure and human resources are 

used efficiently, Alloghani, (2023) reducing idle time and congestion that increase operational costs. 

The overall result is a more resilient and responsive supply chain capable of maintaining product quality 

and delivery reliability even under volatile conditions. By reducing inefficiencies and losses, AI-driven 

logistics optimization increases profitability while supporting market stability, making it a critical 

infrastructure for the functioning of modern agribusiness networks. 

Digital marketplaces and AI-powered contracting systems are reshaping how agribusiness transactions 

are conducted by reducing transaction costs, increasing transparency, and expanding market access. 

AI-driven trading platforms use recommendation algorithms to match buyers and sellers based on 

historical transaction patterns, quality preferences, location, and logistics feasibility, which accelerates 

deal-making and improves market liquidity (Sultan et al., 2025; Shandilya et al., 2024). These systems 

reduce search costs that traditionally hindered small and remote producers from accessing large 

buyers, thereby integrating previously marginalized actors into mainstream value chains. Auction 

algorithms powered by AI can dynamically adjust bidding windows and reserve prices based on market 

conditions, ensuring fairer and more competitive pricing outcomes (Zafor, 2025; Sai et al., 2025). 

Beyond matching, AI also automates the execution and monitoring of contracts, using natural 

language processing to verify compliance terms and machine learning to detect anomalies in delivery 

timelines, payment patterns, or product specifications. This automation reduces the need for 

intermediaries, lowers legal and enforcement costs, and increases the speed of payments and 

settlements. By ensuring that agreements are fulfilled reliably (Aldoseri et al., 2024; Uddin, 2025), AI-

based smart contracting systems build trust among market participants and encourage longer-term 

trading relationships. They also reduce default risk, which lowers the cost of financing for producers and 

traders who can demonstrate reliable performance histories. The combined effect of these systems is a 

substantial reduction in transaction friction, enabling more fluid and inclusive markets (Dhal & Kar, 

2025; Sanjai et al., 2025). By linking transaction execution directly to data-driven compliance 

verification, AI transforms agricultural commerce from a fragmented and risk-laden process into an 

integrated, transparent, and efficient marketplace structure. 

Artificial intelligence for Zoonotic Risk Detection  

Artificial intelligence has become a pivotal component in the modernization of zoonotic disease 

surveillance systems, enabling earlier detection of emerging health threats within livestock and wildlife 

populations that are linked to agribusiness networks (Zubair et al., 2024). Traditional surveillance 

systems have been largely reliant on manual reporting and delayed laboratory confirmation, which 

often results in reactive rather than preventive responses. AI disrupts this paradigm by integrating event-



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 862–894 
 

873 
 

based surveillance, which captures unstructured data from informal sources, with indicator-based 

surveillance that uses structured datasets from veterinary records, laboratory results, and regulatory 

reports. Through natural language processing, AI systems can scan large volumes of veterinary bulletins 

(Bag & Sengupta, 2024), news reports, and public health alerts in multiple languages, identifying 

unusual patterns of illness, mortality, or geographic clustering that suggest emerging threats. This 

capability allows health authorities to detect anomalies days or even weeks earlier than traditional 

methods, providing crucial time to implement containment measures. Anomaly detection algorithms 

applied to livestock morbidity data and movement permits can identify statistically significant deviations 

from baseline behavior, such as sudden drops in feed intake or unexpected spikes in transport volumes, 

which may signal the introduction or spread of a pathogen (Bergquist et al., 2024). By continuously 

cross-validating signals from diverse data streams, AI creates a dynamic surveillance environment 

where warning indicators are updated in real time. This not only enhances the sensitivity and timeliness 

of outbreak detection but also reduces false alarms that erode trust in surveillance systems. Early 

detection enabled by AI minimizes the need for disruptive measures like mass culling or blanket 

movement bans, which have severe economic impacts. Instead, targeted interventions can be 

deployed to affected zones while maintaining normal operations elsewhere (Marie & Gordon, 2023). 

This integration of AI into surveillance thus transforms zoonotic risk monitoring from a passive, lagging 

system into an active early warning infrastructure that safeguards both public health and market 

stability. 

 

Figure 6: AI for Zoonotic Risk Mitigation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AI has also transformed the field of pathogen genomics and epidemiological modeling, providing 

powerful tools to track, characterize, and predict the spread of zoonotic diseases relevant to 

agribusiness systems. Genomic sequencing produces massive datasets that require sophisticated 

analytical methods to extract meaningful patterns, and AI excels at rapidly interpreting these data 

(Poddar & Rao, 2025). Machine learning algorithms can classify pathogen strains, identify mutations 

associated with virulence or drug resistance, and reconstruct phylogenetic relationships with far greater 

speed than conventional bioinformatics pipelines. This accelerates the identification of outbreak 

sources and transmission pathways, which is critical for designing containment strategies. In addition, 

AI-driven models integrate genomic data with epidemiological variables such as animal movement 

networks, environmental conditions, and trade flows to predict how pathogens are likely to spread 

under different scenarios (Soubeyrand et al., 2024). These models can simulate transmission dynamics 

at multiple scales, from within-herd infection probabilities to cross-border dissemination patterns, 

providing a basis for risk assessments that inform trade regulations and biosecurity protocols. By 

continuously updating their parameters as new data are collected, these AI systems maintain predictive 

accuracy even as pathogens evolve, or conditions change. They can also rank diseases by their 

potential to disrupt trade, factoring in both biological risk and economic exposure (Singh et al., 2022), 
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allowing authorities to prioritize surveillance and control resources more effectively. This predictive 

capacity reduces the lag between detection and response, preventing localized spillover events from 

escalating into widespread epizootics (Karanth et al., 2023). By linking genetic characterization with 

dynamic modeling, AI creates an integrated framework for understanding both the biological and 

logistical dimensions of zoonotic risk. This approach represents a major advance over static risk 

assessments, which often fail to capture the complex, rapidly shifting nature of pathogen emergence 

and spread within interconnected agribusiness networks. 

AI-driven risk mapping has emerged as a critical tool for identifying geographic zones where zoonotic 

disease emergence and spread are most likely, enabling spatially targeted prevention and control 

measures. Agribusiness networks operate across diverse ecological landscapes, where interactions 

between livestock, wildlife, and humans create heterogeneous risk environments. Traditional risk maps 

based on static historical data often fail to capture these dynamic interfaces (Asokan & Mohammed, 

2021). AI addresses this limitation by integrating environmental, climatic, ecological, and production 

data into spatial models that continuously update risk predictions as new information becomes 

available. These models use machine learning to detect complex nonlinear relationships between 

variables such as livestock density, land-use change, wildlife habitat overlap, temperature fluctuations, 

and precipitation patterns that influence pathogen survival and transmission (Kumaravel et al., 2020). 

The outputs are high-resolution risk maps that identify hotspots where spillover is most likely to occur, 

providing a scientific basis for prioritizing surveillance, vaccination campaigns, and biosecurity 

interventions. When combined with Geographic Information Systems, these AI models allow authorities 

to visualize risk layers alongside infrastructure such as roads, markets, abattoirs, and border checkpoints, 

ensuring that interventions are logistically feasible (Bedford et al., 2019). Spatial decision support 

systems can also simulate the potential spread of disease from identified hotspots along transportation 

corridors, helping regulators pre-position resources like veterinary teams or diagnostic laboratories. This 

targeted approach maximizes the efficiency of limited public health resources by concentrating efforts 

where they will have the greatest impact. It also reduces the need for broad, economy-wide restrictions 

by containing threats before they expand geographically (Mazzeo et al., 2022). By transforming vast 

and heterogeneous datasets into actionable spatial intelligence, AI-based risk mapping enables 

proactive rather than reactive responses to zoonotic threats, strengthening the resilience of agribusiness 

systems against the disruptive shocks that outbreaks can cause. 

The integration of AI-driven bio surveillance, pathogen genomics, and spatial risk mapping collectively 

creates a comprehensive framework for managing zoonotic threats in agribusiness systems while 

maintaining market stability (McNabb et al., 2024). Zoonotic disease events often trigger cascading 

disruptions that extend beyond immediate health impacts to affect trade flows, consumer confidence, 

and supply chain continuity. AI mitigates these systemic risks by accelerating each stage of the risk 

management cycle—from early detection to characterization to targeted intervention—thereby 

reducing the time window in which an outbreak can destabilize markets (Kanna et al., 2022). 

Continuous surveillance ensures that anomalies are flagged as soon as they appear, while genomic 

analysis provides rapid confirmation of pathogen identity and likely origin. Spatial modeling then 

translates this information into operational guidance, pinpointing where movement controls, 

disinfection, or vaccination should be deployed. This closed-loop system minimizes uncertainty, which is 

a major driver of market panic and price volatility during health events. Instead of imposing blanket 

bans or mass culling measures, authorities can rely on precise, data-driven controls that preserve the 

flow of goods from unaffected regions (Hao et al., 2022). This targeted approach reduces the 

economic collateral damage traditionally associated with outbreak responses while maintaining 

confidence among trading partners. Moreover, the transparency and objectivity of AI-generated risk 

assessments enhance trust in sanitary certifications and border inspections, smoothing cross-border 

trade during crises. By embedding intelligence throughout the surveillance and response infrastructure, 

AI aligns health security with economic resilience, demonstrating that controlling zoonotic risk does not 

have to come at the expense of market efficiency. This integration reframes bio surveillance as not 

merely a public health function but as a critical component of agribusiness governance, essential for 

ensuring the stability and reliability of global food systems (O’Connor, 2022). 

Global Case Studies and Institutional Experiences 

Across multiple global regions, AI applications in crop and livestock systems have demonstrated 

measurable impacts on productivity, price stability, and the reduction of post-harvest and disease-

related losses (Sorour et al., 2025). In several African countries, AI-powered mobile platforms that 

integrate satellite data with agronomic models have enabled smallholders to optimize planting dates, 
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fertilizer use, and irrigation schedules. These systems have improved yields while stabilizing supply flows 

during periods of climatic variability, which has reduced local price volatility and strengthened food 

security. In parts of Asia, drone-based imaging and deep learning models are used extensively in rice, 

horticulture, and aquaculture production to detect nutrient deficiencies and disease hotspots at early 

stages, allowing targeted interventions that reduce crop loss rates and preserve quality (Kutyauripo et 

al., 2023). Similar approaches have been adopted in Latin America, where machine learning-based 

forecasting systems have been deployed to coordinate logistics for perishable crops such as bananas, 

coffee, and avocados, reducing spoilage rates during transit and ensuring more consistent export 

volumes. European livestock systems have integrated wearable sensors and computer vision systems 

into precision farming operations, (Monteiro et al., 2021) continuously monitoring animal health 

indicators such as feeding behavior, temperature, and movement. These systems have lowered 

morbidity rates, improved feed conversion efficiency, and reduced the use of prophylactic antibiotics 

by enabling earlier, more targeted treatments. The combined outcome of these regional 

implementations has been an increase in overall productivity, more stable pricing resulting from 

predictable supply flows, and substantial reductions in losses at both production and post-harvest stages 

(Mishra & Sharma, 2023). These case examples collectively illustrate that AI technologies can function 

effectively across diverse agro ecological zones and market structures, providing a scalable set of tools 

for stabilizing agribusiness output while improving the health and welfare of both crops and animals. 

 

Figure 7: AI in Global Agri-food Systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AI technologies have also played a significant role in strengthening sanitary and phytosanitary 

compliance frameworks across different regions, directly influencing border clearance efficiency and 

reducing shipment rejection rates (Holzinger et al., 2023). Traditionally, SPS inspections have relied on 

manual document verification and random sampling, which are time-consuming, inconsistent, and 

prone to human error. AI-driven risk-based inspection models have transformed this process by analyzing 

historical inspection data, laboratory test results, and trade patterns to identify shipments most likely to 

present sanitary or phytosanitary risks. This targeted approach has allowed border agencies to 

concentrate resources on high-risk consignments while expediting clearance for low-risk shipments 

(Linaza et al., 2021), reducing congestion at ports and border posts. E-certification systems enhanced 

with AI algorithms can cross-check documentation against real-time logistics and production data, 

verifying the authenticity of certificates, movement permits, and lab results. This automation reduces 

paperwork errors, prevents fraudulent documentation, and ensures that shipments comply with 

importing countries’ standards before they arrive. The result has been a measurable reduction in 

clearance times, often from several days to less than twenty-four hours, and a decline in rejection rates 

due to incomplete or inaccurate documentation (Jha et al., 2019). By improving the reliability and 

speed of SPS compliance processes, these systems also lower transaction costs for exporters and 

enhance the predictability of delivery schedules for importers. Faster, more accurate certification and 
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inspection procedures build confidence among trading partners and reduce the risk of market 

disruptions triggered by sudden non-compliance events (K. Kumari et al., 2025). These outcomes show 

that integrating AI into SPS frameworks not only protects plant, animal, and public health but also acts 

as a facilitator of trade, ensuring that agribusiness goods can move swiftly across borders without 

compromising safety or quality standards (Tzachor et al., 2022). 

Data Infrastructure, Ethics, and Governance 

The sustainable integration of artificial intelligence into agribusiness systems depends fundamentally on 

resolving data interoperability and standardization challenges that currently fragment information flows 

(Petcu et al., 2024). Agricultural, veterinary, and trade data are generated by diverse entities using 

incompatible formats, taxonomies, and classification schemes, making it difficult to merge these 

datasets into coherent analytics pipelines. Farm management software may store records in proprietary 

formats, veterinary laboratories often use distinct coding systems for diseases and test results, and 

customs authorities apply their own documentation templates for trade certificates (Di Vaio et al., 

2020). This lack of semantic harmonization limits the ability of AI models to access complete datasets 

and undermines the accuracy of predictions. Inconsistent units, missing metadata, and divergent data 

quality standards further complicate efforts to integrate information from multiple sources. Building 

global data ecosystems for AI training requires the development of shared ontologies that define how 

agricultural, sanitary, and logistical events are labeled, timestamped, and georeferenced. Such 

harmonization allows AI systems to link diverse data points across stages of the value chain, enabling 

end-to-end visibility of production conditions, health status, and compliance documentation. It also 

facilitates cross-border data exchange, allowing risk assessments and traceability records to be 

recognized by multiple jurisdictions (Balasooriya & Sedera, 2025). Without common standards, AI 

models remain siloed and cannot scale beyond localized applications, limiting their systemic impact on 

market efficiency and biosecurity. Addressing interoperability therefore requires not only technical 

alignment of data formats but also institutional agreements on governance, stewardship, and data-

sharing protocols among the various actors who generate and control agribusiness information. Only 

when these foundations are established can AI operate on the complete, harmonized datasets needed 

to deliver reliable insights and support coordinated decision-making across global agri-food networks 

(Usigbe et al., 2024). 

 

Figure 8: Secured Smart Sustainable Agriculture Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Even when data are interoperable, their quality and representativeness profoundly affect the fairness 

and effectiveness of AI in agribusiness systems (Petcu et al., 2024). Many datasets used to train 

predictive models are biased toward large commercial operations that maintain detailed digital 

records, while smallholders and informal market actors often lack the infrastructure or incentives to 

contribute data. This imbalance creates a structural bias that skews model outputs toward the 

conditions and behaviors of well-resourced producers, leading to inaccurate forecasts and 

misallocated resources when models are applied more broadly. Poor data quality, Kashka et al. (2023) 

including missing values, inconsistent measurements, and unreliable labeling, further undermines model 
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performance by introducing noise and reducing predictive accuracy. These problems are amplified in 

the context of zoonotic risk modeling, where incomplete disease surveillance data can cause AI systems 

to underestimate risk in underreported areas, creating blind spots that allow pathogens to spread 

undetected. Ensuring data inclusivity requires deliberate efforts to incorporate diverse production 

systems, geographic regions, (Taneja et al., 2023) and market segments into training datasets, so that 

AI models reflect the full heterogeneity of global agribusiness. This may involve subsidizing digital record-

keeping tools for smallholders, providing mobile-based reporting platforms, or integrating informal 

market transactions into official data streams. Transparent documentation of data provenance and 

labeling criteria is also essential to allow auditing and correction of biases in training sets. By improving 

both representativeness and quality, AI systems can generate outputs that are fair, accurate, and 

relevant to all participants in the agri-food system (SS et al., 2024). Without these safeguards, AI risks 

reinforcing existing inequalities, widening the digital divide, and delivering unreliable results that erode 

trust among users. Addressing bias and inclusion is therefore a foundational requirement for building AI 

systems that support equitable and effective agribusiness transformation. 

Robust digital security and trust frameworks are critical to sustaining AI deployment in agribusiness 

systems, where sensitive operational, sanitary, and trade data flow through interconnected networks (S. 

Kumari et al., 2025). Supply chain AI systems often integrate data from farm operations, veterinary 

services, laboratories, logistics companies, and regulatory agencies, creating complex digital 

ecosystems that are attractive targets for cyberattacks. Breaches can compromise proprietary 

information, falsify sanitary certifications, or disrupt logistics coordination, resulting in severe economic 

and reputational damage. Ensuring cybersecurity requires layered protections,  including encryption of 

data in transit and at rest, intrusion detection systems, and continuous vulnerability assessments. 

However, security alone is insufficient; trust frameworks are also needed to verify the authenticity and 

integrity of data inputs and system actors. Identity verification mechanisms, such as digital signatures or 

block chain-based credentials, confirm that data originate from authorized sources and have not been 

tampered with Demircioglu et al. (2023). Auditability features, including tamper-evident logs and 

automated compliance checks, allow regulators and trading partners to trace decision pathways and 

verify the accuracy of AI outputs. Accountability mechanisms must assign responsibility for errors or 

breaches, clarifying the legal and operational obligations of data providers, system operators, and 

regulatory authorities. These measures collectively ensure that AI systems are not only secure but also 

trustworthy, which is essential for their acceptance by both public and private stakeholders (Jha et al., 

2019). Without strong security and trust architectures, data contributors may withhold critical 

information, undermining the completeness and reliability of AI models. A secure and transparent digital 

environment thus forms the backbone of AI-enabled agribusiness systems, allowing data to flow freely 

while maintaining the integrity, confidentiality, and accountability required to support high-stakes 

decisions affecting trade, biosecurity, and public health. 

The ethical and legal governance of AI in agribusiness is an equally critical pillar for its sustainable 

integration, as it defines the rules and norms that shape how data are collected, used, and shared 

across diverse actors and jurisdictions (Gkikas et al., 2023). Privacy concerns arise when sensitive 

operational data, such as farm production practices or veterinary health records, are aggregated and 

analyzed by third parties, creating risks of surveillance or misuse. Data ownership remains ambiguous in 

many contexts, with unclear delineation of rights between producers, platform providers, and 

regulatory agencies. Intellectual property questions also emerge around AI-generated insights, 

including whether predictive models trained on shared datasets can be privately owned or must remain 

open for public benefit (Gkikas et al., 2023). Addressing these challenges requires legal frameworks 

that specify data ownership rights, consent mechanisms, and permissible uses of shared data while 

protecting trade secrets and competitive advantages. Ethical governance principles must also guide 

the design and deployment of AI systems to ensure fairness, transparency, and accountability. This 

includes providing explainable AI outputs that users can understand and contest, as well as establishing 

grievance mechanisms for those adversely affected by algorithmic decisions (El Jarroudi et al., 2024). 

On a global scale, harmonized governance norms are needed to ensure that AI-based bio surveillance 

and sanitary certification systems are recognized across borders while respecting national sovereignty. 

These norms must balance the free flow of data essential for global risk management with safeguards 

that protect individual and institutional rights. Without clear ethical and legal governance, uncertainty 

about liability, misuse, and data exploitation could deter participation and stall the development of AI 

ecosystems. By embedding strong governance frameworks alongside technical systems, the 

agribusiness sector can harness AI as a trusted instrument that enhances market efficiency and 
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biosecurity without compromising rights, equity, or accountability (Ali et al., 2024). 

Synthesis and Conceptual Gaps 

A central synthesis emerging from the literature is that artificial intelligence has the potential to generate 

simultaneous co-benefits in economic efficiency and biosecurity, yet most research has treated these 

outcomes as separate domains rather than interlinked system properties (Mazzeo et al., 2022). Studies 

on AI-enabled production and logistics have predominantly emphasized efficiency metrics such as yield 

gains, cost reductions, and inventory optimization, while bio surveillance studies have focused on 

outbreak detection and containment without quantifying their economic impacts. This siloed approach 

overlooks how risk reduction contributes directly to market stability. Early detection systems prevent the 

spread of animal diseases that often trigger trade restrictions, price shocks, and mass culling events, 

which disrupt supply chains and undermine market confidence (Tepa-Yotto et al., 2024). By 

preventing these disruptions, bio surveillance directly sustains continuous market flows and price stability, 

yet this linkage is rarely quantified (Wolf et al., 2023). Similarly, efficiency-focused AI systems that 

optimize production and transport also indirectly reduce biosecurity risks by minimizing overcrowding, 

spoilage, and handling stress that can increase pathogen transmission. This bidirectional relationship 

between efficiency and biosecurity remains conceptually underdeveloped in the literature, which 

tends to treat risk management as a cost rather than as a productivity enhancer. Few evaluation 

frameworks explicitly measure how AI interventions simultaneously affect both domains, leaving a gap 

in understanding their synergistic potential (Hayah et al., 2025). Developing such frameworks is 

essential to capture the full value of AI systems and to guide investments that maximize both profitability 

and sanitary security. Without recognizing these co-benefits, policy and funding priorities risk 

overemphasizing narrow efficiency gains or health protections in isolation, missing the integrated 

benefits that AI can provide across agribusiness systems. 

 

Figure 9: Integration of AI in Agribusiness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another persistent gap in the literature concerns the limited multisectoral integration and weak cross-

border governance of AI systems in agribusiness (Silva et al., 2022). Most studies examine AI 

deployments within single sectors—such as agricultural production, logistics, or veterinary health—

without analyzing how these systems interact across institutional boundaries. This fragmented 

perspective overlooks the fact that agribusiness systems are inherently multisectoral, linking agriculture, 

public health, and international trade in dense interdependencies. Disconnections among these sectors 
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manifest in incompatible data standards, misaligned priorities, and jurisdictional silos that prevent 

seamless information sharing. For example, veterinary services may collect health data that could 

enhance trade risk assessments, but customs agencies often lack access to these datasets or the 

authority to act on them. Similarly, Kumar et al. (2025) agricultural marketing boards may forecast 

production volumes without incorporating biosecurity considerations from public health authorities. 

These gaps impede the creation of unified AI platforms capable of coordinating decisions across sectors 

and borders. Cross-border governance is particularly underdeveloped, with few mechanisms to ensure 

that AI-generated sanitary certifications, risk assessments, or traceability records are recognized across 

jurisdictions. This lack of harmonization undermines the potential of AI to support global market 

integration while safeguarding biosecurity (Shafik, 2025). The literature reveals a need for institutional 

innovations such as joint data governance councils, shared digital infrastructure across ministries, and 

regional agreements on AI standards and data interoperability. Without these systemic arrangements, 

AI systems risk reinforcing existing silos rather than overcoming them. Addressing these governance gaps 

is critical to unlocking AI’s full potential as a coordinating infrastructure that spans the entire agro-food-

health-trade nexus (Herdoiza et al., 2025). 

A further conceptual gap is the absence of integrated evaluation frameworks and standardized metrics 

to assess the performance of AI systems across both economic and sanitary dimensions (Mudany et 

al., 2025). Most studies report isolated performance indicators such as yield increases, cost savings, 

reduced transport times, or faster outbreak detection, but they rarely assess how these outcomes 

interact or trade off within complex agribusiness systems. As a result, it remains unclear which AI 

interventions deliver the most balanced and sustainable impacts. Without harmonized evaluation 

methodologies, findings from different regions or sectors cannot be meaningfully compared, limiting the 

ability to generalize lessons or build cumulative knowledge (Amri et al., 2022). The lack of metrics that 

capture system-level effects also makes it difficult for policymakers and investors to prioritize 

interventions. For example, an AI system that marginally improves logistics efficiency but substantially 

reduces disease risk could have greater long-term economic value than a purely efficiency-focused 

tool, but current evaluation methods would not capture this. Additionally, very few studies incorporate 

resilience indicators that assess how AI affects the capacity of agribusiness systems to absorb shocks 

and recover from disruptions (Gaihre et al., 2019). This omission overlooks one of AI’s most important 

contributions: stabilizing systems under uncertainty. Developing multi-criteria evaluation frameworks that 

integrate efficiency, resilience, and biosecurity outcomes would enable more accurate cost-benefit 

analyses and evidence-based decision-making. Standardized metrics are also necessary to monitor 

equity impacts, ensuring that AI benefits are distributed fairly among smallholders, commercial 

producers, and informal sector actors (El-Jardali et al., 2024). The absence of such comprehensive 

evaluation systems represents a major barrier to advancing from isolated success stories to scalable, 

evidence-based strategies for AI integration. 

METHOD 

This study adopted the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to ensure that the literature review on the strategic application of artificial intelligence (AI) in 

agribusiness systems for market efficiency and zoonotic risk mitigation was conducted with 

methodological rigor, transparency, and reproducibility. PRISMA provides a structured framework for 

identifying, screening, selecting, and synthesizing research evidence in a systematic manner, which is 

essential when consolidating findings from multiple domains such as agricultural economics, computer 

science, veterinary public health, and supply chain management. 

To begin, a comprehensive search strategy was designed to capture both peer-reviewed journal 

articles and high-quality grey literature related to AI technologies, market optimization in agribusiness, 

and zoonotic risk assessment within agri-food value chains. Search queries were executed across major 

scholarly databases including Scopus, Web of Science, PubMed, and AGRICOLA, along with targeted 

searches of reports from international organizations such as the Food and Agriculture Organization and 

the World Organization for Animal Health. Keywords were combined with Boolean operators and 

included terms like “artificial intelligence,” “machine learning,” “agribusiness,” “market efficiency,” 

“zoonotic,” “biosecurity,” “supply chain,” and “predictive analytics. ”The initial search yielded 1,247 

records spanning publications from 2000 to 2024. After removing 314 duplicates using automated 

reference management software, 933 unique studies remained for title and abstract screening. This 

stage involved two independent reviewers who applied pre-defined inclusion criteria: studies had to 

present primary data or empirical analysis on the use of AI tools or techniques within agricultural or food 

supply chains, and they had to report outcomes related to either market performance (such as price 

stability, supply chain efficiency, or quality control) or zoonotic risk mitigation (such as disease detection, 
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surveillance, or biosecurity outcomes). Studies focusing solely on general ICT adoption in agriculture 

without an AI component, as well as those unrelated to economic or health outcomes, were excluded. 

After this screening phase, 211 studies were retained for full-text review. During the full-text assessment, 

the methodological quality of each study was appraised using a standardized checklist covering study 

design clarity, data completeness, analytical rigor, and transparency in reporting. Disagreements 

between reviewers were resolved through discussion and consensus, ensuring inter-rater reliability. This 

process led to the exclusion of 89 studies for reasons such as insufficient methodological detail, lack of 

measurable outcomes, or failure to link AI interventions directly to either market efficiency or zoonotic 

risk. Ultimately, 122 studies met all inclusion criteria and were incorporated into the qualitative synthesis. 

Of these, 57 focused primarily on market efficiency aspects, 43 on zoonotic risk mitigation, and 22 

addressed both domains in an integrated framework. The included studies were then coded and 

thematically categorized to structure the literature review. The themes that emerged aligned with the 

dual focus of the study and included: AI in precision crop and livestock management; AI-based market 

forecasting and logistics optimization; AI for digital traceability and contract compliance; AI-enabled 

bio surveillance and early disease detection; and governance frameworks supporting data sharing and 

regulatory compliance. This thematic clustering facilitated cross-comparison of findings across 

disciplinary silos and geographic regions, enabling the identification of converging trends and 

knowledge gaps. Following PRISMA’s emphasis on transparency, a flow diagram was created to 

document each stage of the review process—from initial identification through screening, eligibility 

assessment, and final inclusion. This diagram ensures replicability and demonstrates the systematic rigor 

with which evidence was compiled. By following the PRISMA framework, this review not only synthesized 

a large and diverse body of literature but also ensured that the conclusions drawn about AI’s strategic 

role in enhancing agribusiness market efficiency and mitigating zoonotic risks are grounded in a 

comprehensive and methodologically robust evidence base. 

 

Figure 10: Adapted methodology for this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FINDINGS 

A significant portion of the reviewed literature highlighted the transformative role of AI in optimizing 

agricultural production systems, contributing directly to market efficiency. Out of the 122 included 

studies, 38 articles focused specifically on precision agriculture and livestock farming applications, 
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collectively amassing over 6,400 citations. These studies consistently demonstrated that machine 

learning models, computer vision systems, and sensor-based analytics can enhance decision-making in 

crop and animal production environments. Approximately 29 of these articles showed measurable yield 

improvements of between 12% and 35% when AI-driven advisory systems were integrated into farm 

management platforms, while 21 reported reductions in input usage—such as fertilizers, water, and 

feed—ranging from 15% to 28%. Importantly, 17 studies quantified significant reductions in production 

losses caused by pests, diseases, and environmental stress through predictive modeling, which allowed 

for timely interventions. The findings suggest that AI allows producers to align production volumes with 

actual market demand forecasts, thereby reducing surplus generation and stabilizing farm-gate prices. 

Many of the studies also showed that integrating predictive weather and soil analytics into planting 

decisions led to more synchronized harvest cycles across regions, reducing market gluts that often 

depress prices. This body of work underscores that AI tools not only enhance biological efficiency but 

also smooth supply fluctuations that destabilize markets. The high cumulative citation count indicates 

robust scholarly consensus on the operational benefits of AI at the production level. Collectively, these 

findings demonstrate that production-focused AI systems are foundational to achieving market stability, 

as they generate standardized, real-time data that supports both on-farm efficiency and downstream 

price forecasting, thereby linking farm-level decisions to broader market equilibrium. 

 

Figure 11: AI-Driven Benefits in Agribusiness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The review revealed strong evidence that AI improves market intelligence and supply chain 

coordination, which are crucial for market efficiency in global agribusiness systems. A total of 31 studies, 

cited over 7,200 times collectively, examined how AI-driven predictive analytics, dynamic pricing 

algorithms, and logistics optimization tools enhance the responsiveness of agri-food supply chains. 

Twenty-five of these studies reported measurable reductions in price volatility ranging from 8% to 21% 

after the adoption of AI-based market forecasting platforms that integrated satellite imagery, weather 

data, and transactional records. Seventeen studies demonstrated that reinforcement learning models 

used for real-time routing decisions reduced transportation costs by 10% to 18%, while also lowering 

spoilage rates by up to 25% in perishable supply chains. Another 14 studies documented improved 

matching efficiency on digital agricultural marketplaces using AI-based recommender systems, which 

increased market participation by smallholders by 22% on average. Several studies quantified the 

economic gains from automated contract monitoring and smart procurement systems, showing 

reductions of up to 30% in contractual disputes and penalties. These collective findings emphasize that 

AI reduces information asymmetries that historically cause price distortions, mismatches between supply 

and demand, and post-harvest losses. By making demand signals visible earlier and logistics decisions 

more adaptive, AI creates tighter coupling between production nodes and consumption hubs, which 

stabilizes price structures and ensures better allocation of goods. The relatively high cumulative citations 

of these studies show their influence on both academic discourse and policy dialogues on market 
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modernization. Overall, this cluster of findings demonstrates that AI does not merely increase efficiency 

in isolated supply chain segments; rather, it integrates fragmented markets into cohesive, data-driven 

networks that support more stable pricing, lower transaction costs, and reduced wastage. 

 

Another major body of evidence within the review highlighted AI’s critical role in detecting and 

mitigating zoonotic risks along agribusiness value chains. Out of the 122 reviewed studies, 27 were 

specifically centered on bio surveillance, early warning, and disease risk modeling, with a combined 

total of more than 5,100 citations. Twenty-two of these studies reported that anomaly detection 

algorithms using livestock health data, movement permits, and sensor feeds identified potential disease 

clusters an average of 10 to 14 days earlier than conventional reporting systems. Seventeen studies 

demonstrated that natural language processing systems analyzing veterinary bulletins, informal news, 

and social media sources successfully flagged disease emergence events with an accuracy range of 

83% to 92%. Twelve studies evaluated AI-assisted genomic epidemiology tools, showing that automated 

lineage classification reduced diagnostic turnaround times by 40% to 60% during outbreak 

investigations. Risk mapping models featured in 15 studies showed strong performance in predicting 

high-probability spillover zones based on ecological, climate, and production density data, with 

average model accuracies above 85%. Collectively, these studies showed that early detection 

capabilities significantly reduced the need for widespread culling or border closures, thereby minimizing 

both health and economic disruptions. Importantly, 11 of these studies noted that faster response times 

also improved the credibility of national veterinary services in international trade, supporting continuous 

market access even during localized disease events. This thematic cluster had lower total publication 

numbers than production or market efficiency studies, yet its high cumulative citation count reflects 

strong cross-disciplinary influence. Overall, these findings affirm that AI-based surveillance systems act 

as vital safety valves within agribusiness networks, allowing disease risks to be contained early enough 

to prevent both human health crises and destabilizing market shocks. 

The review also found compelling evidence that AI technologies strengthen traceability systems, 

thereby enhancing regulatory compliance and market trust while indirectly reducing zoonotic risks. 

Twenty-one studies, with a cumulative citation count exceeding 4,800, examined AI integration into 

digital certification systems, blockchain-based provenance tracking, and automated compliance 

verification. Sixteen of these studies showed that AI-enhanced traceability systems reduced 

documentation errors and fraudulent entries by 35% to 60% compared to traditional manual auditing 

methods. Fourteen studies demonstrated that anomaly detection models applied to shipment records, 

cold-chain logs, and veterinary certificates identified inconsistencies that could signal biosecurity 

breaches or food safety hazards, allowing preemptive interventions. Eleven studies highlighted that 

these systems shortened border clearance times by 20% to 40%, reducing product spoilage and 

demurrage costs while maintaining sanitary integrity. Additionally, nine studies documented 

improvements in recall efficiency, showing that AI-assisted traceback systems reduced the time needed 

to isolate affected batches from days to hours. These outcomes collectively reinforce market 

confidence and ensure continuous flow of goods during crisis situations, mitigating both economic losses 

and public health risks. The concentration of citations in this cluster underscores its policy relevance, as 

many of these studies were referenced in governmental and intergovernmental regulatory guidelines. 

By anchoring AI-generated insights within formal documentation chains, these systems translate real-

time data into legally recognized evidence, aligning private supply chain decisions with public 

regulatory requirements. This dual function—supporting trade facilitation while ensuring sanitary 

compliance—illustrates how AI-enabled traceability serves as a structural backbone for both market 

efficiency and zoonotic risk containment. These findings indicate that trustworthy data infrastructures 

are not merely technical upgrades but essential institutional pillars for resilient and safe global 

agribusiness operations. 

A final significant set of findings emerged around the enabling conditions required for AI to deliver 

sustainable benefits—specifically, cross-sector integration, data governance, and institutional capacity. 

This cluster included 25 studies with over 6,900 cumulative citations, emphasizing that the success of AI 

systems depends on their embedding within coordinated institutional frameworks that link agricultural, 

health, and trade authorities. Nineteen of these studies reported that interoperable data architectures 

spanning farm management systems, laboratory networks, customs platforms, and market exchanges 

increased both data completeness and decision speed by over 45%. Fifteen studies demonstrated that 

formal data-sharing agreements among public veterinary agencies, private logistics firms, and 

certification authorities reduced information silos and improved outbreak response times by 30% to 50%. 

Twelve studies identified major challenges related to data biases and representativeness, noting that 

exclusion of smallholder and informal sector data led to systematic underestimation of risk and 
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misallocation of resources. Another 14 studies highlighted that inadequate human capacity within 

regulatory agencies slowed the operationalization of AI outputs, even when the technical systems were 

in place. Collectively, these findings emphasize that AI’s potential to enhance market efficiency and 

mitigate zoonotic risks cannot be realized without institutional alignment and governance mechanisms 

that ensure accountability, data quality, and equitable access. The high citation counts in this cluster 

show that the academic and policy communities regard governance as a decisive factor for scalable 

impact. These studies conclude that institutional trust, standardization, and shared oversight are as 

critical as technological innovation itself, shaping whether AI becomes a fragmented set of tools or a 

strategic infrastructure for global agribusiness. Thus, governance capacity emerges as a cross-cutting 

determinant that binds together the operational, economic, and biosecurity functions of AI within 

integrated agri-food systems. 

DISCUSSION 

The findings of this review show that artificial intelligence is fundamentally reshaping agricultural 

production systems by improving precision, reducing variability, and stabilizing supply flows, which 

collectively strengthen market efficiency (Moawad et al., 2020). Earlier studies generally portrayed AI 

as a set of isolated tools for yield enhancement or as supplementary aids for decision-making at the 

farm level. By contrast, the current synthesis reveals that AI-driven production systems now function as 

integrated market-stabilizing mechanisms (Pinto-Coelho, 2023). The reviewed articles demonstrated 

how predictive models align production volumes with projected demand, thereby reducing oversupply 

cycles that historically caused price collapses. Unlike previous work that examined productivity gains 

without considering their market consequences, these findings show that production-level AI impacts 

extend far beyond individual farms, influencing price formation and trade stability. Particularly in 

livestock systems, AI-enabled early health detection and behavior monitoring allow processors to 

receive predictable throughput, enhancing contractual reliability across entire supply chains (Najjar, 

2023). This perspective differs from earlier portrayals of these technologies as merely animal welfare 

enhancements and reframes them as operational components of market equilibrium. By integrating 

sensor data, environmental models, and demand forecasts, AI has converted biological production 

systems into real-time information networks, closing the feedback gap between production decisions 

and market signals. The broader implication is that production stability, Secundo et al.(2025) which 

was previously treated as exogenous to market dynamics, is now actively governed by AI systems. This 

marks a shift in understanding, showing that production-level AI is no longer just an agronomic 

innovation but a structural mechanism for balancing market forces and mitigating price volatility at 

scale. 

 

Figure 12: AI Integration in Agribusiness Systems 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another major insight from the findings is that AI has transformed market intelligence and supply chain 

optimization from supportive functions into central coordination mechanisms for agribusiness systems 
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(Păvăloaia & Necula, 2023). Earlier analyses largely described market inefficiencies as outcomes of 

delayed or incomplete information flows and viewed digital tools primarily as communication 

accelerators. The reviewed studies show that AI goes further by converting fragmented datasets—

satellite observations, weather records, transactional data, and logistics flows—into predictive insights 

that reshape how markets operate. This contrasts with earlier understandings that saw market 

intelligence as descriptive rather than anticipatory (Davenport et al., 2020). The reviewed literature 

showed that AI-based demand forecasting reduces price volatility, while reinforcement learning models 

for routing dynamically adjust distribution patterns to minimize spoilage and transport costs. These 

combined effects illustrate that AI no longer operates within isolated segments of supply chains but 

instead synchronizes entire value networks. This marks a departure from earlier perspectives that 

depicted supply chains as reactive systems responding to external signals; they now function as 

adaptive networks where AI-generated predictions actively structure flows of goods, capital, and risk. 

Importantly, Thurzo et al. (2023) these findings also counter earlier concerns that automation could 

exclude smallholders, as several studies documented increased smallholder participation on AI-

enabled digital marketplaces. The overall pattern suggests that AI has shifted supply chains from 

fragmented and demand-lagged systems into cohesive, data-driven architectures capable of 

maintaining equilibrium under volatile conditions. This represents a structural transformation of how 

agribusiness markets are coordinated, Shaelou and Razmetaeva (2023) moving beyond the older 

paradigm of linear flows toward self-adjusting networks. The role of AI has thus expanded from optimizing 

logistical details to governing the tempo and alignment of market interactions, which marks a clear 

evolution from earlier interpretations of its function. 

The findings also show that AI has become a central instrument for detecting and mitigating zoonotic 

risks, advancing well beyond the reactive frameworks that dominated earlier studies (Qin et al., 2024). 

Prior analyses often portrayed zoonotic risk surveillance as constrained by slow laboratory diagnostics 

and fragmented manual reporting systems. The reviewed studies revealed that AI-based anomaly 

detection on livestock health and movement data identifies risk clusters well before conventional 

systems detect them. Natural language processing of veterinary bulletins, news feeds, and social media 

allows early flagging of disease emergence, creating a continuous surveillance loop rather than 

episodic reporting (Bidyalakshmi et al., 2025). This contrasts with earlier portrayals of surveillance as 

dependent on static and human-intensive systems. Moreover, AI-assisted genomic analysis has 

shortened the time required to classify pathogen strains, enabling faster containment decisions and 

reducing the likelihood of trade disruptions. These capabilities reposition AI from a supportive analytical 

tool to a primary operational layer within bio surveillance frameworks. Unlike previous accounts that 

treated health risk management as external to market dynamics, Han et al. (2023) these findings show 

that early detection directly stabilizes markets by preventing sudden border closures and supply shocks. 

This represents a conceptual shift: biosecurity is no longer a constraint on market efficiency but a driver 

of it when managed through AI. The findings highlight those markets operate more smoothly when the 

uncertainty of disease risk is minimized early, which reverses the earlier assumption that stronger 

biosecurity inherently slows market activity. Instead, AI-based surveillance aligns health protection and 

market continuity, showing that risk mitigation can reinforce rather than hinder trade flows (Bahroun et 

al., 2023). This dual outcome contrasts with the separation of economic and health agendas seen in 

earlier scholarship and reframes bio surveillance as an economic infrastructure component. 

Another significant finding is that AI fortifies traceability and regulatory compliance systems, converting 

them from procedural obligations into active market enablers (Babu et al., 2024). Earlier perspectives 

often depicted traceability as a consumer-oriented transparency feature or as a bureaucratic cost 

imposed on exporters. The reviewed studies demonstrated that AI-driven anomaly detection and real-

time verification within digital certification platforms reduce documentation errors, Hilb (2020) 

fraudulent entries, and clearance delays. These improvements directly enhance market efficiency by 

accelerating cross-border flows while simultaneously safeguarding sanitary integrity. This contrasts with 

earlier depictions of traceability as a passive archival process; it now functions as a real-time risk control 

and trust-building mechanism. AI-enhanced traceability also allows rapid product recalls by linking 

quality deviations to specific batches and transport nodes, reducing recall times from days to hours. 

Earlier discussions rarely acknowledged these operational benefits, treating recalls as purely regulatory 

responses rather than market-protective actions. The reviewed evidence shows that embedding AI 

within certification and compliance systems ensures that safety verification occurs continuously, not 

only at checkpoints. This continuous assurance transforms compliance from an end-stage barrier into a 

flow-sustaining infrastructure, conceptualizing how regulation interacts with commerce (Hassija et al., 
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2024). Rather than slowing markets, compliance now accelerates them by reducing uncertainty and 

eliminating rework caused by errors or disputes. This marks a departure from earlier assumptions that 

stricter regulatory systems inherently reduce market velocity. Instead, these findings suggest that when 

driven by AI, traceability and compliance operate as dual-purpose systems—preserving safety while 

enabling speed (Garikapati & Shetiya, 2024). This represents a major conceptual evolution from prior 

models, positioning AI not as an add-on to governance frameworks but as their operational backbone. 

The review also underscores that institutional capacity and data governance are decisive in 

determining whether AI systems succeed or fail in agribusiness settings. Earlier narratives often assumed 

that once technology becomes available (McIntosh et al., 2025), its benefits would naturally follow. 

The reviewed studies demonstrate that this assumption is flawed: several technically sound AI systems 

underperformed because regulatory agencies lacked staff capable of interpreting and acting upon 

algorithmic outputs. Others failed due to fragmented data infrastructures where incompatible systems 

prevented the aggregation of critical information (Khrais, 2020). This highlights that institutional 

readiness is as important as technological capability. Another crucial insight is that data inclusivity 

directly affects model accuracy and fairness. Systems that excluded smallholder or informal sector data 

consistently produced biased forecasts that misallocated resources and underestimated disease risks. 

Earlier views often treated data inclusion as an ethical or equity concern; the findings here show it is an 

operational necessity for accurate risk and efficiency modeling (Haefner et al., 2021). Additionally, 

the studies revealed that formal data-sharing agreements among government agencies, logistics firms, 

and certification bodies significantly increased response speed and decision reliability, a dimension 

largely neglected in prior discussions. Collectively, these findings show that AI’s impact is conditional on 

governance frameworks that ensure interoperability, accountability, and representativeness. This 

challenges the earlier tendency to view governance as peripheral to technical innovation. Instead, 

governance emerges as the structural foundation upon which AI systems depend. Without it, even the 

most advanced algorithms fail to deliver measurable benefits. This reframes the relationship between 

institutions and technology: rather than being downstream beneficiaries of innovation, institutions are 

upstream determinants of its effectiveness, setting the conditions under which AI can produce market 

efficiency and risk mitigation outcomes. 

A cross-cutting pattern in the findings is that AI dissolves the long-assumed trade-off between economic 

efficiency and zoonotic risk mitigation (Lichtenthaler, 2018). Earlier studies often implied that increasing 

throughput and market speed would heighten disease vulnerability, while stricter health safeguards 

would slow market flows. The reviewed evidence contradicts this dichotomy. AI systems that predict 

demand more accurately reduce overstocking and crowding in supply chains, which lowers stress-

related disease risk while also preventing price collapses. Similarly,  Alqahtani and Wafula 

(2025)dynamic routing systems reduce transit times and cold-chain breaches, simultaneously 

decreasing spoilage losses and microbial growth probabilities. These outcomes show that efficiency 

gains and biosecurity improvements can stem from the same AI-driven interventions. This finding departs 

from the previous framing of efficiency and safety as opposing objectives. Instead, the review reveals 

them as mutually reinforcing when coordinated through real-time intelligence systems (Perez-Vega et 

al., 2021). By reducing uncertainty, AI allows markets to operate with both higher velocity and lower risk 

exposure. This represents a conceptual inversion of earlier thinking, where risk reduction was viewed as 

a constraint on efficiency. The findings show that risk reduction is now a mechanism of efficiency itself. 

This integration challenges the siloed structure of earlier literature, which treated market optimization 

and health security as separate agendas with separate tools. The review demonstrates that AI fuses 

these domains operationally, Shen and Zhang (2024) creating systems were health safeguards and 

economic performance advance together. This reframing is crucial because it positions AI not as a 

balancing compromise between two competing goals but as a unifying infrastructure that achieves 

both simultaneously, marking a fundamental shift from previous dualistic models. 

Overall, the findings position AI as a systemic infrastructure that integrates production, logistics, 

surveillance, and regulation across agribusiness networks, contrasting sharply with earlier views of it as a 

collection of discrete tools (Hughes et al., 2021). Previous literature typically analyzed AI applications 

within narrow domains—production efficiency, supply chain management, or disease control—without 

exploring how they interact to reshape the overall structure of agro-food systems. The reviewed studies 

show that these domains are now interdependent through shared AI-driven data layers, enabling 

synchronized decision-making across borders and sectors (Parycek et al., 2024). This suggests that AI 

is no longer an incremental technology layered onto existing processes but a coordinating architecture 

that redefines how agribusiness systems function. Unlike earlier accounts that focused on bridging the 
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digital divide through connectivity, these findings show that the competitive and sanitary performance 

of global markets now depends on algorithmic intelligence rather than mere data access. This marks a 

transition from digitalization to intelligent integration. AI systems create unified operational environments 

where production forecasts inform logistics routing, bio surveillance informs market allocations, Xu and 

Babaian (2021) and compliance verification is embedded within routine flows. This integration enables 

real-time governance of both economic and health risks, which earlier frameworks did not conceive as 

achievable within a single system. Consequently, the findings recast AI not as a set of enhancements 

to agribusiness but as its emerging backbone (Zador et al., 2023). This shift from tool to infrastructure 

represents a conceptual break from earlier thinking and signals that AI is becoming the structural 

substrate on which modern agribusiness markets and biosecurity systems are jointly built. 

CONCLUSION 

The strategic application of artificial intelligence (AI) in agribusiness systems represents a transformative 

convergence of technological innovation, economic optimization, and biosecurity governance, 

offering a unified pathway to enhance market efficiency while mitigating zoonotic risks. Agribusiness 

operates through globally distributed networks that move agricultural products from production to 

consumption across borders, where fluctuations in supply, delays in logistics, and outbreaks of animal-

borne diseases have historically destabilized markets and threatened public health. AI addresses these 

vulnerabilities by converting vast, heterogeneous data streams from farms, markets, transportation 

systems, and surveillance networks into predictive intelligence that guides real-time decision-making. 

Machine learning models forecast yields, detect anomalies in livestock health, optimize logistics routing, 

and anticipate market price shifts, thereby aligning production schedules with consumer demand and 

reducing surplus accumulation, price volatility, and post-harvest losses. Simultaneously, AI-driven bio 

surveillance systems analyze veterinary records, movement permits, genomic data, and informal signals 

from news or social media to identify emerging disease clusters days or even weeks earlier than 

traditional methods, enabling targeted containment actions that prevent widespread outbreaks and 

the economic disruptions they cause. Integrated into digital traceability platforms, AI verifies the origin, 

handling conditions, and sanitary compliance of goods, reducing fraudulent documentation, 

accelerating border clearances, and ensuring rapid recalls when hazards are detected, which 

reinforces trust among regulators, traders, and consumers. By embedding risk intelligence into the 

operational core of agribusiness, AI transforms regulatory compliance from a procedural hurdle into a 

flow-enabling infrastructure, linking market continuity to health security. Furthermore, when supported 

by interoperable data systems, shared governance frameworks, and institutional capacity, AI acts not 

as an isolated tool but as a systemic infrastructure that synchronizes production, logistics, surveillance, 

and certification across sectors and jurisdictions. This integration dissolves the long-assumed trade-off 

between efficiency and biosecurity, showing that risk mitigation can enhance rather than impede 

market performance, and positioning AI as the central coordinating architecture for resilient, 

transparent, and risk-aware global agribusiness systems. 

RECOMMENDATIONS 

To ensure the strategic application of artificial intelligence in agribusiness systems effectively enhances 

market efficiency while mitigating zoonotic risks, it is recommended that stakeholders pursue a 

coordinated, multi-layered implementation approach that integrates technological development with 

institutional and regulatory reforms. Governments, industry actors, and international organizations 

should invest in interoperable data infrastructures that connect farm management systems, logistics 

platforms, veterinary surveillance networks, and certification authorities, enabling seamless data flows 

essential for predictive modeling and real-time decision-making. Policies should mandate standardized 

data formats, labeling protocols, and event definitions to improve the accuracy and transferability of 

AI models across regions while embedding data privacy, security, and ownership safeguards to 

maintain trust. Dedicated capacity-building programs are needed to equip regulatory agencies, 

veterinary services, and market authorities with the analytical skills to interpret AI outputs and act on 

them within established sanitary and trade frameworks, ensuring that algorithmic insights translate into 

timely operational responses. Incentives such as subsidies, technical assistance, and digital inclusion 

initiatives should be targeted at smallholder producers and informal market actors to ensure their data 

are represented in training datasets, improving model fairness and reducing systemic blind spots in risk 

detection and market forecasting.  
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