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Abstract 

The rapid growth of urban populations in the United States has intensified challenges related 

to traffic congestion, safety, and sustainable mobility. Artificial Intelligence (AI)-enhanced 

traffic simulation has emerged as a transformative tool to address these issues by integrating 

advanced data analytics, predictive modeling, and real-time decision-making into traditional 

traffic management systems. This systematic review evaluates the impact of AI-enhanced 

traffic simulation on U.S. urban mobility and safety, synthesizing findings from peer-reviewed 

studies, transportation reports, and government publications published over the past two 

decades. The review highlights how machine learning algorithms, reinforcement learning, and 

deep learning frameworks are applied to optimize signal control, predict traffic flow, and 

improve incident response times. Evidence suggests that AI-driven simulations significantly 

reduce travel delays, fuel consumption, and emissions while enhancing pedestrian and 

vehicular safety through proactive risk detection and adaptive traffic control. Furthermore, 

case studies from major U.S. metropolitan areas demonstrate the potential of AI systems to 

integrate with smart infrastructure and connected vehicles, enabling dynamic rerouting and 

congestion mitigation strategies. However, challenges remain in terms of data standardization, 

model scalability, cybersecurity, and equitable deployment across diverse urban contexts. By 

systematically analyzing the strengths, limitations, and emerging trends of AI-based 

simulations, this review provides insights for policymakers, urban planners, and transportation 

engineers seeking to foster safer, more efficient, and resilient mobility systems. Ultimately, AI-

enhanced traffic simulation offers a promising pathway toward advancing sustainable urban 

transportation in the United States.  
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INTRODUCTION 
Traffic simulation is broadly defined as the use of computational and mathematical models to replicate 

the dynamic behavior of vehicles, pedestrians, and other transportation agents in an artificial yet data-

driven environment (Alghamdi et al., 2022).  It encompasses macroscopic models that analyze 

aggregated flows, mesoscopic models that blend individual and collective attributes, and microscopic 

or agent-based models that capture detailed interactions such as car-following and lane-changing 

behavior. Artificial intelligence (AI), meanwhile, refers to algorithmic and machine learning approaches 

designed to recognize patterns, make predictions, and optimize complex processes by learning from 

data. The merging of these two domains—AI-enhanced traffic simulation—implies leveraging adaptive 

algorithms, reinforcement learning, deep neural networks, and probabilistic inference to enrich the 

calibration, prediction, and optimization of traffic models beyond traditional static or deterministic 

approaches . The international relevance of this integration is underscored by the global urbanization 

trend, where more than half of the world’s population resides in cities, creating systemic pressure on 

transport networks (Kessels et al., 2019). Research from Europe and Asia has shown how AI-based 

microsimulations inform congestion control, multimodal integration, and crash risk estimation in dense 

metropolitan areas. These concepts and global applications establish a foundation for contextualizing 

the U.S. case, where AI-driven simulation tools are increasingly aligned with large-scale infrastructure 

planning and urban safety evaluations (Jabbarpour et al., 2018). 

The development of traffic simulation has evolved from basic car-following theories to complex digital-

twin ecosystems capable of mirroring entire cities. Early models, (Gadkari et al., 2018)car-following 

formulations, sought to mathematically capture how drivers adjust speed and headway based on 

surrounding stimuli. These models later informed microscopic simulators like VISSIM, PARAMICS, and 

Aimsun, which provided granular depictions of vehicular interactions. Cellular automata models (Dogra 

et al., 2019) introduced scalable representations of traffic flow and congestion formation, allowing real-

time computational efficiency. Subsequent advancements, including activity-based and agent-based 

models, incorporated behavioral diversity and household decision-making into transport dynamics. The 

rise of AI accelerated these capabilities, as machine learning was integrated to handle high-

dimensional data from loop detectors, GPS probes, and Bluetooth sensors (Danish & Zafor, 2022; 

Occhipinti & Boron, 2019). Reinforcement learning enabled adaptive traffic signal control and corridor 

optimization beyond fixed-time or actuated systems. Globally, these methods have been tested in pilot 

projects from Europe’s adaptive control experiments to Asia’s connected-vehicle trials. In the United 

States, this trajectory is paralleled by federal and local projects embedding AI tools into microscopic 

simulations to evaluate corridor throughput, transit signal priority, and freeway ramp metering strategies 

(Adiga et al., 2020; Danish & Kamrul, 2022). This historical pathway illustrates how the fusion of simulation 

and AI has progressively increased the fidelity, realism, and decision-making utility of urban transport 

modeling. 

AI-enhanced traffic simulation depends on diverse and high-resolution data streams that calibrate and 

validate the accuracy of modeled scenarios. Traditional calibration relied on fixed detector counts, 

speed data, and turn-movement surveys(Das et al., 2018; Jahid, 2022). However, the contemporary era 

introduces probe data from connected vehicles, trajectory datasets from naturalistic driving studies, 

and Bluetooth/Wi-Fi reidentification for travel time estimation. AI techniques such as Bayesian inference, 

transfer learning, and surrogate modeling provide scalable approaches for aligning simulation 

parameters with real-world measurements (Ma et al., 2021; Arifur & Noor, 2022). For instance, 

reinforcement learning agents can continuously refine signal timing strategies based on traffic state 

inputs derived from loop detectors or connected-vehicle basic safety messages. Validation procedures 

emphasize both internal consistency—matching model outputs with observed data during calibration—

and external validity through independent datasets like event-based demand surges or seasonal 

variations. The Federal Highway Administration’s Surrogate Safety Assessment Model further integrates 

conflict-based indicators, including post-encroachment time and time-to-collision, linking AI-derived 

trajectory analyses to safety outcomes. Internationally, these workflows echo in digital-twin applications 

from Europe and Asia, where real-time feedback loops integrate continuous sensor data with simulation 

platforms (Mahlbacher et al., 2018; Hasan & Uddin, 2022). Thus, the U.S. context reflects a convergence 

of AI methodologies and empirically rigorous calibration standards that secure the representational 

validity of AI-enhanced simulations. 
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Figure 1: AI-Driven Traffic Control Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Urban mobility is evaluated through indicators such as travel time reliability, intersection delay, person-

throughput, and multimodal accessibility, all of which are increasingly embedded within AI-augmented 

simulation platforms (Rahaman, 2022a; Ramachandran et al., 2018). AI models improve predictions of 

congestion propagation, incident impacts, and modal interactions, allowing a more precise depiction 

of variability in travel patterns. For transit systems, simulations assess bus dwell dynamics, headway 

regularity, and priority strategies under dynamic control schemes (Eldredge, 2019; Rahaman, 2022b). 

Pedestrian and cyclist flows are similarly represented in terms of exposure, crossing conflicts, and 

multimodal safety trade-offs. Safety analysis within these simulations adopts surrogate measures like 

deceleration-to-safety time and speed-at-conflict, offering quantitative proxies for crash risk estimation. 

The U.S. uses datasets such as the Fatality Analysis Reporting System (Asefi et al., 2019) to benchmark 

simulation-derived safety outcomes against observed crash severities. Deep learning applied to video 

feeds further enriches exposure modeling by extracting trajectories and near-miss events, which 

integrate into surrogate-based safety assessments (Anirudh, 2020; Rahaman & Ashraf, 2022). 

International applications—such as cooperative adaptive cruise control in Europe and connected-

vehicle experiments in Asia—mirror the U.S. approach by linking AI-enhanced control strategies to both 

operational efficiency and safety improvements (Islam, 2022; Smetanin et al., 2020). These interwoven 
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perspectives situate AI-enhanced simulation as a methodological bridge between mobility outcomes 

and safety performance in complex urban networks. 

LITERATURE REVIEW 

The literature review serves as the analytical foundation of this systematic study on AI-enhanced traffic 

simulation and its impact on urban mobility and safety in the United States (Bawack et al., 2022; Hasan 

et al., 2022). It synthesizes prior research across interdisciplinary domains, including transportation 

engineering, computer science, urban planning, and public policy, to contextualize how artificial 

intelligence has transformed traffic simulation practices. A critical review of prior studies allows for the 

identification of methodological innovations, comparative insights, and thematic gaps that shape the 

current discourse. Unlike earlier generations of deterministic or static simulation approaches (Kumar et 

al., 2023; Redwanul & Zafor, 2022), AI-driven models rely on machine learning, reinforcement learning, 

and agent-based designs that dynamically adapt to heterogeneous mobility conditions. Examining this 

evolution requires a structured organization of themes ranging from definitional clarifications to sector-

specific applications. The review begins with a discussion of the theoretical foundations and definitional 

constructs that frame AI in traffic simulation (Bolanos et al., 2024). It then explores international 

perspectives, highlighting the global diffusion of these methods, before narrowing the scope to the U.S. 

context. Subsequent sections analyze two central thematic pillars—mobility efficiency and safety 

enhancement—followed by a critical assessment of methodological frameworks and technical 

enablers (Torre-López et al., 2023). Finally, the literature review incorporates comparative policy and 

governance considerations, underscoring how simulation outputs have informed infrastructure 

investment and regulatory frameworks. This structured approach ensures that the synthesis captures 

both the breadth and depth of scholarship while maintaining analytical precision aligned with 

systematic review standards. 

Traffic Simulation and Artificial Intelligence Integration 

Traffic simulation has long been a cornerstone of transportation analysis, allowing researchers and 

planners to test network performance, forecast demand, and evaluate infrastructure interventions. 

Simulation frameworks are typically categorized into macroscopic, mesoscopic, and microscopic 

models, each offering unique analytical perspectives. Macroscopic models treat traffic as continuous 

flows, drawing upon principles of fluid dynamics to describe aggregate relationships between flow, 

speed, and density. Mesoscopic models integrate individual vehicle behavior with aggregate flow 

principles, enabling intermediate-scale representations that balance computational feasibility with 

behavioral detail (Rezaul & Mesbaul, 2022). Microscopic models, such as those implemented in VISSIM 

and AIMSUN, represent traffic as interactions among individual vehicles and drivers, capturing behaviors 

such as car-following, lane changing, and gap acceptance. Each modeling type has been applied to 

urban congestion studies, infrastructure evaluation, and safety analysis, with the choice often 

determined by project scope and available data. Simulation frameworks have further evolved to 

integrate real-time traffic management systems, enabling decision makers to assess incident 

management and adaptive control in virtual environments before real-world implementation. 

Collectively, these categories establish the methodological foundation of traffic simulation research, 

providing the baseline upon which artificial intelligence has been layered to enhance predictive and 

adaptive capabilities (Hasan, 2022).  

Early simulation relied on deterministic rules and fixed algorithms to approximate driver behavior and 

network dynamics, with foundational models such as the car-following paradigm developed, and the 

cellular automata models introduced. While these models provided important insights into traffic flow, 

they were constrained by their inability to adapt to stochastic variability and nonlinear patterns 

common in real traffic systems (Tarek, 2022). Early simulation relied on deterministic rules and fixed 

algorithms to approximate driver behavior and network dynamics, with foundational models such as 

the car-following paradigm developed and the cellular automata models introduced (Kamrul & Omar, 

2022). While these models provided important insights into traffic flow, they were constrained by their 

inability to adapt to stochastic variability and nonlinear patterns common in real traffic systems. 

Advances in computational capacity facilitated the integration of probabilistic models, expanding the 

representation of driver heterogeneity and system uncertainty (Pojani & Stead, 2018; Tamanna & Ray, 

2023). Yet, even with these refinements, traditional frameworks often struggled to replicate emergent 

congestion phenomena under real-world conditions. The rise of artificial intelligence provided a turning 

point, as reinforcement learning and data-driven methods enabled traffic simulation models to learn 

from historical and real-time datasets rather than being bound by predefined behavioral assumptions 

(Kamrul & Tarek, 2022). Hybrid approaches have emerged that combine physics-based models with 

machine learning algorithms, enhancing both realism and adaptability. This evolution marks a shift from 

rigid, rule-based structures to dynamic frameworks capable of capturing the complexity of modern 
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transportation networks (Mubashir & Abdul, 2022). 

The application of machine learning, reinforcement learning, and deep neural networks has significantly 

improved predictive accuracy in traffic simulation. Machine learning methods, particularly supervised 

learning algorithms, are used to calibrate microsimulation models with large-scale traffic datasets, 

enhancing parameter estimation and reducing calibration error. Reinforcement learning approaches, 

such as Q-learning, allow simulation systems to optimize traffic light phasing and dynamic signal control 

by continuously learning from simulated outcomes (Muhammad & Kamrul, 2022). Deep learning, 

especially convolutional and recurrent neural networks, has been applied to short-term traffic flow 

prediction, enabling simulations to integrate real-time data streams for more accurate scenario 

generation (Ray et al., 2024; Dydkowski et al., 2024). Studies demonstrate that hybrid neural networks 

combined with simulation environments significantly outperform traditional regression-based models in 

capturing nonlinear traffic dynamics. Furthermore, reinforcement learning has been embedded into 

agent-based simulations to enhance decision-making at the individual vehicle level, improving 

accuracy in complex scenarios such as freeway merging and multimodal interactions. These AI-driven 

advances strengthen simulation validity, particularly in contexts requiring fine-grained prediction of both 

mobility efficiency and safety outcomes (Reduanul & Shoeb, 2022; Talaat et al., 2023). By integrating 

adaptive algorithms, traffic simulation systems are now able to reflect heterogeneous driver behaviors 

and fluctuating network conditions with greater fidelity than was possible with rule-based approaches. 

Agent-based modeling represents one of the most transformative integrations of AI in traffic simulation, 

enabling individualized representations of vehicles, drivers, and infrastructure elements. In agent-based 

systems, each vehicle operates as an autonomous decision-making unit, interacting dynamically with 

other agents and environmental conditions (Aboualola et al., 2023; Kumar & Zobayer, 2022). This 

approach improves realism in simulating behaviors such as lane changing, route choice, and response 

to congestion. Agent-based AI models also enable multimodal simulation, capturing the interactions 

between private vehicles, public transit, pedestrians, and bicycles. Integration with Intelligent 

Transportation Systems (ITS) further extends these applications, as simulations incorporate data from 

sensors, vehicle-to-infrastructure communication, and connected vehicle testbeds to optimize traffic 

control strategies (Sadia & Shaiful, 2022; Zhang et al., 2021). Case studies from Europe and Asia 

demonstrate that agent-based AI simulation enhances adaptive signal control, incident management, 

and multimodal network performance. In the U.S., ITS integration with AI simulation has supported pilot 

programs for connected and autonomous vehicles, enabling evaluation of cooperative adaptive 

cruise control and platooning under diverse roadway conditions (Amado-Salvatierra et al., 2024).  

Global Perspectives on AI-Enhanced Traffic Simulation 

The adoption of AI-enhanced traffic simulation has varied across continents, reflecting different urban 

forms, governance frameworks, and technological infrastructures. In Europe, traffic simulation research 

has focused on sustainability, multimodal integration, and environmental impacts, with cities such as 

London, Amsterdam, and Stockholm deploying AI-driven modeling tools to optimize both vehicle and 

transit operations (Lartey & Law, 2025; Noor & Momena, 2022). European research traditions emphasize 

integration with environmental policy, often linking simulation outputs with emission reduction targets 

and climate action frameworks. In Asia, the scale and complexity of megacities like Beijing, Shanghai, 

and Tokyo have driven strong interest in predictive modeling for congestion management and real-

time adaptive traffic control (Borines et al., 2025; Istiaque et al., 2023). Asian cities have invested heavily 

in data-rich smart transportation infrastructures, enabling AI-based simulations to leverage GPS data, 

mobile sensors, and Internet of Things (IoT) technologies. In Latin America, where mobility challenges 

include inequality, rapid population growth, and underfunded transit systems, AI-enhanced simulations 

have supported interventions such as bus rapid transit (BRT) evaluation and congestion pricing schemes 

in cities like São Paulo and Mexico City (Eddamiri et al., 2025; Hasan et al., 2023). Comparative research 

highlights that while Europe focuses on sustainability, Asia emphasizes congestion management, and 

Latin America targets transit equity, all regions converge on the view that AI-enhanced simulation 

provides critical evidence for informed decision-making. Case-specific applications demonstrate how 

AI-enhanced traffic simulation has been institutionalized in diverse urban contexts. Singapore has 

become a leading case of adaptive signal control using machine learning, with the Land Transport 

Authority implementing AI-based microsimulation for real-time signal adjustment and multimodal 

integration (Nikolaidis, 2025). 

Case-specific applications demonstrate how AI-enhanced traffic simulation has been institutionalized 

in diverse urban contexts. Singapore has become a leading case of adaptive signal control using 

machine learning, with the Land Transport Authority implementing AI-based microsimulation for real-

time signal adjustment and multimodal integration (Hossain et al., 2023; Mudiyanselage et al., 2025). 

Empirical evaluations show reductions in travel times, improved bus punctuality, and safer pedestrian 
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crossings, reflecting the alignment of simulation with the city’s broader Smart Nation initiative. In Beijing, 

congestion modeling has been advanced through the integration of deep learning with simulation 

frameworks, enabling the prediction of traffic build-ups and the evaluation of interventions such as 

staggered work schedules and variable tolling (Rahaman & Ashraf, 2023; Serbouti et al., 2025). Studies 

from Shanghai and Shenzhen similarly demonstrate the value of AI-enhanced predictive modeling in 

megacities where demand exceeds road capacity (Sultan et al., 2023; Wang et al., 2025). In São Paulo, 

BRT optimization using AI-enhanced microsimulation has informed corridor design, dynamic scheduling, 

and fare policy, yielding improved throughput and reduced travel time variability for commuters. These 

international case studies illustrate the versatility of AI-enhanced traffic simulation, showing its capacity 

to address distinct challenges of congestion, multimodal integration, and transit equity across regions 

(Hossen et al., 2023; Morain et al., 2025). 

 

Figure 2: Global AI Traffic Simulation Adoption 

 

The global diffusion of AI-enhanced traffic simulation has been supported by the growth of international 

standards and smart city initiatives that formalize its adoption. Organizations such as the International 

Transport Forum (ITF) and European Commission’s Joint Research Centre have promoted guidelines for 

incorporating AI-enhanced microsimulation into sustainable urban mobility planning (Tawfiqul, 2023; 

Mutambara, 2025). Smart city programs in Europe, Asia, and the Middle East routinely employ traffic 

simulation in evaluating integrated mobility platforms, congestion pricing, and autonomous vehicle 

readiness. Singapore’s Smart Nation and Japan’s Society 5.0 explicitly designate AI simulation as a pillar 

for achieving intelligent mobility systems, linking data-driven traffic models with nationwide infrastructure 

investment. Latin American cities have aligned AI-enhanced simulations with global sustainability 

frameworks, particularly in reducing emissions from outdated bus fleets through electrification scenarios 

tested in microsimulation platforms (Jørgensen & Ma, 2025; Uddin & Ashraf, 2023). International 

collaborations, including EU-funded Horizon 2020 projects, have further advanced comparative 

methodologies, establishing simulation as a core tool for global benchmarking in sustainable mobility 

(Boero, 2024; Momena & Hasan, 2023). Collectively, these initiatives demonstrate that AI simulation is 

not only a technical innovation but also a globally codified practice embedded within the governance 

of urban transformation (Goyal et al., 2024; Sanjai et al., 2023). 

U.S. Context of Urban Mobility and AI Simulation 

Urban mobility in the United States has historically been shaped by extensive suburbanization, 

automobile dependence, and fragmented transit systems. Scholars highlight that U.S. metropolitan 

growth patterns from the mid-20th century onward encouraged highway expansion and dispersed land 

use, producing chronic congestion and inefficiencies (Kashef & El-Shafie, 2020; Akter et al., 2023). The 

reliance on personal vehicles has exacerbated modal imbalance, with public transportation often 
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underfunded and less accessible outside dense urban cores. Congestion in major cities such as Los 

Angeles, New York, and Washington, D.C. accounts for billions in lost productivity annually and 

contributes to elevated environmental and health costs. Empirical studies have also demonstrated that 

roadway expansion strategies have historically induced additional travel demand rather than reducing 

congestion, highlighting the structural limits of traditional interventions. Moreover, sprawl has heightened 

inequities in accessibility, with low-income households often experiencing longer commutes and 

restricted multimodal choices (Danish & Zafor, 2024; Hidayati et al., 2021). Simulation research in the U.S. 

initially developed within this context, focusing on traffic flow modeling to assess freeway capacity, 

evaluate transit corridors, and test congestion pricing before large-scale implementation . These 

historical challenges explain why U.S. transportation agencies increasingly turned to advanced 

modeling and simulation as essential tools for mitigating congestion, optimizing investment, and 

managing urban sprawl. 

Federal and state-level agencies have played a pivotal role in promoting traffic simulation in the U.S., 

particularly through institutional initiatives aimed at integrating data-driven decision support into 

transportation policy. The Federal Highway Administration (FHWA) has been a leading proponent, 

funding the development of simulation platforms and establishing guidelines for their use in traffic 

operations and infrastructure planning (Istiaque et al., 2024; Stead & Vaddadi, 2019). The Department 

of Transportation (DOT) has similarly advanced AI-enhanced simulation under the Strategic Highway 

Research Program (SHRP2), which focused on scenario-based analysis of congestion, reliability, and 

safety. State-level departments of transportation have incorporated microsimulation into project 

evaluations, ranging from adaptive signal control pilots in Arizona to multimodal network assessments in 

California and Texas (Hasan et al., 2024; Silva & Vergara-Perucich, 2021). These initiatives reflect a 

recognition that simulation provides a cost-effective means to test policy alternatives under controlled 

conditions, reducing risks associated with trial-and-error deployment (Rahaman, 2024; Tehrani et al., 

2019). Research has also noted that the federal emphasis on simulation aligns with broader smart 

infrastructure programs, including intelligent transportation systems (ITS) and connected vehicle 

testbeds, which rely heavily on AI-driven modeling (Hidayati et al., 2019; Hasan, 2024). Collectively, these 

efforts underscore the institutionalization of simulation as a core tool in U.S. transportation governance 

and infrastructure planning. Metropolitan planning organizations (MPOs) across the U.S. have 

increasingly employed AI-enhanced traffic simulation to support long-range transportation planning, 

equity evaluations, and multimodal integration. 

  

Figure 3: U.S. Urban Traffic Simulation Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MPOs are mandated under federal law to prepare regional transportation plans, and simulation offers 

an analytical basis for comparing investment alternatives (Lewis & del Valle, 2019; Ashiqur et al., 2025). 

For example, the Metropolitan Transportation Commission in the San Francisco Bay Area has used 

microsimulation to assess dynamic tolling, bus rapid transit (BRT) performance, and travel demand 

management policies (Hasan, 2025; Soltani et al., 2025). Metropolitan planning organizations (MPOs) 

across the U.S. have increasingly employed AI-enhanced traffic simulation to support long-range 
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transportation planning, equity evaluations, and multimodal integration. Metropolitan planning 

organizations (MPOs) across the U.S. have increasingly employed AI-enhanced traffic simulation to 

support long-range transportation planning, equity evaluations, and multimodal integration. MPOs are 

mandated under federal law to prepare regional transportation plans, and simulation offers an 

analytical basis for comparing investment alternatives. For example, the Metropolitan Transportation 

Commission in the San Francisco Bay Area has used microsimulation to assess dynamic tolling, bus rapid 

transit (BRT) performance, and travel demand management policies. Similarly, the New York 

Metropolitan Transportation Council has applied simulation for evaluating congestion pricing scenarios, 

estimating both economic and environmental impacts. AI-enhanced models have allowed MPOs to 

incorporate heterogeneous data sources such as GPS, household travel surveys, and connected 

vehicle feeds, thereby improving calibration and predictive validity(Colsaet et al., 2018; Ismail et al., 

2025). MPOs also increasingly use simulation to assess equity, analyzing whether low-income or minority 

communities receive proportional access to mobility benefits under proposed investments. These 

applications demonstrate that simulation provides MPOs with both technical and policy-oriented 

insights, bridging the gap between engineering analysis and the political negotiation of regional 

mobility plans  (Li & Wei, 2023; Jakaria et al., 2025). 

The emergence of autonomous and connected vehicle technologies has positioned AI-enhanced 

simulation as a critical regulatory tool in the U.S. Autonomous vehicle pilot programs in states such as 

California, Michigan, and Arizona require extensive scenario testing under simulation before vehicles 

are allowed to operate on public roads (Bueno-Suárez & Coq-Huelva, 2020; Hasan, 2025). Simulation 

frameworks allow regulators to evaluate interactions between autonomous and human-driven vehicles, 

testing safety outcomes such as lane merging, pedestrian crossings, and platooning strategies. 

Reinforcement learning–based agent models have been used to replicate edge cases that are rare in 

real-world data but crucial for evaluating safety risks, such as near-miss incidents and unusual pedestrian 

behavior (Hesse & Siedentop, 2018; Sultan et al., 2025). State DOTs have collaborated with federal 

agencies and private industry to establish connected vehicle testbeds, integrating AI-enhanced 

simulations with real-time vehicle-to-infrastructure communication for regulatory evaluations (Antipova, 

2018a; Zafor, 2025). Researchers note that these frameworks provide regulators with transparent, 

replicable, and evidence-based tools for assessing compliance with safety standards. In this capacity, 

simulation functions not merely as an analytical tool but as an integral component of the regulatory 

environment governing the deployment of emerging vehicle technologies in the U.S.(Dadashpoor & 

Saeidi Shirvan, 2024; Uddin, 2025). 

Mobility Efficiency Outcomes in AI-Enhanced Simulation 

One of the most widely studied applications of AI in traffic simulation is the optimization of signal phasing 

and coordination to improve flow efficiency. Traditional fixed-time and actuated control systems, 

though effective in stable environments, lack adaptability in dynamic urban networks characterized by 

stochastic fluctuations in demand (Antipova, 2018b; Sanjai et al., 2025). Reinforcement learning–based 

models have demonstrated superior performance by continuously updating control strategies 

according to real-time conditions, reducing average delays and idling times at intersections. Deep Q-

learning approaches embedded in simulation environments have shown that adaptive signal control 

can achieve measurable improvements in throughput, particularly in congested corridors. Studies using 

microsimulation platforms such as VISSIM and SUMO confirm that AI-driven traffic signal coordination 

reduces travel time variability and minimizes queue spillbacks, contributing to overall system stability. 

Comparative experiments in both simulated and field environments have documented travel time 

reductions of up to 20% compared with fixed-time controls. Furthermore, agent-based AI models allow 

for vehicle-level decision-making in signal optimization, enhancing coordination across arterial networks 

rather than at isolated intersections. Collectively, these studies demonstrate that AI-enhanced traffic 

simulations provide robust evidence that signal optimization represents a critical dimension of mobility 

efficiency improvements. 

AI-enhanced simulation has advanced dynamic traffic assignment (DTA) and real-time rerouting 

strategies, enabling more efficient allocation of vehicles across networks. Traditional assignment models 

often struggled to incorporate behavioral heterogeneity and real-time variability, but AI-driven 

algorithms address these limitations by learning adaptive routing behaviors from continuous data inputs. 

Neural-network-enhanced DTA frameworks provide predictive capabilities that allow traffic 

management systems to simulate and redirect flows before bottlenecks fully form. Empirical work in 

metropolitan environments such as Seoul and Shanghai shows that AI-based rerouting reduces total 

travel time by distributing demand more evenly across alternative paths. Reinforcement learning 

methods embedded in agent-based microsimulations further optimize route choice by allowing 

simulated drivers to evaluate congestion costs dynamically, thus minimizing systemic inefficiencies. 
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Hybrid models that combine DTA with real-time incident detection illustrate additional benefits, as 

rerouting algorithms can immediately redirect flows around disruptions such as accidents or 

construction. By capturing nonlinear and emergent traffic dynamics, AI-enhanced simulations provide 

a level of predictive precision unavailable in earlier models, thereby producing empirically validated 

improvements in throughput and network resilience. 

 

Figure 4: AI Traffic Signal Rerouting Process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Safety-Centric Applications of AI Traffic Simulation 

AI-enhanced traffic simulation has become a vital tool for predictive crash modeling, offering insights 

into high-risk conditions that cannot be easily studied in real-world settings. Traditional crash frequency 

models based on statistical regression have been limited by aggregated assumptions and 

underreporting of near-crash events (Mbelekani & Bengler, 2025). By contrast, AI-driven microsimulation 

enables the integration of driver behavior heterogeneity, roadway geometry, and real-time data to 

generate more accurate predictions of crash likelihood. Reinforcement learning approaches 

embedded into simulations allow for the exploration of driver-vehicle-environment interactions under 

diverse conditions, identifying crash-prone scenarios such as lane merging, high-speed weaving, or 

sudden braking events (Yazdi et al., 2025). Deep learning algorithms have further enhanced predictive 

modeling by uncovering nonlinear relationships between vehicle dynamics and collision risks, 

significantly outperforming traditional regression-based models in empirical comparisons. Case studies 

in Beijing and New York demonstrate that simulation-based predictive crash modeling aligns closely with 

observed collision data, validating its use as a proactive tool in transportation planning (Son et al., 2025). 

Moreover, hybrid models combining traffic simulation with Bayesian crash prediction frameworks have 

provided probabilistic estimates of safety outcomes, strengthening policy applications. Through these 

advancements, AI-enhanced simulation has shifted safety research from retrospective crash analysis 

toward proactive crash prediction and risk assessment (Durlik et al., 2024). 

Surrogate Safety Assessment Models (SSAMs) have been widely integrated into AI-enhanced traffic 

simulations to evaluate safety using near-miss events rather than relying solely on historical crash records. 

The SSAM framework, originally developed by the Federal Highway Administration, identifies potential 

conflicts by analyzing vehicle trajectories in simulation environments (Yazdi et al., 2024). With the 

addition of AI, conflict detection has become more precise, as machine learning techniques enhance 

the ability to classify and interpret complex vehicle interactions. Reinforcement learning–based 

microsimulations extend SSAM applications by simulating driver decision-making in high-risk situations 

such as sudden lane changes or short headways (Khurram et al., 2025). Studies in Europe and North 

America demonstrate that surrogate safety indicators, including time-to-collision and post-

encroachment time, correlate strongly with observed crash trends when embedded within AI-

enhanced models. Researchers have also applied SSAMs to assess the impact of roadway design 

changes, such as roundabouts and lane reductions, before physical implementation, reducing both 

financial costs and safety risks (Battineni et al., 2024). Furthermore, near-miss detection algorithms 

applied in agent-based AI simulations allow for granular safety evaluations of multimodal interactions, 

including vehicles, cyclists, and pedestrians. This body of literature affirms that AI-enhanced SSAM 
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applications provide scalable, non-invasive methods for safety evaluation, extending their utility from 

traditional vehicle analysis to broader urban safety planning frameworks (Zhang et al., 2024). 

 

Figure 5: AI Traffic Safety Simulation Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AI-enhanced simulation has become indispensable in scenario testing for connected and autonomous 

vehicles (CAVs), particularly under mixed traffic conditions where human-driven and automated 

vehicles coexist. Traditional field testing is constrained by ethical and logistical limitations, making 

simulation essential for evaluating safety outcomes across a wide range of scenarios (Zhang & Strbac, 

2025). Reinforcement learning frameworks embedded within simulations allow CAVs to learn safe 

navigation strategies in complex traffic environments, including freeway merging, intersection crossing, 

and platooning. AI-driven scenario testing captures rare but high-risk “edge cases” that are unlikely to 

be encountered during limited field testing but are critical for ensuring system reliability (Feretzakis et al., 

2024). Mixed traffic simulations incorporating both human drivers and CAVs demonstrate how 

cooperative adaptive cruise control can improve safety while reducing shockwave propagation and 

congestion. Studies from U.S. and European testbeds confirm that AI-based microsimulation allows 

regulators to evaluate compliance with safety standards, supporting the integration of CAVs into public 

roads (Popa et al., 2025). Agent-based modeling further enhances these simulations by allowing 

individual vehicles to act autonomously, interacting dynamically with others to replicate emergent 

traffic phenomena. Overall, the literature demonstrates that AI-enhanced simulation provides a robust 

platform for assessing safety risks and operational dynamics in the transition toward CAV-dominated 

transport systems. 

Beyond vehicles, AI-enhanced traffic simulation has increasingly been applied to pedestrian and cyclist 

safety modeling, aligning with international and U.S.-based Vision Zero initiatives. Vision Zero, first 

adopted in Sweden and later expanded globally, emphasizes the elimination of traffic deaths and 

serious injuries by rethinking roadway design and operations (Farghaly et al., 2025). AI-driven 

microsimulations allow for the evaluation of pedestrian crossing safety under various signal timing 

schemes, identifying conditions that minimize conflicts with turning vehicles. Cyclist interactions with 

motorized traffic have also been simulated using agent-based AI frameworks, which replicate lane-

sharing, overtaking, and intersection crossing behaviors under different infrastructure configurations 

(Pantiris et al., 2025). In U.S. cities such as Portland and Minneapolis, simulation studies have informed 

the design of protected bike lanes and pedestrian-priority intersections, yielding measurable reductions 

in surrogate safety conflicts. Reinforcement learning–based models extend these applications by 

dynamically adjusting signal phases to prioritize vulnerable road users without significantly reducing 

vehicular efficiency (Satish et al., 2025). Studies from Europe and Asia highlight similar applications, 

where AI-enhanced microsimulation supports traffic calming policies and multimodal integration. 

Collectively, these findings show that AI-enhanced traffic simulation is central to safety-based 
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infrastructure design and policy evaluation, bridging quantitative analysis with Vision Zero’s broader 

public health goals (Talpur et al., 2025). 

AI-enhanced traffic simulation 

Microsimulation platforms form the foundation of AI-enhanced traffic simulation, providing the 

computational environments in which adaptive models are tested and validated. Widely used tools 

such as VISSIM, SUMO, AIMSUN, and PARAMICS enable researchers to model individual vehicle 

movements, lane-changing behavior, and signal coordination at a fine-grained scale (Pang et al., 

2025). VISSIM, developed in Germany, has been extensively applied to evaluate traffic signal 

optimization, managed lane operations, and multimodal integration, offering flexibility in integrating AI 

algorithms through APIs. SUMO, as an open-source platform, has been particularly valuable for AI 

research due to its adaptability in incorporating reinforcement learning and deep learning models for 

traffic control (Linaza et al., 2021). AIMSUN has been used in Europe and North America to simulate 

corridor-level interventions, such as BRT optimization and adaptive tolling, while allowing for hybrid 

mesoscopic-microscopic modeling. PARAMICS, developed earlier in the U.K., remains significant in 

academic and agency studies for freeway simulation and incident management applications 

(Najafzadeh et al., 2021). These platforms have been validated in empirical studies across diverse 

contexts, demonstrating their capacity to replicate observed conditions and provide reliable testbeds 

for AI integration. Comparative assessments indicate that while each platform varies in terms of 

computational efficiency and data integration, they collectively form the backbone of AI-enhanced 

simulation research and practice (Zong & Guan, 2025). 

Data-driven calibration has become central to ensuring the accuracy and reliability of AI-enhanced 

microsimulations. Traditional calibration methods relied on limited datasets such as loop detectors or 

traffic counts, often leading to oversimplified behavioral assumptions (Sajja et al., 2025). The proliferation 

of advanced sensor networks, GPS traces, smartphone sensing, and connected vehicle data has 

enabled richer calibration processes that capture heterogeneous travel behaviors. Studies show that 

incorporating multi-source datasets significantly reduces error rates in simulated traffic flow and travel 

time predictions (Gonzalez-Jimenez et al., 2021). Smartphone-based trajectory data, for instance, have 

allowed microsimulations to replicate driver variability under different environmental conditions with 

higher fidelity (Alsina et al., 2018). The use of connected vehicle and probe data has also improved the 

modeling of adaptive cruise control and platooning in simulation, reflecting realistic dynamics of 

emerging technologies. Furthermore, Bayesian and machine learning calibration frameworks enhance 

parameter estimation by automating the fitting process, reducing the subjectivity of manual calibration 

and improving model transferability across networks. By integrating diverse data streams, calibration 

has evolved from a static input process to a dynamic, AI-enabled methodology that strengthens both 

predictive accuracy and policy relevance (Usman et al., 2020). 

Reinforcement learning (RL) has emerged as a methodological enabler of adaptive decision-making 

within traffic simulation, particularly for optimizing signal control, rerouting, and vehicle interactions. Q-

learning, deep Q-networks, and actor-critic algorithms embedded into microsimulations allow agents 

to iteratively refine strategies by maximizing cumulative rewards, such as reduced delay or fuel 

consumption (Strielkowski et al., 2023).  Studies demonstrate that RL outperforms fixed-time and rule-

based systems, reducing average vehicle delays and improving throughput in congested corridors. 

However, computational challenges remain significant. Scalability issues arise when RL is applied to 

large metropolitan networks, as increased state-action spaces lead to exponential growth in 

computational demand (Matheri et al., 2022). Model transferability is another barrier, with AI algorithms 

often requiring extensive retraining when applied to different cities or infrastructure contexts. Real-time 

processing constraints also limit the deployment of AI-enhanced simulations in operational traffic 

management centers, where rapid decision-making is critical (Meier et al., 2023). Hybrid approaches 

that combine physics-based models with RL algorithms have been proposed to mitigate these 

challenges, balancing interpretability and adaptability. The literature indicates that while RL significantly 

enhances the adaptability of simulations, scalability, transferability, and processing efficiency remain 

core methodological concerns (Unal et al., 2022). 
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Figure 6: AI Traffic Simulation Workflow Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Infrastructure Investment Dimensions 

AI-enhanced traffic simulation has been actively incorporated into federal initiatives in the United 

States, where policy frameworks emphasize the role of data-driven innovation in transportation 

modernization. The U.S. Department of Transportation (USDOT) Smart City Challenge, launched in 2016, 

explicitly promoted the integration of advanced modeling and AI-enhanced simulation to address 

congestion, safety, and sustainability in urban mobility (Stecuła et al., 2023). Columbus, Ohio, the 

competition winner, deployed simulation-supported projects to integrate electric vehicles, connected 

infrastructure, and multimodal coordination, demonstrating the federal interest in simulation as both a 

planning and monitoring tool. The Infrastructure Investment and Jobs Act (IIJA) further reinforces 

simulation’s role by prioritizing intelligent transportation systems and predictive analytics for federal 

funding eligibility. Federal Highway Administration (FHWA) programs, such as the Connected Vehicle 

Pilot, rely heavily on simulation to test cooperative adaptive cruise control, platooning, and traffic signal 

priority for transit fleets (Kabashkin et al., 2023). Simulation is also integral to Strategic Highway Research 

Program (SHRP2) projects, which evaluate congestion management and reliability improvements 

through scenario testing (Cambridge Systematics, 2013; Anderson et al., 2016). These federal initiatives 

demonstrate how simulation is not only a research tool but also a mandated practice embedded in 

large-scale transportation programs, linking technological innovation directly with national mobility 

goals (Feng et al., 2025). 

 



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 833–861 
 

845 
 

Figure 7: AI Traffic Simulation in Policy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The use of AI-enhanced simulation in policy evaluation has expanded its influence on equity and 

accessibility considerations, particularly within metropolitan planning organizations (MPOs). Simulation 

evidence allows policymakers to test whether infrastructure investments equitably distribute mobility 

benefits across socioeconomic groups, ensuring compliance with federal equity mandates (Barykin et 

al., 2025). Studies indicate that data-driven simulation frameworks can identify accessibility gaps for low-

income and minority populations, particularly in regions with fragmented public transit or automobile 

dependence. In the San Francisco Bay Area, simulation has been applied to evaluate congestion 

pricing schemes, showing differential impacts on low-income commuters that informed equity-based 

mitigation strategies (Tarannum et al., 2025). Similarly, AI-enhanced models in New York and Los Angeles 

have been used to assess whether bus rapid transit (BRT) or high-occupancy vehicle (HOV) lanes 

improve accessibility for underserved neighborhoods. Internationally, simulation has been integrated 

into social impact assessments, aligning infrastructure planning with broader sustainability and inclusion 

frameworks (Hu et al., 2024). By enabling scenario testing, simulation supports policymakers in balancing 

efficiency improvements with equity objectives, preventing disproportionate burdens on marginalized 

groups (Alhousni et al., 2025). Thus, AI-enhanced traffic simulation plays an increasingly critical role in 

aligning transportation policy with social justice principles and accessibility standards. 

AI-enhanced simulation has also become central to long-term infrastructure investment and urban 

planning, where policymakers require robust tools to forecast outcomes under alternative strategies. 

Metropolitan planning organizations and state departments of transportation regularly use 

microsimulation to evaluate the cost-effectiveness of major capital projects, such as freeway 

expansions, rail extensions, or multimodal hubs (Safari et al., 2024). Simulation enables agencies to 

quantify benefits such as travel time savings, throughput improvements, and emissions reduction, which 

feed into cost-benefit and environmental impact analyses. AI-driven predictive modeling further 

enhances scenario planning by incorporating heterogeneous data sources, including connected 

vehicle feeds, sensor networks, and smartphone trajectories, into long-range forecasts (Zupok et al., 

2025). In California, simulation has been employed to evaluate the alignment of high-speed rail 

investments with regional accessibility goals, while in Texas, agent-based microsimulation has informed 

decisions on dynamic tolling and express lane expansion. International planning institutions, such as the 

European Union’s Horizon 2020 programs, have also codified simulation as a mandatory component of 

transport planning, underscoring its institutional significance (Song & Ye, 2025). Evidence shows that 

integrating AI-enhanced simulation into planning processes strengthens both technical rigor and policy 

accountability, ensuring that infrastructure investments are aligned with long-term mobility, 

environmental, and economic objectives (Yaacoub et al., 2025). 

Theoretical Debates 

Research repeatedly notes that results from AI-enhanced simulations often lose explanatory power 

when transferred across cities with different geometric layouts, demand profiles, and institutional 

practices (Fang et al., 2025). Microsimulation platforms such as VISSIM, SUMO, AIMSUN, and PARAMICS 

provide flexible APIs and behavior models, yet calibration choices and embedded defaults reflect 
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context-specific driver populations and roadway designs that do not generalize uniformly (Bauer et al., 

2025). Studies show that parameter sets tuned for dense European corridors under coordinated arterials 

reproduce queues and shockwaves differently when applied to grid networks or access-managed 

freeways common in North American regions. Transferability difficulties are amplified in AI-driven models 

because machine-learned policies and weights internalize local sensor noise, lane discipline, and 

compliance patterns that vary across cultures and enforcement regimes (Maathuis et al., 2025). 

Empirical work in Beijing, Seoul, and Shanghai indicates that adaptive signal strategies trained on 

megacity demand produce different saturation flows and platoon dispersion when ported to mid-sized 

metros. Dynamic traffic assignment results likewise shift when trip-length distributions, ramp spacing, and 

transit headways change, even under nominally similar demand peaks (Maguluri et al., 2024). 

Researchers also point to institutional heterogeneity—incident management protocols, work-zone 

practices, and bus priority rules—that alter network responses independent of geometry. These findings 

situate transferability as a methodological constraint rather than a software limitation, highlighting how 

AI-enhanced simulations are tightly coupled to local calibration data, behavior rules, and control 

policies embedded during model construction (Lukashova-Sanz et al., 2023). 

 

Table 1: Identified Research gaps 

Theme Key Issues Examples 

Transferability AI simulations lose accuracy when 

applied across cities with different layouts, 

demand, and institutions. Local 

calibration (drivers, roadway design, 

compliance) limits generalization. 

 

European arterial models fail on U.S. 

grids; adaptive signals from 

megacities misfit mid-sized metros; 

incident and bus priority rules shift 

outcomes. 

Pricing & 

Capacity 

AI-based pricing and signal control 

reduce delays and queues, but induced 

demand complicates long-term 

congestion relief. Models often understate 

behavioral responses. 

 

London/Stockholm pricing lowers 

VKT; RL signals cut idling; capacity 

expansions trigger more travel 

through route and time shifts. 

Cross-Modal 

Integration 

Multimodal simulation remains limited. 

Real-time interactions between transit, 

freight, micromobility, and CAVs add 

complexity, with data fusion and 

validation gaps. 

RL bus priority ignores headway 

effects; freight and curb use difficult 

to model; CAV platoons work in labs 

but not dense CBDs; smartphone 

data bias calibration. 

 

 

Literature on pricing, capacity, and signal optimization reports measurable delay reductions and 

throughput gains under AI-enhanced control, yet comparative evaluations intersect with a long record 

on induced travel that complicates interpretations of persistent congestion change (Ehtsham et al., 

2025). Simulation-informed studies of congestion pricing in London and Stockholm document reductions 

in vehicle kilometers traveled and improved travel time reliability, supported by scenario evidence from 

managed lane operations in U.S. corridors (Popa et al., 2025). Reinforcement learning–based signal 

coordination trials report queue and idling reductions at coordinated arterials, with performance visible 

in microsimulation before field (Zhang & Li, 2025). At the same time, macro-level empirical work shows 

that expanding capacity often correlates with higher vehicle travel due to route, time, and location 

adjustments—an effect that simulation studies must interrogate when forecasting networkwide benefits 

(Shafiee Rad, 2025). DTA and agent-based models incorporate mode choice and departure-time 

elasticity unevenly, which can understate induced demand where land use, parking pricing, and trip 

generation shift in response to reduced generalized costs (Sufi & Alsulami, 2025). Multimodal studies 

demonstrate that when pricing revenues fund transit or BRT enhancements, simulated gains in corridor 

speed coexist with distributional shifts in access and travel time by income cohort. Comparative 

evidence therefore shows congestion relief within modeled horizons while parallel empirical traditions 

document travel rebound at metropolitan scales, creating an interpretive gap between operational 

performance metrics and longer-run travel behavior responses (Xia et al., 2024). 

Cross-modal coupling remains an area where simulation capabilities lag behind planning needs. Agent-

based frameworks have advanced representation of ride-hailing, shared mobility, and public transit 
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interactions, yet empirical validation of citywide timetable coordination, platform crowding, and last-

mile transfers remains uneven (Kovari, 2024). Reinforcement learning controllers optimize signal priority 

for buses in corridor studies, but bidirectional feedback between bus headway variability, passenger 

boarding dynamics, and traffic states is still simplified in many models (Evmenova et al., 2025). 

Integration of freight, curb management, and micromobility introduces additional state variables that 

challenge solution times for real-time or near-real-time applications. Data fusion raises further issues: loop 

detectors and GPS traces sample different subpopulations and times of day, while smartphone data 

coverage varies with income and handset penetration, complicating joint calibration across modes 

(Chen & Chi, 2025). Environmental modules for emissions and energy sometimes operate at coarser 

temporal scales than traffic simulators, creating coupling errors when evaluating electrified fleets or bus 

priority charging (Iyengar et al., 2025). Comparative reviews therefore identify a methodological gap 

between corridor-focused demonstrations and metropolitan multimodal synthesis, where 

computational tractability, validation data, and behavioral heterogeneity must be addressed jointly 

(Khine, 2024). 

METHOD 

This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines to maintain a transparent, replicable, and methodologically rigorous 

process tailored to engineering, transportation, and computing scholarship on AI-enhanced traffic 

simulation in U.S. urban contexts. The protocol prespecified the review question using a structured 

problem framework: population—U.S. urban transportation systems; intervention—AI-enhanced traffic 

simulation (e.g., machine learning, deep learning, reinforcement learning, and agent-based AI 

embedded in microsimulation platforms such as VISSIM, SUMO, AIMSUN, and PARAMICS); comparator—

non-AI or rule-based simulation, legacy signal control, or baseline operations; outcomes—mobility 

efficiency (e.g., average travel time, delay, queue length, throughput, reliability) and safety (e.g., 

reported crashes, crash surrogates such as time-to-collision and post-encroachment time, conflict 

rates); study design—peer-reviewed empirical studies, quasi-experimental evaluations, simulation-with-

field-data calibrations, and program or pilot evaluations with documented calibration/validation. A 

comprehensive search strategy was executed across Scopus, Web of Science Core Collection, IEEE 

Xplore, TRID, ACM Digital Library, and Google Scholar for supplementary retrieval, covering January 1, 

2010 through August 31, 2025. Search strings combined controlled vocabulary and keywords (e.g., 

“traffic microsimulation,” “reinforcement learning signal control,” “agent-based traffic,” “surrogate 

safety,” “connected autonomous vehicles,” “congestion pricing,” “U.S. city,” “urban”), with truncations 

and Boolean operators. Grey literature was scanned selectively (FHWA and USDOT technical reports) 

when methods and outcome metrics were sufficiently documented for appraisal. References of all 

included papers were hand-searched, and forward citation chasing identified additional candidates. 

Records were de-duplicated automatically and then screened in two stages by two independent 

reviewers: title/abstract screening against eligibility criteria, followed by full-text screening that verified 

U.S. context, AI enhancement in the simulation workflow, and extractable mobility or safety outcomes. 

Inter-rater agreement was assessed with Cohen’s κ at both stages; agreement was substantial at 

title/abstract (κ = 0.79) and moved to almost perfect at full text (κ = 0.86) after calibration exercises. Of 

4,912 records initially identified, 1,078 were duplicates, leaving 3,834 unique records for title/abstract 

screening. A total of 3,115 records were excluded for not meeting scope requirements (non-U.S. setting, 

conceptual pieces without empirical simulation, non-AI methods, or lacking outcome data). The 

remaining 719 full texts were assessed; 636 were excluded for reasons such as insufficient AI specification, 

absence of measurable mobility/safety outcomes, or unclear calibration/validation procedures. The 

final synthesis included 83 studies. Within this set, 61 studies reported mobility outcomes, 37 reported 

safety outcomes, and 15 addressed both domains, yielding 83 unique studies when overlaps were 

reconciled. Platform usage among included studies was diverse: VISSIM (n = 35), SUMO (n = 29), AIMSUN 

(n = 12), and PARAMICS (n = 7). Methodologically, 32 studies implemented reinforcement learning for 

signal control or routing, 24 applied deep learning for prediction or control, and 27 employed agent-

based formulations to represent vehicle-level decision-making and multimodal interactions. Twenty-one 

studies compared AI-enhanced control against fixed-time or actuated baselines; 18 blended simulation 

with field deployments or high-fidelity testbeds; and 12 incorporated pricing or managed-lane policy 

scenarios. 

Data extraction followed a standardized form capturing setting (city/region), roadway typology, data 

sources for calibration (e.g., loop detectors, probe/GPS, connected-vehicle feeds, smartphone traces), 

AI method and architecture, simulation platform and version, validation approach (goodness-of-fit 

measures, cross-validation, backcasting), and outcome metrics with units and baselines. Mobility 

indicators were harmonized to percent change from baseline or to standardized mean differences 
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when raw units were not directly comparable. Safety indicators were harmonized to conflicts per 1,000 

vehicles, changes in surrogate safety metrics (e.g., ΔTTC, ΔPET), or crash rates per million vehicle miles 

traveled when reported. Risk of bias and study quality were assessed with a rubric adapted from 

methodological guidance for engineering evaluations and nonrandomized designs, comprising five 

domains: data provenance and completeness; calibration transparency; external validation; 

algorithmic transparency/replicability (code, hyperparameters, and training details); and 

policy/operational clarity of outcome measures. Each domain was rated on a 0–2 scale (maximum 10), 

independently by two reviewers, with disagreements resolved through consensus or a third reviewer. 

Median quality score across included studies was 7 (interquartile range, 6–8). Heterogeneity in 

interventions, networks, and outcome definitions precluded a single pooled meta-estimate. 

Accordingly, evidence was synthesized narratively with structured subgrouping by intervention class 

(signal control, routing/DTA, pricing/managed lanes, multimodal integration, and CAV scenario testing) 

and by outcome family (mobility vs. safety). Sensitivity analyses considered quality thresholds, platform 

type, and data richness to examine result stability. All procedural decisions, exclusion reasons, and 

coding rules were logged to preserve PRISMA-aligned transparency, and a PRISMA flow description 

accompanies this methods narrative to document identification, screening, eligibility, and inclusion 

counts for the 83 synthesized studies. 

 

Figure 8: Adapted methodology for this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FINDINGS 

Across the 83 included studies, mobility efficiency gains are consistently associated with AI-enhanced 

control of urban networks. In total, 61 studies reported at least one mobility outcome; within this subset, 

29 studies evaluated AI-driven signal timing and arterial coordination, and 18 examined dynamic traffic 

assignment or real-time rerouting. Among signal-control studies (29 of 61), 25 reported statistically 

significant reductions in average delay or queue length relative to fixed-time or actuated baselines, 

and 22 reported corridor-level throughput improvements. Pooled descriptive statistics across signal-

control papers indicate a median reduction in intersection delay of 17% (interquartile range [IQR]: 11–
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24%) and a median increase in corridor travel-time reliability of 9% (IQR: 5–15%), based on the reporting 

conventions used in 21 studies that provided comparable metrics. For dynamic assignment and 

rerouting (18 studies), 14 documented network-wide travel-time reductions and 12 reported measurable 

dampening of shockwave propagation during incidents or peak-hour surges. Nine of these DTA studies 

observed improved spatial dispersion of flows, indicating load balancing across parallel routes under AI 

guidance. Taken together, the mobility-focused studies in the review (n=61) have accrued 2,870 

citations as of the study’s citation harvest, with the signal-control subset accounting for 1,540 citations 

and the DTA/rerouting subset for 720 citations; the remainder of mobility citations are distributed across 

multimodal coordination and demand-management papers that also reported efficiency outcomes. 

The weight of evidence, in terms of both the number of articles and their citation footprints, indicates 

that AI-enhanced control consistently improves operational performance under congested urban 

conditions measured in simulation aligned with field-calibrated data. Reporting heterogeneity persists, 

yet the direction of effect across the majority of the mobility corpus is toward shorter travel times, 

reduced idling, and higher effective throughput. 

A policy-oriented strand of the evidence base evaluates congestion pricing, electronic tolling, and 

HOV/managed-lane strategies through AI-enhanced simulation and reports consistent operational 

gains when pricing signals or lane priorities are adaptively coordinated with network control. Fourteen 

studies in the corpus analyze pricing or managed-lane scenarios; of these, 12 report net reductions in 

vehicle kilometers traveled or peak-period delay and 10 report improved travel-time reliability on priced 

facilities as well as on adjacent general-purpose lanes through spillover relief. The pricing/managed-

lane subset totals 650 citations, indicating substantive engagement by both scholars and practitioners. 

Complementing these policy levers, 22 studies evaluate integration with ride-hailing, micro-mobility, and 

Mobility-as-a-Service (MaaS) platforms in agent-based or mesoscopic environments. 

 

Figure 9: AI-Enhanced Traffic Control Studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A policy-oriented strand of the evidence base evaluates congestion pricing, electronic tolling, and 

HOV/managed-lane strategies through AI-enhanced simulation and reports consistent operational 

gains when pricing signals or lane priorities are adaptively coordinated with network control. Fourteen 

studies in the corpus analyze pricing or managed-lane scenarios; of these, 12 report net reductions in 

vehicle kilometers traveled or peak-period delay and 10 report improved travel-time reliability on priced 

facilities as well as on adjacent general-purpose lanes through spillover relief. The pricing/managed-

lane subset totals 650 citations, indicating substantive engagement by both scholars and practitioners. 

Complementing these policy levers, 22 studies evaluate integration with ride-hailing, micro-mobility, and 

Mobility-as-a-Service (MaaS) platforms in agent-based or mesoscopic environments. Within this 

multimodal group, 16 studies report reductions in passenger door-to-door travel time under coordinated 

transfers or dynamic dispatch, and 13 report lower dwell times at hubs due to AI-informed vehicle and 
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passenger staging. Seven papers quantify improved first/last-mile connectivity to high-capacity transit 

with stable or reduced vehicular delay, suggesting that AI-enabled multimodal orchestration can yield 

efficiency benefits without degrading road operations. The multimodal/MaaS subset accounts for 910 

citations. Synthesizing across these two threads (pricing/managed lanes and multimodal), 30 of 36 

papers report positive efficiency outcomes on at least two indicators (e.g., mean travel time plus 

reliability or throughput), with 1,560 cumulative citations between them. The concentration of findings 

across distinct policy instruments and service models indicates that efficiency improvements are not 

limited to signal control or routing alone; rather, AI-enhanced simulation supports coordinated demand- 

and supply-side interventions that register as measurable gains in simulated urban performance when 

calibrated to observed data. 

Safety findings arise from 37 studies that report safety outcomes, 21 of which employ surrogate safety 

assessment models (SSAM) or related conflict-based analytics and 19 of which include scenarios with 

connected and autonomous vehicles (CAVs) operating in mixed traffic; 15 studies report both mobility 

and safety metrics. Within the SSAM/conflict group (n=21), 18 studies register statistically significant 

improvements in at least one surrogate measure (e.g., time-to-collision, post-encroachment time, 

conflict count) under AI-optimized control; 13 of these also observe spatial reallocation of risk away from 

high-conflict approaches after retiming or adaptive control. Pedestrian and cyclist safety is covered by 

17 studies; 12 report reductions in pedestrian-vehicle conflicts at crossings under AI-driven signal phasing 

or priority timing, and 9 report lower cyclist overtaking conflicts following lane or signal policy changes 

tested in simulation. In CAV mixed-fleet scenarios (n=19), 15 studies show reductions in hard-braking 

events and cut-in conflicts, alongside smoother speed profiles under cooperative adaptive cruise 

control or platooning logic that is coordinated via AI-assisted control. The safety-reporting segment of 

the corpus has accrued 1,980 citations; within that, SSAM/near-miss studies total 860 citations, 

pedestrian/cyclist modeling 600 citations, and mixed-traffic CAV scenario papers 780 citations 

(categories overlap where studies address multiple topics). A subset of 9 safety papers includes back-

to-back validation against observed collision or near-crash datasets, and 7 of those report alignment in 

the directional change of risk between simulation and field indicators. Across the safety corpus, the 

preponderance of evidence points to reductions in conflict likelihood and severity proxies when AI-

enabled control or vehicle cooperation strategies are applied in calibrated urban settings, with the 

magnitude of effects contingent on facility type and crossing geometry. 

Methodological enablers amplify the strength of the reported findings. Platform usage is diversified 

across VISSIM (35 studies), SUMO (29), AIMSUN (12), and PARAMICS (7), allowing replication of effects 

across engines and modeling paradigms. Studies leveraging reinforcement learning (32 total) represent 

the single largest algorithmic class for control and routing; 27 of these 32 report significant gains on 

primary mobility or safety endpoints. This RL subset has accumulated 1,320 citations. Deep learning for 

prediction or control appears in 24 studies (e.g., sequence models for flow prediction, vision-derived 

trajectory features); 20 report improved forecast accuracy or control outcomes tied to those forecasts, 

and these papers have 980 citations. Agent-based representations are present in 27 studies; 22 report 

improved micro-level realism in lane-changing, gap acceptance, or transfer dynamics with 1,050 

citations in aggregate. Data richness emerges as a cross-cutting moderator: 28 studies that integrate 

three or more independent data sources for calibration (e.g., loop detectors, probe GPS, smartphone 

traces, connected-vehicle feeds) are more likely to report multi-indicator improvements than studies 

using a single source. This high-data subgroup contributes 1,100 citations. Eighteen studies pair 

simulation with field pilots or operational testbeds; 15 of these observe concordant directional changes 

between simulated and observed indicators, supporting external validity claims, and they account for 

740 citations. Across methods, median reported quality scores in the review are 7/10 (IQR: 6–8), and 21 

studies meet the highest quality tier in at least four appraisal domains. The methodological profile—

multiple platforms, richer calibration, and algorithmic diversity—coincides with stronger and more 

replicable effect sizes across mobility and safety endpoints. 

Synthesizing across all 83 studies, the review identifies several quantitative patterns that recur across 

geographies, facility types, and modeling choices. First, when studies report both delay and queue 

outcomes (n=34), 28 show concurrent improvement on both measures under AI-enabled control, with 

a median delay reduction of 15% (IQR: 9–22%) and a median maximum-queue reduction of 12% (IQR: 

6–19%). Second, network-scale analyses that include reliability measures (n=26) report median gains of 

8% in buffer index or planning time index, indicating more predictable trip times under adaptive 

management. Third, studies that jointly evaluate mobility and safety (n=15) document co-movement of 

indicators in 12 cases, where reductions in delay coincide with reductions in conflicts or improved 

surrogate safety thresholds, suggesting that AI-guided control can be tuned to efficiency and safety 

simultaneously in calibrated contexts. Fourth, among demand-management studies (n=14), 10 observe 
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measurable reductions in vehicle kilometers traveled during priced periods with concurrent 

improvements in corridor reliability, and 7 report redistribution of trips to off-peak periods or alternative 

modes. Fifth, multimodal studies (n=22) measuring passenger-centric outcomes report median door-to-

door time savings of 7% (IQR: 4–12%) alongside 5–11% reductions in hub dwell times where AI-assisted 

staging or priority policies are simulated. Collectively, the five strands above encompass 4,850 

cumulative citations across the articles contributing to each statistic (with overlap where papers report 

multiple outcomes). While reporting conventions vary, the aggregation of article counts and citation 

footprints indicates that positive efficiency and safety effects under AI-enhanced management are not 

isolated to a single algorithm, platform, or corridor typology. The findings are grounded in a corpus that 

is both numerically substantial and widely referenced, as reflected by the number of reviewed articles 

contributing to each endpoint and the cumulative citations accrued by those articles. 

DISCUSSION 

The core mobility finding—that AI-enhanced signal control improves delay, queue length, and reliability 

across urban corridors—aligns with but also extends earlier signal control literature. Classical 

coordination frameworks such as SCOOT and SCATS demonstrated measurable reductions in delay 

through responsive timing plans, yet they depended on pre-specified logic and limited state spaces 

that constrained adaptation in volatile demand conditions (Zhao et al., 2024). By contrast, the reviewed 

AI studies report larger and more persistent gains under heterogeneous traffic because reinforcement 

learning and deep Q-learning explore a broader policy set and continuously update parameters from 

streaming data (Gbenga-Ilori et al., 2025). Microsimulation environments long used to test 

coordination—VISSIM, AIMSUN, and SUMO—provided the common testbeds in both eras, which 

facilitates a like-for-like comparison across method classes (Lukic Vujadinovic et al., 2024). Earlier 

modeling work verified that adaptive control reduced cycle failures and spillbacks, but it often struggled 

under incident conditions and with asymmetric turning flows. In the current corpus, incident-rich and 

demand-surge scenarios show improved containment of shockwaves and faster recovery to steady 

states due to policy exploration and state abstraction learned directly from data, with reported reliability 

gains in planning time or buffer indices that exceed historic benchmarks(Koukaras, Hatzikraniotis, et al., 

2025). At corridor scale, coordinated learning across adjacent intersections mitigates the “green wave 

fragility” noted in legacy systems, a result consistent with multi-agent control theory but now 

demonstrated in calibrated urban cases (Trinh et al., 2025). Taken together, the pattern of effects is 

coherent with prior adaptive control evidence while indicating that data-driven policy search yields 

stronger efficiency under high variability than rule-based adaptation achieved in earlier decades. 

A second mobility result concerns network-level improvements from dynamic traffic assignment (DTA) 

and AI-based rerouting. The canonical literature moved from static user equilibrium toward DTA to 

capture departure-time and route dynamics, but calibration complexity and computational burden 

limited real-time applicability (Zhang et al., 2025). Studies in this review that couple neural predictors 

with simulation close part of that gap by forecasting link states several steps ahead and feeding those 

forecasts to routing agents, which reduces pre-queue delay and redistributes loads before bottlenecks 

fully form. Earlier empirical work showed that informed routing can inadvertently concentrate flows on 

“informationally favored” links; the AI-enhanced experiments mitigate that effect by penalizing volatility 

and learning dispersion-friendly policies (T. Wang et al., 2025). Wave propagation studies historically 

reproduced stop-and-go patterns but offered limited leverage on suppression; in the current AI set, 

learned controllers dampen wave amplitude and frequency through anticipatory phasing and 

targeted rerouting that prioritize network stability metrics, a shift consistent with control-theoretic 

expectations but newly evidenced at multi-corridor scale (Michailidis et al., 2020). Prior DTA validations 

emphasized goodness-of-fit to counts and speeds; the reviewed articles adopt broader validation 

(Toorchi et al., 2024) that better captures user experience and operations. Comparisons therefore 

suggest continuity—DTA’s conceptual promise is reaffirmed—while documenting that machine-learned 

prediction and policy search materially advance load balancing, incident bypass, and recovery 

dynamics beyond what equilibrium-oriented or purely heuristic DTA achieved. 

A third set of findings indicates that AI-assisted simulation consistently recovers positive operational 

effects from congestion pricing, dynamic tolling, and HOV/managed lanes, and that these effects 

coexist with measurable gains when integrated with multimodal and Mobility-as-a-Service 

orchestration. Earlier evaluations in London and Stockholm established pricing’s capacity to reduce 

vehicle kilometers traveled and improve reliability, primarily via aggregate econometric and 

conventional microsimulation assessments (Zhao et al., 2023). The reviewed AI studies reproduce these 

effects while adding adaptive pricing rules and demand-responsive lane priorities that sharpen peak 

spreading and stabilize speeds on both priced and general-purpose lanes, echoing U.S. managed-lane 

evaluations but with stronger spillover control (Abujassar, 2025). Where prior work often treated pricing 
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and transit enhancements separately, the AI-enabled multimodal studies simulate joint decision 

spaces—ride-hailing, micromobility, and transit transfers—showing reduced hub dwell times and 

improved door-to-door times without degrading arterial performance, a result aligned with integrated 

corridor management principles but now supported by agent-based evidence (Dohler et al., 2024). 

Equity-focused analyses in earlier policy literature documented heterogeneous burdens and benefits 

from pricing; the present corpus retains that sensitivity by embedding income-tier behaviors and 

accessibility metrics in scenario comparisons, allowing distributional read-outs alongside efficiency (Dou 

et al., 2025). In sum, the comparative picture shows consistency with legacy policy findings on the 

direction of effects while attributing stronger, more finely targeted performance to adaptive and jointly 

optimized control of prices, lanes, and multimodal services. 

 

Figure 10: AI-Enhanced Traffic Simulation Outcomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The safety results—reductions in conflicts, improved surrogate safety metrics, and safer 

pedestrian/cyclist interactions—map closely onto long-standing conflict-based safety theory while 

introducing AI-driven precision in detection and control. Foundational work established the plausibility 

of using surrogate measures such as time-to-collision and post-encroachment time to infer risk in lieu of 

waiting for rare crash counts (Bi et al., 2022). The reviewed studies confirm that AI-optimized signal timing, 

protected phases, and speed harmonization improve these indicators at intersections and along 

arterials, including high-conflict approaches and turning movements, which echoes earlier before-and-

after signal studies but with stronger effect sizes under heavy heterogeneity (Mo et al., 2024). Prior 

evaluations often isolated vehicle-vehicle interactions; the present corpus extends analysis to vulnerable 

road users, modeling pedestrian priority phasing and cyclist overtaking dynamics with agent-based 

fidelity that earlier macroscopic tools could not represent (Ma et al., 2024). Consistency also appears in 

studies that benchmark simulated conflict reductions against observed crash or near-crash datasets, 

an external validation step recommended in the safety methods literature and applied in several recent 

U.S. contexts (Ye et al., 2025). Overall, the direction of safety effects mirrors earlier expectations from 

protected phasing and speed management, while AI contributes granular trajectory analytics and 

policy learning that concentrate risk reductions at the movements and times of day where conflicts 

historically clustered. 

The CAV findings—smoother speed profiles, fewer hard-braking events, and lower cut-in conflicts under 

cooperative adaptive cruise control and platooning—are broadly consistent with the early simulation 

literature that anticipated string stability and dissipation of stop-and-go waves from even modest CAV 

penetrations (Lv et al., 2025). What differentiates the current body of work is the explicit coupling of 

vehicle control logic with network-level signal policies learned via AI, which yields coordinated 

improvements that early, vehicle-centric studies only inferred (Yuan et al., 2025). Earlier proofs of 

concept typically used stylized networks and exogenous signals; the reviewed studies embed CAV 

behavior within calibrated urban topologies that include lane drops, short turn bays, and pedestrian 

activity, producing safety and mobility gains under realistic constraints (Alzamzami et al., 2025). Mixed-

fleet heterogeneity—human drivers with diverse gap acceptance and compliance—was a major 

caveat in early work; the recent simulations incorporate learned behavior distributions and still report 
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conflict reductions, which strengthens external validity relative to prior assumptions (Chaudhari, 2025). 

The trajectory-level evidence therefore corroborates classic CAV benefits while demonstrating that 

network-aware, AI-coordinated policies help realize those benefits at lower penetration and under the 

geometric and behavioral complexity common to U.S. arterials and CBD grids. 

Methodologically, the present synthesis shows that richer calibration and multi-engine replication 

coincide with stronger effects, which engages long-running debates on validation, transferability, and 

interpretability. Earlier guidance stressed transparent calibration, independent validation datasets, and 

reporting of fit statistics; that baseline is increasingly met or exceeded through Bayesian and machine-

learning calibration, multi-source data fusion, and back-casting tests (Zdravković et al., 2025). Classic 

car-following and lane-changing models provided interpretable mechanisms but required careful 

parameterization to match local conditions; AI models improve predictive fit yet raise questions of 

opacity that the literature addresses through sensitivity analyses and ablation studies (Sahran et al., 

2023). Transferability remains constrained—an issue long noted in European and U.S. comparative 

assessments—because behavior, enforcement, and infrastructure differ across regions; the reviewed 

studies counter this partially by reporting cross-network replications and by documenting 

hyperparameters and training corpora (Marques et al., 2025). Platform diversity (VISSIM, SUMO, AIMSUN, 

PARAMICS) reduces single-engine dependence and echoes earlier calls for method triangulation, while 

the pairing of simulation with field pilots in several cases advances external validity beyond what many 

legacy studies achieved (Prangon & Wu, 2024). Read across the validation literature, the reviewed 

corpus is consistent with established good practice and demonstrates incremental methodological 

strengthening where data and documentation permit. 

Finally, the synthesis indicates that AI-enhanced simulation is embedded in U.S. policy instruments 

concerned with mobility, safety, and equity, in a manner that resonates with earlier governance 

analyses of intelligent transportation and data-driven planning. The Smart City Challenge framed 

simulation as a planning and monitoring utility, and subsequent federal programs and technical 

guidance continued to treat calibrated, scenario-based modeling as due diligence for major initiatives 

(Koukaras, Koukaras, et al., 2025). Earlier policy scholarship emphasized the importance of transparent 

modeling and equity appraisal in pricing and investment decisions; the reviewed studies operationalize 

those expectations by reporting accessibility metrics and distributional outcomes alongside travel-time 

and reliability measures (Mohammed et al., 2025). Long-standing critiques about black-box decision 

aids remain salient; the corpus responds with clearer documentation of data provenance and 

algorithm configurations, while still acknowledging interpretability challenges (Akutsu et al., 2022). 

Relative to legacy practice that evaluated signals, pricing, transit, or CAVs in isolation, the present 

evidence base shows policy-relevant synergies when these levers are co-modeled and jointly optimized 

within agent-based and reinforcement learning frameworks (Najafzadeh & Yeganeh, 2025). The 

comparative reading is therefore one of continuity with established findings on what works in U.S. urban 

mobility and safety, combined with documented gains in analytical resolution, multimodal scope, and 

decision support that AI-enhanced simulation now brings into standard governance processes. 

CONCLUSION 

This systematic review synthesizes the emerging U.S. evidence on how artificial intelligence (AI)–

enhanced traffic simulation affects urban mobility and safety, integrating definitional, methodological, 

and policy perspectives into a single narrative grounded in PRISMA procedures. We define AI-enhanced 

traffic simulation as the coupling of established microsimulation engines (e.g., VISSIM, SUMO, AIMSUN, 

PARAMICS) with machine learning, deep learning, and reinforcement learning controllers as well as 

agent-based models that represent vehicle- and traveler-level decisions under realistic network 

constraints. A comprehensive search across major transportation, engineering, and computing 

databases (2010–2025) identified 4,912 records, from which 83 studies met inclusion criteria after dual-

reviewer screening and full-text appraisal. Of these, 61 reported mobility outcomes and 37 reported 

safety outcomes (15 covered both), with calibration based on multi-source data (loop detectors, 

probe/GPS and connected-vehicle feeds, smartphone traces) and validation via goodness-of-fit, 

backcasting, or field testbeds. On mobility, AI-optimized signals and multi-agent coordination 

consistently reduced intersection delay and queue length and increased corridor reliability; across 

comparable studies, median delay reductions clustered around the mid-teens with interquartile ranges 

reflecting corridor geometry and demand volatility, while dynamic traffic assignment and real-time 

rerouting redistributed loads pre-emptively to dampen bottlenecks and shockwave propagation. 

Policy-oriented simulations of congestion pricing, dynamic tolling, and HOV/managed lanes reported 

net reductions in peak delay and improved travel-time reliability, and agent-based multimodal/MaaS 

studies showed door-to-door passenger time savings and lower hub dwell times when transfers, staging, 

and priority rules were co-optimized. On safety, AI-driven strategies improved surrogate safety 
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indicators—time-to-collision, post-encroachment time, and conflict counts—at high-risk approaches, 

with modeled reductions for pedestrians and cyclists under protected phases and priority timing, and 

mixed-fleet CAV scenarios yielded fewer hard-braking and cut-in conflicts alongside smoother speed 

profiles under cooperative adaptive cruise control and platooning. Methodologically, reinforcement 

learning appeared in 32 studies, deep learning in 24, and agent-based representations in 27; effects 

were strongest where three or more independent data sources informed calibration and where studies 

paired simulation with operational pilots. Cross-study limitations included transferability across cities with 

different geometries, enforcement, and travel cultures; heterogeneous reporting conventions that 

complicate pooling; computational scaling for citywide multimodal co-simulation; and governance 

issues around data provenance, privacy, and the interpretability of black-box models. Nonetheless, 

consistency of direction across platforms, algorithms, and facility types—and alignment with U.S. policy 

applications in MPO planning, FHWA program evaluations, and Smart City–style initiatives—indicates 

that AI-enhanced simulation is empirically associated with shorter travel times, improved reliability, and 

measurable reductions in conflict risk when implemented in calibrated urban contexts, while 

highlighting clear methodological and governance priorities for subsequent research and deployment. 

RECOMMENDATIONS 

Prioritize a staged, evidence-first deployment of AI-enhanced traffic simulation built on four pillars—data 

quality, validated models, equity-centered policy design, and accountable governance. First, establish 

a trustworthy data foundation by integrating multi-source feeds (signal and detector logs, probe/GPS 

speeds, connected-vehicle telemetry, transit GTFS/AVL/APC, pedestrian/cyclist counts, and 

curb/parking activity) with strict quality gates (time sync, missingness thresholds, outlier rules), privacy 

protections (aggregation, strong anonymization), and a living data dictionary. Second, require 

reproducible calibration and validation: triangulate calibration with at least two independent data 

sources; report target/achieved fit for flows, speeds, queues, and turning ratios by time slice; run 

temporal/spatial holdouts and back-casting; and pair simulation with limited field checks (e.g., 

Bluetooth re-ID travel times and conflict observations). Third, standardize outcome reporting so results 

travel across corridors and cities: for mobility, report mean/median delay, 95th-percentile (buffer index), 

maximum queue, throughput, and network travel time; for safety, report conflicts per 1,000 vehicles, 

ΔTTC/ΔPET, and hard-brake events; for equity, report access to jobs/clinics within 45–60 minutes by 

income and mode; for environment, report VKT/VMT and CO₂/NOx with stated models—always with 

baselines, absolute and percent change, and uncertainty bands. Fourth, design AI controllers for safety, 

stability, and operability: use safe reinforcement learning with hard constraints (min green, pedestrian 

clearance, headway floors), action clipping, corridor-level multi-agent coordination, shadow-mode 

evaluation, and fail-safe fallbacks to actuated/coordination plans; log state→action summaries to 

enable audits. Run pilots as experiments rather than demos—A/B or stepped-wedge across matched 

corridors for 8–12 weeks—with preregistered success criteria (e.g., ≥10–15% delay reduction and ≥15% 

conflict reduction with no adverse equity signal) and a public pilot brief. Treat multimodal orchestration 

as first-class: co-simulate transit priority and headway management, last-mile connections, curb 

management, and vulnerable road user phases; track passenger door-to-door time, transfer reliability, 

hub dwell, and platform crowding. Make pricing/managed-lane analysis equity-aware by design 

(elasticities, peak spreading, revenue recycling scenarios, neighborhood-level indicators). Strengthen 

CAV mixed-traffic testing with a scenario library (penetration sweeps, failures, weather, work zones, 

vulnerable-user hotspots) and controller “cards” describing assumptions and limits. Document 

everything—model cards, simulation cards, versioned configs—and enable independent replication on 

sanitized bundles. Test transferability explicitly through domain randomization/meta-learning and report 

the data/time required to reach target fit in holdout corridors. Build capacity through an agency-level 

AI+Simulation guild, operator training, and procurement language that codifies these standards. This 

single, integrated playbook converts the review’s findings into operational steps that agencies, MPOs, 

and city partners can execute with confidence and accountability. 
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