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Abstract 
Real-time threat detection in cloud and enterprise settings remains constrained by high alert noise, 
data drift, and limited analyst capacity; organizations need evidence on whether deeper AI 
integration improves detection timeliness and operational quality. This study’s purpose is to 
quantify the association between AI-enhanced cybersecurity frameworks and measurable outcomes 
under routine operations. We adopt a quantitative, cross-sectional, case-based design spanning 18 
heterogeneous deployments across cloud-first, hybrid, and on-premises environments. The sample 
consists of cloud and enterprise cases that meet inclusion criteria for active SOCs, centralized 
logging, and at least one AI-driven detection or orchestration component. Following a targeted 
review of 100 peer-reviewed papers to ground constructs and measures, we operationalize an AI 
Integration Index and model its relationship to key variables detection latency, precision, recall, F1, 
false-positive rate, and mean time to respond using a pre-registered analysis plan: descriptive 
profiling, correlation screening with multiple-comparison control, robust OLS and median quantile 
regression for continuous outcomes, beta or fractional logit models for rates, interaction tests with 
cloud maturity, influence diagnostics, leave-one-case-out validation, and bootstrap intervals. 
Headline findings show that higher integration aligns with materially shorter detection latency and 
MTTR, higher precision and F1, and lower false-positive rates, with effects strongest in mature cloud 
contexts where control-plane observability and API-mediated enforcement are pervasive. 
Implications for practice are to treat AI as a system capability spanning fusion across telemetry, 
model freshness with analyst feedback, drift monitoring, and graded, reversible SOAR automation 
that links detection confidence to proportionate action, thereby reducing dwell time without 
sacrificing oversight. 
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INTRODUCTION 
Artificial intelligence (AI)–enhanced cybersecurity refers to architectures that integrate machine 
learning (ML) and data-driven analytics into the security operations lifecycle spanning collection, 
detection, triage, and response to improve performance on key metrics such as detection latency, 
precision/recall, false-positive rate, and mean time to respond (MTTR) in both cloud and enterprise 
environments (Buczak & Guven, 2016; Chandola et al., 2009). In contrast to purely signature- or rule-
based systems, AI-enhanced frameworks leverage supervised classifiers, anomaly detection, ensemble 
fusion, and automated orchestration to surface threats in real time from noisy, high-velocity telemetry. 
Cloud contexts introduce distinct risk surfaces elastic multi-tenancy, software-defined perimeter, and 
provider–consumer shared responsibility that complicate monitoring and response at global scale. The 
international significance of AI-enabled defense arises from (a) borderless attack infrastructure, (b) 
cross-jurisdictional data flows in hyperscale clouds, and (c) the universal adoption of endpoint 
detection and response (EDR), intrusion detection/prevention (IDS/IPS), and security information and 
event management (SIEM) platforms across industries, from finance to healthcare (Ahmed et al., 2016). 
At the same time, deploying ML in detection is nontrivial: network intrusion detection differs sharply 
from classic ML benchmarks because labels are scarce, distributions drift, and attacker behavior reacts 
to model deployment (Sommer & Paxson, 2010). These realities motivate an empirical, measurement-
oriented approach that quantifies how AI-enhanced frameworks perform in situ across heterogeneous 
cloud and enterprise cases using transparent statistical techniques (Saito & Rehmsmeier, 2015). This 
study adopts a quantitative, cross-sectional, multi–case design to evaluate whether and under what 
operational conditions AI integration is associated with better real-time threat detection outcomes 
relative to conventional baselines. 
AI-enhanced security stacks can be conceptualized as pipelines: (i) data acquisition (endpoint, network, 
identity, and cloud control-plane logs), (ii) feature engineering and representation learning, (iii) 
detection models (supervised classifiers, density-based/graph-based anomaly detection, and hybrid 
ensembles), (iv) correlation and fusion in SIEM/SOAR, and (v) orchestrated response via playbooks. 
In supervised detection, decision forests, support vector machines, and deep neural networks have 
been demonstrated for intrusion classification from host and flow features (Cortes & Vapnik, 1995; 
Jahid, 2022). In unsupervised settings, local-density and clustering-based methods remain central to 
surfacing previously unseen behaviors in high-dimensional traffic . For cloud workloads, researchers 
emphasize control-plane auditing (e.g., API calls), flow metrics, and identity analytics to reflect multi-
tenant and elastic characteristics. However, security ML must contend with adversarial dynamics 
models can be probed, drift reduces performance, and evaluation on legacy datasets inflates apparent 
accuracy (Eskin et al., 2002; Arifur & Noor, 2022). The proposed study therefore treats “AI integration” 
as a measurable construct (e.g., index capturing model types, retraining cadence, fusion depth, and 
automation level) and examines associations with operational metrics observable across organizations 
at a common timepoint (Davis & Goadrich, 2006). This framing aligns with international practice, 
wherein enterprises standardize on reproducible KPIs to compare controls while respecting data-
protection constraints in cross-border environments (Fernandes et al., 2014). 
The empirical literature on AI for intrusion detection spans classical payload and flow analytics to 
modern deep architectures. Early payload-based anomaly detection established statistical profiling as 
a viable approach (Wang & Stolfo, 2004), while DARPA-style evaluations highlighted both progress 
and pitfalls in benchmarking (Lippmann et al., 2000). Contemporary work leverages deep 
autoencoders, convolutional/recurrent networks, and hybrid ensembles to model complex 
spatiotemporal patterns in traffic and host telemetry (Hasan & Uddin, 2022; Shone et al., 2018). Dataset 
quality is pivotal: reliance on dated corpora (e.g., KDD’99/NSL-KDD) risks misleading generalization, 
prompting moves to richer datasets such as UNSW-NB15 and CICIDS2017 (Moustafa & Slay, 2015; 
Ring et al., 2019). These corpora include modern protocols and attack families and support evaluation 
with realistic class imbalance, a crucial factor for precision–recall analysis (Kriegel et al., 2009; Papernot 
et al., 2017). At the same time, dataset surveys caution that ground truth, traffic diversity, and capture 
realism vary widely across benchmarks, shaping conclusions about model efficacy (Ahmed et al., 2016; 
Akoglu et al., 2015; Kriegel et al., 2009). Recognizing these issues, our cross-sectional, case-based design 
foregrounds operational metrics exported from live SIEM/EDR/SOAR systems in multiple 
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organizations, reducing dependence on synthetic replay and enabling stronger external validity for 
both cloud and enterprise contexts (Ahmed et al., 2016; Cook, 1977). 
 

Figure 1: AI-Enhanced Cybersecurity Framework for Real-Time Threat Detection 

 
Evaluating real-time detection requires metrics and modeling choices that respect class imbalance, 
streaming effects, and confounding organizational factors. Area under the precision–recall curve (or F1 
at policy thresholds) and false-positive rates offer more informative views than ROC-AUC when the 
positive class is rare (Lundberg & Lee, 2017; Saito & Rehmsmeier, 2015). To estimate associations 
between AI integration and performance, regression models suited to outcome types will be used for 
example, robust ordinary least squares for continuous outcomes (latency, MTTR), fractional logit or 
beta regression for rates (false-positive proportion), and logistic regression for SLA-linked binary 
outcomes (Rahaman, 2022; White, 1980). Multiple testing adjustments (Benjamini & Hochberg, 1995) 
and influence/heteroskedasticity diagnostics improve inferential reliability in multi-predictor settings 
typical of security operations (Moore & Zuev, 2005; Sharafaldin et al., 2018; White, 1980). Cloud 
maturity, asset scale, and telemetry coverage are important covariates; graph-based anomaly literature 
suggests topology and entity interactions influence detectability in enterprise networks (Akoglu et al., 
2015; Rahaman & Ashraf, 2022). Given concept drift in behaviors and controls, a cross-sectional 
snapshot must explicitly report retraining cadence and model freshness to contextualize results (Sculley 
et al., 2015; Sun et al., 2018). These methodological commitments are designed to promote transparent, 
reproducible measurement across international cases without divulging sensitive payload content 
(Gama et al., 2014; Yin et al., 2017). 
The intersection of ML and security introduces additional constraints often absent in generic prediction 
tasks. First, data and label scarcity: high-fidelity incident labels are costly and inconsistently defined 
across organizations, encouraging semi-supervised or anomaly-first workflows (Huang et al., 2011; 
Salo et al., 2019). Second, adversarial pressure: models face evasion, poisoning, and transfer attacks, 
which can degrade detection reliability and create brittle policies (Breunig et al., 2000; Huang et al., 
2011). Third, evaluation leakage: training on artifacts present in test splits (e.g., replay artifacts) can 
inflate headline metrics relative to real operations, a concern repeatedly stressed in the intrusion-
detection literature (Pang et al., 2021; Poornachandran et al., 2020; Sommer & Paxson, 2010). Fourth, 
explainability: analysts must rationalize alerts and actions; post-hoc explainers such as LIME and SHAP 
provide local explanations of model decisions, facilitating human adjudication and playbook 
refinement (Tsipras et al., 2019; Zou & Hastie, 2005). Finally, governance: regulated sectors operate 
under obligations to minimize data exposure and maintain auditability, shaping the features and 
models permissible in production (Fernandes et al., 2014). These constraints motivate a case-based 
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quantitative design that controls for organizational context and focuses on operationally meaningful 
endpoint and network indicators rather than purely academic benchmarks (Gama et al., 2014; Islam, 
2022). 
Although enterprises increasingly adopt hybrid architectures, cloud-specific phenomena affect both 
attack surfaces and detection feasibility: ephemeral instances, auto-scaling, multi-account sprawl, and 
rich control-plane telemetry change what can be sensed and acted upon (Fernandes et al., 2014;  Hasan 
et al., 2022). Surveys of cloud security catalog authentication/authorization gaps, virtualization and 
network isolation issues, and data governance concerns that complicate monitoring and response 
(Hodge & Austin, 2004; Modi et al., 2013). In parallel, enterprise networks remain complex, with legacy 
segments, unmanaged endpoints, and shadow IT generating high alert volumes where anomaly 
detectors must balance sensitivity and analyst workload (Garcia-Teodoro et al., 2009; Redwanul & 
Zafor, 2022). AI-driven IDS studies demonstrate potential in both settings e.g., deep architectures on 
modern corpora such as UNSW-NB15 and CICIDS2017 yet generalization to production depends on 
telemetry coverage, model update cadence, and the orchestration layer’s ability to enact containment 
(Javaid et al., 2016; Rezaul & Mesbaul, 2022). Given these differences, this study explicitly codes 
environmental attributes (cloud maturity, asset scale) as moderators when assessing associations 
between an AI-integration index and performance outcomes, enabling a nuanced, cross-organizational 
view of real-time detection (Akoglu et al., 2015; Hasan, 2022). 
Prior reviews synthesize algorithmic advances and dataset trends, but fewer works quantitatively 
benchmark operational AI integration across multiple real-world cases using standardized KPIs 
(Lazarevic et al., 2003; Moore & Zuev, 2005). Building on lessons from evaluation science (e.g., 
precision–recall analysis in imbalanced settings) and robust modeling (e.g., heteroskedasticity-
consistent inference), we propose to quantify the relationship between AI-integration depth and (i) real-
time detection latency, (ii) error trade-offs (precision/recall, false-positive rate), and (iii) downstream 
response time (MTTR) while controlling for cloud maturity, team size, and telemetry coverage 
(Benjamini & Hochberg, 1995). Operationally, the study’s measurement strategy prioritizes exports 
from SIEM/EDR/SOAR and ticketing platforms to ensure comparable, auditable metrics across 
jurisdictions without requiring payload disclosure (Fernandes et al., 2014). By integrating insights from 
anomaly detection, supervised classification, graph-based analytics, adversarial ML, and evaluation 
methodology, the design emphasizes reproducible, cross-sectional evidence on AI’s role in real-time 
threat detection in cloud and traditional enterprise settings (Chandola et al., 2009). The resulting 
evidence base is intended to clarify associations not causal effects between specific integration choices 
and measurable outcomes under realistic operational constraints (Ahmed et al., 2016). 
The objective of this study is to produce a rigorous, measurement-driven assessment of how artificial 
intelligence–enhanced cybersecurity frameworks relate to real-time threat detection performance 
across cloud and enterprise environments, using a quantitative, cross-sectional, multi–case design. 
Specifically, the primary objective is to estimate the association between depth of AI integration 
operationalized as a composite index capturing model types, retraining cadence, fusion and correlation 
mechanisms, and orchestration automation and key operational outcomes, including detection latency, 
precision, recall, F1 score, false-positive rate, area under the precision–recall curve where available, and 
mean time to respond. A second objective is to isolate which architectural elements within the broader 
AI stack such as supervised classifiers, anomaly detection components, ensemble fusion layers, and 
automated playbooks exhibit the strongest measurable relationships with these outcomes when 
evaluated at a common timepoint across heterogeneous organizations. A third objective is to quantify 
the role of contextual and scale factors by modeling how cloud maturity, security team size, asset 
footprint, and telemetry coverage moderate or condition the observed relationships, thereby 
distinguishing performance patterns attributable to integration depth from those attributable to 
environmental constraints. A fourth objective is to standardize a transparent data collection protocol 
that derives all measures from operational system exports SIEM, EDR/IDS, SOAR, and ticketing 
ensuring reproducibility without reliance on synthetic replay or payload disclosure, and to define 
quality controls for timestamp normalization, deduplication, missingness auditing, and outlier 
handling. A fifth objective is to implement a pre-specified statistical analysis plan that includes 



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 737–770 
 

741 
 

descriptive profiling, correlation analysis with appropriate error control, and regression modeling 
matched to outcome types, accompanied by diagnostics for multicollinearity, heteroskedasticity, 
residual behavior, and influence, with robustness checks for alternative index weightings and sample 
restrictions. A sixth objective is to document measurement reliability through inter-rater agreement for 
label adjudication and to assess construct validity for the integration index via expert review within 
each case. A seventh objective is to report results in a format directly usable by security operations 
stakeholders, including standardized tables for case characteristics, variable definitions, descriptive 
statistics, correlation matrices, and model coefficients, together with clearly defined operational 
formulas for each metric. Collectively, these objectives focus the study on quantifying observable 
associations at scale, clarifying the conditions under which AI integration aligns with stronger real-
time detection metrics, and establishing a repeatable measurement framework that can be applied 
consistently across diverse organizational settings. 
LITERATURE REVIEW 
The literature on artificial intelligence–enhanced cybersecurity spans several converging streams that 
together define the evidentiary baseline for real-time threat detection in cloud and enterprise 
environments. Foundation surveys synthesize classical intrusion detection paradigms and the shift 
from rule/signature engines toward machine learning–driven pipelines that combine supervised 
classification, unsupervised anomaly detection, and ensemble fusion across heterogeneous telemetry. 
Parallel work on cloud security outlines how multi-tenancy, elastic scaling, and shared-responsibility 
models reconfigure the attack surface and the observable control-plane signals available for detection, 
thus altering feature spaces and data quality constraints relative to traditional enterprise networks. 
Empirical evaluations increasingly rely on modern corpora such as UNSW-NB15 and CICIDS2017 to 
address outdated benchmarks and to reflect contemporary protocol mixes and attack families, while 
dataset audits warn about ground-truth fidelity, traffic realism, and class imbalance that complicate 
external validity. Methodological contributions emphasize metrics attuned to rarity and operational 
trade-offs, favoring precision–recall analysis and F1 over ROC when positives are sparse, and 
encourage transparent reporting of thresholds, calibration, and error bars. Security-specific constraints 
concept drift, feedback loops between attacker behavior and deployed models, and adversarial 
manipulation differentiate this domain from generic predictive analytics and motivate attention to 
model freshness, retraining cadence, and robustness. Beyond detection, orchestration research 
describes Security Orchestration, Automation, and Response (SOAR) platforms that encode playbooks 
to route, enrich, and act on alerts, linking analytic outputs to containment and thereby affecting 
operational measures like mean time to respond. Across these strands, comparative gaps remain: cross-
organizational studies rarely standardize how “AI integration” is defined, often mix synthetic and 
operational data, and vary in whether they control for contextual factors such as cloud maturity, team 
size, or telemetry coverage. Framed against this backdrop, the present review synthesizes (a) threat-
detection approaches in cloud and enterprise settings, (b) AI/ML methods and representation choices, 
(c) datasets and evaluation protocols, and (d) automation layers that translate analytic signals into 
response, establishing the conceptual and measurement scaffolding for the study’s quantitative, cross-
sectional analysis. 
Threat Detection in Cloud Versus Enterprise Environments 
The detection surface and telemetry fundamentals diverge markedly between cloud platforms and 
traditional enterprise networks, shaping how anomalies are defined and how alerts are 
operationalized. In conventional enterprises, defenders often build detection logic around stable 
topologies, routable perimeters, and host/network controls the organization owns end-to-end; by 
contrast, cloud environments abstract infrastructure behind APIs and multi-tenant control planes, and 
surface signal primarily through provider logs, ephemeral workload metadata, and service-level 
events. These structural differences complicate “like-for-like” transposition of on-premises signatures 
and baselines. Cloud tenants must reason about identity- and API-centric behaviors (e.g., access key 
misuse, privilege escalation paths, cross-account role assumptions), while enterprises continue to rely 
heavily on packet capture, NetFlow, and endpoint audit trails tethered to physical or virtual assets they 
manage directly. Early foundational work on cloud security emphasized how trust distribution, shared 
responsibility, and virtualization layers alter threat models especially by shifting the locus of control 
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and, therefore, the locus of detectable evidence making it necessary to complement network/host 
inspection with control-plane–aware analytics, governance primitives, and trust services tailored to 
multi-tenant contexts (Zissis & Lekkas, 2012). In practice, this means “real-time” in the cloud is often 
bounded by the latency and fidelity of provider event streams (such as management APIs, 
storage/object access logs, and serverless invocation logs), whereas “real-time” in enterprise networks 
frequently means inline or near-inline packet/endpoint inspection. The practical upshot is that cloud-
first detections tend to be identity-, configuration-, and API-usage–centric, while enterprise detections 
are still anchored in traffic and host semantics, with distinct error modes and observability limits in 
each domain. 
 

Figure 2: Comparative Threat Detection in Cloud Platforms Versus Enterprise Networks 

 

 
Architectural mediation through hypervisors and virtualization changes what can be seen, where, and 
at what cost. In cloud settings, the same virtualization that increases isolation can both help and hinder 
detection: it enables vantage points such as hypervisor- or service-level monitoring, yet it also 
constrains tenant access to raw underlying telemetry. Surveys of intrusion-detection techniques 
tailored to clouds show a pivot from purely signature-based or host-resident agents toward techniques 
that exploit cloud-native vantage points virtual machine and hypervisor introspection, side-channel 
resistant system state inspection, and API-driven posture assessment precisely because these vantage 
points minimize in-guest tampering and better map to provider-managed control planes (Mishra et al., 
2017). In enterprise environments, defenders may deploy deep packet inspection and kernel-mode EDR 
broadly and accept operational trade-offs (e.g., privacy considerations on east-west traffic or resource 
overhead on production hosts). In multi-tenant clouds, tenants rarely control the lower layers and must 
instead lean on introspection-adjacent or API-first methods and on data-parallel analytics that can scale 
with elastic workloads. Complementary work on cloud-based network intrusion detection underscores 
why defenders frequently adopt distributed compute frameworks (e.g., MapReduce/Spark 
paradigms) to keep pace with high-volume telemetry and to parallelize feature 
extraction/classification for anomaly detection (Tarek, 2022). That literature highlights both the 
opportunities (elastic scale, rapid training/inference during bursts) and the caveats (algorithmic 
portability, dataset shift across tenants/services) of transplanting classic NIDS/ML pipelines into cloud 
analytics stacks (Keegan et al., 2016; Kamrul & Omar, 2022). In turn, these choices cascade into detection 
engineering practices: feature stores become log- and API-centric; model drift correlates with provider 
feature rollouts; and “ground truth” labeling must account for infrastructure that is declarative, 
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ephemeral, and policy-driven rather than statically provisioned. 
Enterprise detection also differs from cloud detection in the way evidence is preserved, validated, and 
acted upon, which feeds back into how detections are designed in the first place (Kamrul & Tarek, 
2022). On-premises investigations typically assume relatively direct access to hardware, storage media, 
and network infrastructure, enabling disk-level imaging, packet capture replays, and low-level timeline 
reconstruction (Mubashir & Abdul, 2022). In the cloud, forensic readiness becomes a detection 
prerequisite: logging must be explicitly enabled for the relevant services and regions, timestamps must 
be synchronized across services, and evidence chains must be constructed from provider-issued 
artifacts and tenant-side captures (Muhammad & Kamrul, 2022). Research on cloud forensics 
formalizes these constraints and proposes frameworks for evidence identification, preservation, and 
analysis that acknowledge the distributed, API-mediated nature of cloud artifacts; critically, it 
emphasizes the need to design detections that both surface malicious activity and leave admissible, 
reconstructible traces across provider and tenant boundaries (Alex & Kishore, 2017; Reduanul & Shoeb, 
2022). Empirical work on acquiring forensic evidence from infrastructure-as-a-service demonstrates 
practical toolchains and trust considerations for extracting VM- and storage-level artifacts without 
violating isolation guarantees again reinforcing that effective cloud detection must be conceived with 
downstream incident response and evidentiary integrity in mind (Dykstra & Sherman, 2012; Sabuj 
Kumar & Zobayer, 2022). The implication for a comparative lens is clear: while enterprise detections 
can often presume comprehensive packet/host capture and direct chain-of-custody, cloud detections 
must be engineered around provider logs, service metadata, and API semantics to ensure both timely 
alerting and defensible post-alert investigations (Mishra et al., 2017; Sadia & Shaiful, 2022; Zissis & 
Lekkas, 2012). 
AI/ML for Security Operations (SIEM/EDR/IDS/SOAR) 
In security operations, artificial intelligence and machine learning extend traditional detection by 
learning behavioral baselines from heterogeneous telemetry and surfacing deviations at operationally 
useful latencies. In network-focused intrusion detection, online and streaming settings require compact 
models that adapt to traffic evolution while remaining computationally frugal; ensemble autoencoders 
trained on benign flows and reconstructed in real time are a representative approach that compresses 
normal behavior and raises alerts on reconstruction anomalies, enabling deployment at the edge or 
within lightweight sensors (Mirsky et al., 2018; Noor & Momena, 2022). For web-facing systems, where 
the request surface is highly structured yet attacker payloads mutate rapidly, anomaly detection that 
models request attributes and parameter distributions can expose previously unseen exploitation 
tactics even when signatures lag, demonstrating how statistical learning augments signature defenses 
in application-layer monitoring (Istiaque et al., 2023; Kruegel & Vigna, 2003). In environments where 
labeled attack data are scarce or costly to curate, isolation-based algorithms split feature space by 
random partitions to reveal points that are “few and different,” offering label-agnostic detectors that 
scale to high-dimensional security features without expensive density estimation (Hossain et al., 2023). 
These techniques complement rule engines by prioritizing suspicious hosts, sessions, or identities for 
human triage within SIEM queues, effectively turning ML scores into attention-routing signals that 
reduce analyst cognitive load while preserving human control. Across these exemplars, the operational 
thread is consistent: AI models enrich events before correlation, push context into SIEM pipelines, and 
allow EDR/IDS stacks to escalate only a minority of high-risk artifacts, stabilizing alert volume and 
improving the signal-to-noise ratio under real-world traffic and workload fluctuations (Liu et al., 2008; 
Hasan et al., 2023). 
Logs and endpoint telemetry introduce a second pillar for AI in operations: sequence learning. Modern 
infrastructures emit ordered streams authentication events, process creations, registry modifications, 
cloud API calls whose temporal dependencies encode “how work normally happens.” By learning 
next-event distributions or latent sequence embeddings, sequence models transform raw logs into 
behavioral profiles and highlight deviations that indicate misuse, lateral movement, or automation 
misuse. A practical instantiation builds on recurrent and gated architectures that learn over event 
templates to forecast likely next steps; when observed actions diverge sharply from predicted patterns, 
the system flags anomalies suitable for SOC triage and threat hunting, with resulting alerts linked back 
to human-understandable templates within the SIEM (Du et al., 2017; Sultan et al., 2023).  
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Figure 3: AI/ML Integration into Security Operations for Detection 

 
On the host side, long short-term memory classifiers that ingest sequences of system calls or derived 
features offer fine-grained classification of process behavior and can be complemented by thresholding 
or one-class schemes in low-label regimes, enabling deployment as endpoint analytics adjacent to EDR 
collection channels (Kim et al., 2016; Hossen et al., 2023). These approaches map naturally onto security 
operations tasks: identity monitoring benefits from sequence deviations in login geography or device 
posture; change-management oversight benefits from unexpected API call chains in cloud control 
planes; and insider-risk monitoring benefits from rare sequence motifs in data-access logs. Crucially, 
sequence learners do not replace correlation rules but rather provide statistically prioritized candidates 
that rules can enrich and de-duplicate. When embedded in SIEM enrichment stages, these models add 
features predicted-likelihood scores, reconstruction errors, sequence distances that downstream 
correlation can fuse with threat intelligence, allowing consistent prioritization across diverse alert types 
and reducing analyst time-to-context for first-response investigation (Tawfiqul, 2023; Stakhanova et al., 
2007). 
The final leg of AI-enabled operations concerns how analytic outputs flow into containment and 
remediation i.e., the “R” in SOAR. While machine learning ranks events, operations must still 
orchestrate actions that are proportional, auditable, and reversible. A foundational taxonomy of 
intrusion response systems delineates strategic choices selection, initiation, and execution of responses 
and emphasizes coupling detection confidence with response intensity to manage operational risk; this 
framing remains relevant as AI augments decision inputs yet human operators retain the authority to 
commit changes in production (Sanjai et al., 2023; Stakhanova et al., 2007). In practice, SOCs codify 
playbooks that parameterize actions by model scores, anomaly magnitudes, or sequence-deviation 
ranks: low-confidence anomalies may trigger enrichment and watchlists; medium-confidence findings 
may isolate a host from sensitive network segments; high-confidence events may revoke credentials, 
rotate keys, or quarantine workloads. Network-facing detectors built on lightweight autoencoder 
ensembles can insert block recommendations into SOAR queues when a flow crosses anomaly 
thresholds sustained over windows, thereby tempering false positives through temporal consensus 
(Mirsky et al., 2018; Akter et al., 2023). Web-application anomaly detectors can propose virtual patching 
rules at the proxy or WAF that reflect distributional outliers among parameters rather than static 
signatures, improving generality to unseen payload variants (Razzak et al., 2024; Kruegel & Vigna, 
2003). Isolation-based models contribute to containment by highlighting rare-but-similar clusters of 
hosts or identities for batch-action, allowing SOAR to scale response while preserving selective scope 
(Liu et al., 2008). Sequence models drive progressive containment: when a process or identity begins to 
follow low-probability trajectories, SOAR can initiate micro-segmentation or step-up authentication 
rather than blunt lockouts, aligning operational friction with model uncertainty (Du et al., 2017; Istiaque 
et al., 2024). In aggregate, these pipelines show how AI/ML, when tethered to response taxonomies 
and playbooks, elevates SIEM/EDR/IDS telemetry into actionable, graduated interventions that 
reduce dwell time without sacrificing oversight. 
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Real-Time Constraints 
Real-time threat detection operates in a streaming regime where events arrive continuously, decisions 
must be made with bounded latency, and the underlying data distribution may change as systems scale 
or adversaries adapt. Classical batch learning assumptions break down because models must update 
(or at least remain reliable) as traffic patterns, identities, and application behaviors evolve in 
production. Early work on drifting concepts formalized how classifier performance degrades when the 
mapping between features and labels shifts, and proposed incremental learners that can adapt to 
change without full retraining, laying the theoretical foundation for online security analytics where 
distributions are rarely stationary (Hasan et al., 2024; Widmer & Kubat, 1996). In high-velocity 
telemetry (e.g., endpoint events, NetFlow, cloud API logs), streaming algorithms must be single-pass 
or few-pass and memory-bounded; tree learners that incrementally update sufficient statistics over 
arriving instances exemplify this constraint and underpin many practical detectors for evolving 
environments (Hulten et al., 2001; Ashiqur et al., 2025). Real-time pipelines also require scalable 
dataflow execution to ingest, featurize, and score events within sub-second deadlines so that suspicious 
activity can be acted upon before it propagates; modern stream processing frameworks treat processing 
as discretized micro-batches or continuous operators to preserve low latency while supporting stateful 
computations such as sliding windows and joins (Hasan, 2025; Zaharia et al., 2013). In practice, these 
architectural choices govern what “real-time” means operationally: the tighter the window between 
event arrival and model action, the more aggressively systems must manage state, backpressure, and 
out-of-order arrivals. Because threat detection is inherently imbalanced and nonstationary, robust real-
time analytics often blend fast, approximate scoring paths with slower background adaptation, 
maintaining bounded compute while preserving the ability to track drift and recalibrate thresholds 
over time (Ismail et al., 2025; Widmer & Kubat, 1996). 
 

Figure 4: Real-Time Threat Detection 

 
A second, persistent constraint is concept drift, which can be gradual (e.g., seasonal usage changes), 
sudden (e.g., configuration rollouts), recurring (e.g., business cycles), or adversarial (e.g., evasive tactics 
that exploit model blind spots). Learners that ignore drift risk brittle policies and escalating false 
positives or false negatives as operating conditions shift. Streaming research addresses this with 
change-detection signals, adaptive ensembles, and resampling/weighting strategies that bias models 
toward recent evidence. Adaptive random forests for evolving streams, for example, maintain multiple 
incremental trees with drift detectors that trigger selective resets or weighted updates, preserving 
accuracy under shifting distributions without pausing the dataflow a profile that maps well to SOC 
constraints where retraining offline on full corpora is infeasible (Gomes et al., 2017; Sultan et al., 2025). 
Online bagging and boosting provide additional leverage by stochastically reweighting arriving 
instances, improving robustness to noise and minority-class scarcity while keeping computation linear 
in the stream rate (Oza, 2005). In imbalanced settings common to intrusion detection, learners must 
avoid dominance by majority benign traffic; techniques that explicitly account for skew through cost-
sensitive updates, dynamic resampling, or skew-aware split criteria help stabilize precision–recall 
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trade-offs as the base rate of attacks fluctuates (Krawczyk, 2016). Together, these mechanisms support 
a practical posture: incremental models that emphasize recency, ensembles that hedge against local 
overfitting, and drift detectors that raise alarms when the input–label relationship shifts materially. The 
engineering corollary is continuous evaluation in production measuring error profiles on adjudicated 
alerts and tracking calibration drift so that update cadence and thresholding remain aligned with 
current traffic regimes. In cloud and enterprise contexts, where feature spaces evolve with software 
releases and policy changes, these adaptive strategies are not mere enhancements but prerequisites for 
sustained real-time performance (Gomes et al., 2017; Oza, 2005). 
Even when models remain accurate, alert fatigue emerges as an operational bottleneck that undermines 
real-time response. SOCs contend with bounded analyst capacity, queueing dynamics, and strict 
service-level expectations; without disciplined prioritization, high-volume alert streams translate into 
growing backlogs and elongated mean time-to-respond. Queueing theory offers a succinct framing: in 
a stable system, the average number of items in queue equals the arrival rate times the average time an 
item spends in the system; when arrival rates exceed effective service rates, backlogs and dwell time 
grow without bound, regardless of detector accuracy (Little, 1961). This constraint elevates the role of 
scoring, thresholding, and enrichment in streaming operations. Incremental learners (e.g., very fast 
decision trees) can provide calibrated risk scores at line rate, enabling dynamic thresholds that respond 
to current load, while stream processing engines orchestrate stateful joins that attach context (identity, 
asset criticality, recent anomalies) to each alert before it reaches the queue (Krawczyk, 2016; Sanjai et 
al., 2025). Adaptive ensembles allocate triage attention to items with both high risk and high potential 
impact, allowing operations to maintain steady service even under bursty arrival patterns (Gomes et 
al., 2017). Complementing modeling choices, stream-aware playbooks can implement graduated 
responses such as automated enrichment and watchlisting for marginal anomalies, and immediate 
containment for high-confidence, high-impact events so that scarce analyst time is conserved for 
investigations that require human judgment. The combined effect is to convert raw detections into 
actionable signals aligned with capacity, a necessary condition for achieving real-time containment in 
practice. Without these controls on flow and prioritization, even well-validated detectors can 
exacerbate fatigue, as elevated sensitivity translates into queues that violate operational deadlines 
(Little, 1961). 
Automation and MTTR 
Reducing mean time to respond (MTTR) hinges on how effectively security operations centers (SOCs) 
couple machine-driven detection with well-calibrated, human-supervised action. Automation can 
shrink handoff delays, standardize evidence gathering, and execute low-risk containment within 
seconds; however, the degree and locus of automation must be engineered around human cognition 
and workflow or it will simply move bottlenecks elsewhere. Foundational human–automation research 
shows that performance depends on the type and level of automation selected for a given task, and on 
how information and control are partitioned between the system and the operator (Parasuraman et al., 
2000). In SOC terms, enrichment and triage are excellent candidates for higher automation levels, while 
decision rights for disruptive actions (e.g., credential revocation, network quarantine) often remain at 
intermediate levels to guard against context loss and unanticipated side effects. Classic analyses of the 
“ironies of automation” caution that as routine decision making is delegated to software, the human 
role shifts toward exception handling, which paradoxically demands more situation awareness at the 
very moments when cognitive load spikes (Bainbridge, 1983). Designing playbooks that surface just-
in-time context, show reversible actions, and preserve auditability addresses this tension: operators 
retain authority yet can act quickly because the system has precomputed the “next safe step.” 
Complementing the levels-of-automation view, trust calibration is essential; operators who overtrust 
automation will accept spurious actions, whereas undertrust leads to rework and latency. Empirical 
frameworks for “appropriate reliance” emphasize transparency, feedback timing, and performance 
histories as levers to align trust with actual system reliability principles that translate directly into SOC 
dashboards, confidence scores, and graduated response ladders that scale as volume grows (Lee & See, 
2004). When these elements are synchronized, automation compresses the investigative prelude to 
containment and establishes predictable time budgets, a prerequisite for lowering MTTR at scale. 
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Figure 5: Automation-Driven Workflow for Reducing Mean Time to Respond (MTTR) 

 
While human factors determine whether automation is usable, operational flow determines whether it 
is useful. SOCs are service systems with stochastic arrivals (alerts) and finite service capacity (analyst 
minutes). Queueing theory demonstrates that average backlog and sojourn time rise sharply as 
utilization approaches capacity; thus, even accurate detectors can degrade MTTR if they flood the 
queue without prioritization (Gans et al., 2003). Effective automation therefore acts as flow control: it 
enriches alerts to pre-assemble context, prioritizes items with the highest harm-to-effort ratio, and 
diverts low-value work into watchlists or deferred reviews. Concretely, playbooks powered by risk 
scoring and asset criticality can gate disruptive actions behind confidence and impact thresholds, 
ensuring that scarce analyst attention is allocated where decision quality most affects outcomes. To 
maintain stability during bursts, runbooks should implement dynamic throttling tightening thresholds 
when queues elongate and relaxing them as service recovers thereby keeping effective utilization below 
the congestion knee identified in service systems research (Gans et al., 2003). Trust-in-automation 
studies also underscore the importance of timely, comprehensible feedback: when automation explains 
why a case was prioritized and what evidence supports the action, analysts spend less time 
reconstructing context and more time executing containment, directly trimming MTTR (Lee & See, 
2004). Conversely, opaque automation encourages “double checking,” injecting hidden latencies that 
erase nominal time savings. Aligning playbook design with these insights yields pipelines where 
detection, enrichment, prioritization, and response operate as a single service with explicit service-level 
objectives: mean triage time, mean containment time, and variability bounds. This framing recasts 
MTTR not as a byproduct of tooling but as a controllable property of the SOC’s automated workflow. 
Automation also reshapes error dynamics in ways that matter for real-time defense. Misuse and disuse 
of automation overreliance in ambiguous contexts or refusal to use well-calibrated aids both inflate 
MTTR by triggering either cascades of incorrect actions or repeated manual rework (Parasuraman & 
Riley, 1997). SOC automation must therefore be forgiving: actions should be reversible, scope-limited, 
and accompanied by immediate state observability so that operators can detect and roll back 
unintended consequences. From a cognitive perspective, exception handling becomes the core human 
task; designs that pre-stage hypotheses, present side-by-side diffs (before/after policy or 
configuration), and show counterfactuals (“if not quarantined, expected blast radius…”) reduce the 
mental workload spikes identified in the classic critique of automation (Bainbridge, 1983). Finally, 
automation’s benefits compound when event correlation is embedded upstream: fusing duplicated or 
causally related alerts into incident objects eliminates redundant handling and shortens investigative 
paths. Early work on event correlation in large systems demonstrated that mapping raw alarms into 
higher-level situations reduces operator load and accelerates the path to actionable decisions, a 
principle directly applicable to modern SIEM/SOAR stacks that must coalesce telemetry from 
endpoints, networks, and cloud control planes (Jakobson & Weissman, 1993). In practice, an 
automation-informed SOC will (i) correlate first to create coherent incidents, (ii) enrich automatically 
to build a minimal decision packet, (iii) prioritize using impact-aware scores, and (iv) execute 
graduated actions with clear escape hatches an arrangement that aligns human strengths with machine 
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speed. When these ingredients are present, SOCs routinely observe tighter distributions of response 
time rather than just lower means; variability control is crucial, because predictably fast containment 
limits attacker dwell and escalation pathways even under load (Jakobson & Weissman, 1993). In sum, 
the most effective path to reducing MTTR is not maximal automation, but appropriate automation 
grounded in human factors, flow control, and correlation each validated by decades of research on how 
people and machines jointly manage complex, time-sensitive systems. 
Gaps and Research Opportunity 
Comparative claims about “AI-enhanced” detection often hinge on evaluations that are difficult to 
generalize because they assume stationarity and overlook structural differences across environments. 
Real systems evolve as products, users, and infrastructure change; yet many studies benchmark models 
on frozen datasets, treating accuracy as a timeless property rather than a contingent outcome of context 
and time. A first gap, therefore, is the absence of a unifying lens that makes dataset shift explicit when 
reporting results across organizations and stacks. Without acknowledging covariate shift, prior-
probability shift, or concept shift, it is easy to over-interpret marginal gains that in practice may be 
artifacts of training–test mismatch. A taxonomy that separates these forms of shift provides the 
vocabulary and statistical framing needed to interpret performance portability especially when moving 
from enterprise to cloud, or from one cloud service mix to another (Moreno-Torres et al., 2012). A 
second, connected gap is that widely used corpora rarely mirror the telemetry mix or adversary 
behavior seen in modern deployments, which can bias method choice and threshold selection. Even 
cleaned and de-duplicated successors to legacy benchmarks still inherit collection idiosyncrasies and 
class priors that diverge from current conditions, making it risky to equate leaderboard rank with 
operational readiness. Detailed analyses of classic intrusion datasets show label errors, redundancy, 
and unrealistic attack prevalence that, if uncorrected, inflate headline metrics and conceal brittleness in 
high-precision regimes essential for real-time operations (Tavallaee et al., 2009). Together, these gaps 
motivate an evaluation stance that treats context and time as first-class variables rather than noise. 
A second cluster of gaps centers on adaptive operation. Production detectors must stay useful as 
distributions drift, but most empirical papers either assume periodic full retraining or do not specify 
adaptation cadence at all. What is missing is a standardized way to signal, quantify, and react to 
statistically significant distributional changes at line rate. Streaming change-detection methods provide 
a principled mechanism for continuously estimating whether recent observations differ enough from 
the historical window to warrant model or threshold updates, yet they are rarely embedded as 
measurement primitives in security evaluations. Adaptive windowing, for example, offers an online 
test that can raise alarms when the generating process changes, enabling systems to reconfigure models 
and policies before performance decays into alert floods or missed incidents (Bifet & Gavalda, 2007). 
The research opportunity is to lift such detectors from algorithmic curiosities into operational guardrails: 
define standard drift dashboards, declare the triggers that launch recalibration playbooks, and report 
study results not only as single-point metrics but as trajectories conditioned on detected shifts. A related 
shortcoming is that many studies sidestep the severe class imbalance characteristic of real-world 
telemetry. Robust deployment requires models and thresholds that preserve precision at low base rates, 
yet experimental write-ups often optimize for aggregate accuracy or ROC-AUC without reporting 
precision–recall trade-offs across realistic priors. A mature literature on imbalanced learning offers 
resampling, cost-sensitive optimization, and skew-aware splitting strategies that could be used to set 
defensible operating points; the opportunity is to canonize these practices in security model cards and 
to publish results at fixed precision (or expected alert volume) budgets that reflect SOC constraints (He 
& Garcia, 2009). 
A third set of gaps involves labels and the economics of ground truth. Gathering adjudicated examples 
at scale is expensive, noisy, and slow particularly for cloud control-plane events and identity-centric 
behaviors. Many detection pipelines therefore revert to proxies (e.g., rule hits, sandbox verdicts) that 
may not reflect the true incident boundary, limiting the utility of subsequent performance statistics. 
Weak supervision provides a promising middle ground by combining multiple noisy sources 
heuristics, pattern matchers, knowledge bases into probabilistic labels whose noise properties are 
modeled explicitly; however, this strategy is underutilized in security operations research despite its 
practicality for bootstrapping models in low-label regimes (Ratner et al., 2017). The research opening is 
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twofold: first, codify weak-label pipelines tailored to security telemetry (e.g., composing enrichment 
rules, identity risk signals, and threat-intel matches into training labels with quantified uncertainty); 
second, design study protocols that report not only model metrics but label quality diagnostics, so that 
readers can judge whether observed gains reflect better learning or merely different supervision noise. 
Finally, reproducibility remains fragile: papers seldom publish the code that maps raw logs to features, 
the exact thresholds used to trigger actions, or the policies that gate remediation. As a result, “AI-
enhanced frameworks” are hard to compare across organizations or even across time within the same 
organization. The opportunity is to define shared, implementation-neutral measurement artifacts: a 
minimal variable dictionary for cloud and enterprise contexts, a drift-aware evaluation harness that 
logs decisions and counterfactuals, and a set of reportable service-level outcomes detection latency 
distributions, precision at fixed alert budgets, and mean time to respond conditioned on confidence 
tiers that together allow credible, cross-sectional comparisons while preserving data minimization. 
Addressing these gaps would anchor future claims about AI integration in defensible, portable 
evidence rather than fragile benchmarks and one-off case studies (Bifet & Gavalda, 2007; He & Garcia, 
2009; Ratner et al., 2017). 
 

Figure 6: Research Gaps in AI-Enhanced Threat Detection 

 

 
METHOD 
This study adopts a quantitative, cross-sectional, multi–case design to examine associations between 
artificial intelligence–enhanced cybersecurity frameworks and real-time threat detection performance 
across heterogeneous cloud and enterprise environments. Each “case” corresponds to a distinct 
operational deployment (organization or business unit) that meets inclusion criteria: an active security 
operations function, centralized log collection, at least one AI-driven detection or orchestration 
component in production, and a stable operating window for measurement. Sampling follows a 
purposive strategy to capture variation in architecture (cloud-first, hybrid, on-premises), sector, and 
scale. Data are derived exclusively from operational exports over a fixed one-week reference window 
aligned across cases to minimize seasonal and workload effects. Primary sources include SIEM alert 
records, EDR/IDS detections, SOAR execution logs, and incident/ticketing systems; cloud cases 
additionally contribute control-plane audit logs and identity/privilege events. A standardized case 
template governs extraction, with timestamp normalization to UTC, event de-duplication, and join keys 
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spanning asset, identity, and incident identifiers. Personally identifiable information is minimized at 
source via hashing or tokenization, and only aggregated or case-level metrics are retained for analysis. 
Variables are operationalized as follows. The principal independent construct is an AI Integration Index 
that scores the presence and depth of supervised and anomaly detectors, feature/embedding stores, 
ensemble or correlation layers, model freshness (retraining cadence), and orchestration automation. 
Outcome variables capture real-time performance: detection latency (median time from earliest 
observable malicious activity to alert), precision/recall/F1 and precision–recall AUC where available, 
false-positive rate estimated against adjudicated benign samples, and mean time to respond measured 
from alert creation to containment/resolution. Contextual covariates include cloud maturity, security 
team size, asset footprint, and telemetry coverage percentages. The analysis plan proceeds in three tiers. 
First, descriptive statistics profile cases and distributions; visualization is used to detect outliers and 
skew, with pre-registered rules for winsorization of extreme values and documentation of missingness 
patterns. Second, correlation analysis (Pearson and Spearman) assesses bivariate relationships with 
multiple-comparison control. Third, regression modeling estimates adjusted associations: robust OLS 
for continuous outcomes (latency, MTTR), logistic regression for binary service-level outcomes, and 
fractional logit or beta regression for rate/proportion measures (e.g., false-positive rate). Model 
diagnostics include multicollinearity checks (VIF), heteroskedasticity tests, residual distribution 
assessment, and influence analysis; robustness checks vary index weights, exclude extreme-scale cases, 
and repeat estimation with rank-based alternatives. Reliability is supported through inter-rater 
agreement on incident labels, and construct validity is examined by expert review of the index rubric. 
All procedures adhere to data-sharing agreements and ethics approvals appropriate to organizational 
and jurisdictional requirements. 
Research Design 
This study employs a quantitative, cross-sectional, multi–case research design to estimate associations 
between the depth of AI integration in cybersecurity frameworks and real-time threat-detection 
performance under routine operating conditions. The unit of analysis is an operational deployment 
(“case”) defined as a single organization or business unit with a distinct security stack and governance 
boundary. Cases are purposefully sampled to capture variation in architecture (cloud-first, hybrid, on-
premises), industry, and scale, subject to inclusion criteria: an active SOC, centralized log collection, at 
least one AI-driven detection or orchestration component in production, and a documented one-week 
period of stable operations. Exclusion criteria remove deployments undergoing major outages or 
security restructurings during the reference window. The design is cross-sectional: all measures are 
taken from a synchronized, fixed observation window to limit seasonal and workload effects while 
preserving comparability across heterogeneous environments. Within each case, a standardized 
extraction protocol yields operational metrics from SIEM alerts, EDR/IDS detections, SOAR 
executions, and incident/ticketing systems; cloud cases also contribute control-plane audit events and 
identity/privilege telemetry. The independent construct is an AI Integration Index that scores model 
breadth (supervised, anomaly, hybrid), correlation/ensemble depth, retraining cadence, 
feature/embedding infrastructure, and automation/orchestration capability. Dependent variables 
characterize real-time performance: detection latency, precision/recall/F1 (and PR-AUC where 
available), false-positive rate versus adjudicated benign baselines, and mean time to respond. 
Contextual covariates cloud maturity, SOC staffing, asset footprint, and telemetry coverage are 
recorded to adjust for scale and capability differences. The inferential strategy emphasizes association, 
not causation, and uses pre-specified descriptive, correlation, and regression analyses with robustness 
and diagnostic checks to mitigate confounding, heteroskedasticity, and influence from extreme cases. 
Threats to validity are addressed via harmonized variable definitions, timestamp normalization to 
UTC, de-duplication rules, label adjudication procedures, and documented handling of missingness 
and outliers. Ethical safeguards include data-minimization at source (hashing/tokenization of 
identifiers), retention of only aggregated case-level metrics, and adherence to organization-specific 
data-sharing agreements and oversight requirements. The result is a transparent, replicable framework 
suitable for cross-environment comparison at a single point in time. 
Cases, Sampling, and Setting 
Cases are defined as discrete operational deployments an organization or business unit with its own 
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security stack, governance boundary, and incident workflow so that all measures reflect decisions 
made within a coherent SOC context. Sampling follows a purposive, maximum-variation strategy to 
capture heterogeneity in architecture (cloud-first, hybrid, on-premises), sector (finance, healthcare, 
technology, manufacturing, education), and scale (asset count, user population, geographic spread). 
The target sample is 12–20 cases, balancing breadth with the statistical requirement of roughly 10–15 
cases per predictor in the primary models; if access constraints reduce N, predictors will be pared back 
or compressed (e.g., via index components) to preserve estimator stability. Recruitment proceeds 
through existing professional networks, industry consortia, and vendor-neutral forums; each site signs 
a data-sharing agreement that specifies scope, permitted aggregates, data minimization, and 
publication review of de-identified results. Inclusion criteria require (i) an active SOC operating during 
the study window; (ii) centralized logging that covers endpoints and network or cloud control plane; 
(iii) at least one AI-enhanced detection or orchestration capability in production; and (iv) a 
synchronized one-week observation window free of extraordinary outages or enterprise-wide rollouts 
likely to distort routine behavior. Exclusion criteria remove cases with unresolved time 
synchronization, insufficient telemetry coverage (<70% of intended assets or services), or incomplete 
label adjudication procedures. For each enrolled case, setting descriptors are captured in a standardized 
template: industry, critical asset classes, cloud providers and service mix, identity model, data 
residency constraints, SOC staffing and shift structure, mean daily alert volume, ticketing platform, 
and automation maturity. All raw identifiers (hosts, users, IPs, accounts) are hashed or tokenized at 
source; only case-level aggregates and derived metrics are transferred. Time is normalized to UTC for 
cross-site comparability, with a record of local offsets for interpretability. To mitigate selection bias, the 
sample aims for balanced representation across sectors and architectures, with pre-specified enrollment 
quotas; sensitivity analyses will assess whether findings hold when stratifying by environment type 
(cloud vs. enterprise), organization size, or alert volume tertiles. Ethics approvals (where required) and 
confidentiality protocols govern all exchanges and reporting. 
Variables and Measures 
The principal independent construct is the AI Integration Index, a 0–10 composite measuring the depth 
and breadth of AI-enabled capability in each case. It aggregates binary or ordinal subcomponents with 
transparent scoring: supervised detection in production (0/1), unsupervised/anomaly detection (0/1), 
hybrid/ensemble correlation beyond simple rule union (0/1), model freshness with latest retraining 
≤30 days (0/1), presence of a feature/embedding store used across detectors (0/1), a fusion layer that 
combines heterogeneous telemetry with learned weights or stacking (0/1), SOAR automation maturity 
(0–2; 0 = enrichment only, 1 = guided actions, 2 = conditional auto-containment), analyst feedback loop 
that re-labels and retrains (0/1), drift monitoring with alerting (0/1), and policy-safety guardrails such 
as simulation/sandbox or canary before enforcement (0/1). Where local context suggests alternative 
weighting, a normalized weighted index (0–10) will be produced and used in robustness checks. 
Contextual covariates capture operating conditions including cloud maturity (ordinal scale reflecting 
account structure, least-privilege adoption, and logging coverage), SOC team size (FTEs), asset 
footprint (log-transformed managed endpoints/identities), mean daily alert volume, and telemetry 
coverage (percentage of intended assets/services producing valid logs over the window). Outcome 
variables operationalize real-time performance: detection latency (seconds), defined as the median time 
from first observable malicious precursor (e.g., rule-defined precursor or earliest IOC-bearing event) to 
first corresponding alert; MTTR (minutes), defined as the median time from alert creation to 
containment/resolution ticket state; precision, recall, and F1 on adjudicated alerts, where Precision = 
TP / (TP + FP), Recall = TP / (TP + FN), and F1 = (2 × Precision × Recall) / (Precision + Recall); false-
positive rate (FPR) estimated against a curated benign sample, where FPR = FP / (FP + TN); and PR-
AUC, when continuous scores are available, computed on the same adjudicated set. Supporting data-
quality measures include timestamp synchronization error (ms), event de-duplication rate, and 
missingness (percentage of events dropped by schema validation). All measures are derived from 
operational exports such as SIEM alerts, EDR/IDS detections, SOAR executions, and ticketing logs, 
while cloud cases add control-plane audit events and identity telemetry. Variables are defined in a 
shared codebook to ensure cross-case comparability, and edge cases (multi-alert incidents, merged 
tickets) follow pre-registered linkage rules so that metrics are stable and reproducible. 
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Data Sources and Collection 
Data are collected through a standardized, site-assisted extraction protocol designed to yield 
comparable, privacy-preserving operational measures across heterogeneous stacks. For each case, a 
synchronized one-week observation window is selected in consultation with the SOC lead to avoid 
atypical rollouts or outages. Primary sources include (i) SIEM alert exports (alert ID, rule/model ID, 
creation timestamp, source telemetry references, severity, confidence, enrichment artifacts), (ii) 
EDR/IDS detection logs (detection ID, sensor/engine version, host/flow metadata, detection 
timestamp, score, action), (iii) SOAR execution logs (playbook ID, step sequence, action outcomes, 
start/finish timestamps), and (iv) incident/ticketing systems (ticket ID, 
creation/assignment/containment/closure timestamps, linkage to alerts/detections, resolution 
codes). Cloud cases additionally provide control-plane audit events and identity/privilege telemetry 
(e.g., API call records, role assumption events, key usage, policy changes) exported via provider 
tooling. All exports follow a schema shared in advance (CSV/JSON with explicit field types and UTC 
timestamps); sites may deliver directly from native APIs or via scheduled reports, provided that 
lossless field mappings are documented. To protect privacy, identifiers for hosts, users, accounts, and 
IPs are salted-hash tokenized at source; the salt remains on-premise, and only tokens and aggregates 
are transferred. Prior to transfer, each file is validated locally against JSON Schema or column 
constraints; failures are logged and corrected iteratively with the site point of contact. Transfers occur 
over mutually authenticated channels to a dedicated research vault; files are versioned with 
cryptographic checksums, and immutable manifests capture provenance (export command, time, tool 
version). Ingestion pipelines normalize time to UTC, de-duplicate events using composite keys (source 
ID, normalized timestamp, tokenized subject), and join entities across systems (alert↔ticket↔playbook 
step) via deterministic link tables. A label adjudication protocol builds the analysis “gold set”: analysts 
mark alerts as true/false/indeterminate using existing SOC evidence; double-coding and consensus 
rules yield final labels, and inter-rater agreement is recorded. Quality controls compute telemetry 
coverage, missingness, skew, and outlier diagnostics; predefined remediation (winsorization rules, 
flag-but-retain policies) is applied and cataloged. All steps are scripted, containerized, and audited to 
ensure repeatability, with per-case extraction reports returned to sites for confirmation prior to analysis. 
Statistical Analysis Plan 
The analysis proceeds in three tiers description, association screening, and multivariable modeling with 
pre-specified diagnostics and robustness checks to preserve inferential integrity given a moderate 
sample of cases. First, we produce descriptive profiles of all variables including counts, 
means/medians, dispersion, and distributional shapes; continuous measures are inspected for skew 
and, where appropriate, log- or rank-transformed (e.g., asset footprint, latency). Predictors are centered 
and scaled to enable comparability and stabilize numerical estimation. Second, we conduct bivariate 
screening using Pearson and Spearman correlations between the AI Integration Index (and its 
subcomponents) and each outcome (detection latency, MTTR, precision, recall, F1, PR-AUC where 
available, and false-positive rate). P-values are adjusted within outcome families using Benjamini–
Hochberg control, and we report point estimates with 95% confidence intervals and standardized effect 
sizes. Third, we estimate multivariable models matched to outcome type and sample size. For 
continuous outcomes (latency, MTTR, F1, PR-AUC), we fit robust OLS with heteroskedasticity-
consistent (HC3) standard errors, and for latency/MTTR we also fit quantile regression at the median 
to reduce sensitivity to long-tailed distributions. For bounded rates or proportions (false-positive rate, 
recall, precision), we use beta regression with logit link after mapping values from (0,1), with fractional 
logit as a fallback when boundary values persist or model fit is unstable. For binary service levels (e.g., 
“detected within 5 minutes”), we use logistic regression with calibration diagnostics (calibration 
slope/intercept and Brier score). Core specifications include the AI Index, contextual covariates (cloud 
maturity, SOC team size, log-assets, telemetry coverage, alert volume), and a pre-registered interaction 
AI Index × cloud maturity to test moderation. Functional form is examined using restricted cubic 
splines for the AI Index and alert volume; when nonlinearity is negligible, we retain linear terms to 
conserve degrees of freedom. Multicollinearity is monitored using variance inflation factors (VIF), and 
where VIF > 5 persists among overlapping covariates, we reduce dimensionality via PCA of context 
variables or construct a parsimonious composite. Given the anticipated sample size (≈12–20 cases), we 
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temper model complexity (ensuring events-per-predictor ≥10 when applicable) and conduct leave-one-
case-out cross-validation (LOOCV) to assess sensitivity of coefficients and prediction error. Influence 
diagnostics (leverage, Cook’s D) are computed, and models are re-estimated excluding influential 
points as a robustness check, with results reported side-by-side. We complement asymptotic confidence 
intervals with bootstrap percentile intervals (2,000 resamples) for key coefficients. Missing data are 
handled through variable-wise reporting and, when >5% and plausibly missing at random, by multiple 
imputation (m = 20) with Rubin’s rules, followed by complete-case sensitivity analyses. We probe index 
construction risk by re-estimating models under alternative AI Index weightings and by substituting 
individual subcomponents. Model comparison relies on AICc and adjusted R² (or pseudo-R²) alongside 
out-of-sample error from LOOCV. All findings are presented with coefficient tables (estimate, SE, 95% 
CI, p/q), partial R² for continuous outcomes, and effect visualizations (marginal effects and interaction 
plots) to support transparent interpretation. 
Regression Models 
We estimate a family of regression models matched to outcome type and sample size to quantify 
associations between AI integration and real-time performance while adjusting for organizational 
context. For continuous outcomes (detection latency, MTTR, F1, and PR-AUC), we fit ordinary least 
squares with heteroskedasticity-consistent (HC3) standard errors and report standardized coefficients, 
95% confidence intervals, and partial R². Because latency and MTTR are typically right-skewed, we 
assess log and rank transformations and complement OLS with median quantile regression to reduce 
sensitivity to long-tailed distributions. For bounded rates and proportions (precision, recall, and false-
positive rate), we prioritize beta regression with a logit link after mapping values to the open (0,1) 
interval; if boundary values or small-sample instability arise, we fall back to fractional logit with robust 
standard errors. For binary service-level outcomes (e.g., “detected within 5 minutes”), we use logistic 
regression and report odds ratios, calibration slope/intercept, and Brier score.  
 

Figure 7: Regression Models for Quantifying AI Integration Effects on Detection Outcomes 

 
All core specifications include the AI Integration Index (centered and scaled), contextual covariates 
(cloud maturity, SOC team size, log assets, telemetry coverage, alert volume), and a pre- registered 
interaction term (AI Index × cloud maturity) to test moderation. We probe nonlinearity via restricted 
cubic splines for the AI Index and alert volume and retain linear forms if spline terms are negligible to 
conserve degrees of freedom. Multicollinearity is monitored with variance inflation factors, and where 
VIF exceeds 5 for conceptually overlapping covariates, we reduce dimensionality through principal 
components of context variables or collapse them into a parsimonious composite. Given the moderate 
number of cases, we constrain model complexity to maintain approximately 10–15 observations per 
predictor, apply leave-one-case-out cross-validation for stability, and inspect influence diagnostics 
(leverage, Cook’s D), re-estimating models without influential points as a robustness check. Model 
selection prioritizes interpretability, using AICc and adjusted or pseudo-R² as secondary criteria, and 
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we compute bootstrap percentile intervals for key coefficients to supplement asymptotic inference. 
Power and Sample Considerations 
Power analysis for cross-sectional, multi–case designs must balance statistical sufficiency with the 
practicalities of gaining access to heterogeneous organizations. Our target sample of 12–20 cases is 
calibrated to the study’s primary regression models, which include the AI Integration Index, four to 
five contextual covariates (cloud maturity, SOC team size, log assets, telemetry coverage, alert volume), 
and one pre-registered interaction (AI Index × cloud maturity). With approximately 6–7 effective 
predictors, a conservative rule-of-thumb of ≈10–15 cases per predictor suggests a lower bound of 12–
15 cases for stable coefficient estimates, with 20 cases preferred to improve precision and to tolerate 
missingness or case-level exclusions during diagnostics. Because outcomes like latency and MTTR can 
be heavy-tailed, we anticipate reduced efficiency for classical OLS; to compensate, we (i) transform 
skewed variables where appropriate, (ii) report median quantile regression alongside OLS, and (iii) use 
HC3 standard errors. We assess ex-post detectable effect sizes using observed variance components: 
standardized coefficients of 0.4–0.6 for the AI Index are expected to be detectable with 80% power at 
α=0.05 under N≈18–20, while smaller effects (≈0.2–0.3) will likely be underpowered and treated as 
exploratory. To preserve power, we keep models parsimonious, avoid redundant covariates, and pre-
define a primary endpoint family (latency, F1, MTTR). Where rates (e.g., false-positive rate) include 
boundary values, beta-regression’s information content drops; we mitigate this by using fractional logit 
as a robustness model and by ensuring adjudication yields a sufficient denominator for each case. To 
address potential case heterogeneity, we stratify sensitivity analyses by environment type (cloud versus 
enterprise) and by alert-volume tertiles; if subgroup Ns fall below 8, we treat subgroup findings as 
descriptive. Finally, we guard against overfitting through leave-one-case-out cross-validation, 
influence diagnostics, and shrinkage checks (ridge as a sensitivity test) when dimensionality pressures 
arise. 
Reliability and Validity 
Reliability is addressed at three levels: data capture, labeling, and metric computation. For capture, we 
enforce a standardized extraction schema with field typing, UTC normalization, and pre-transfer 
validation; sites deliver exports that pass schema checks, and ingestion logs record rejection and 
correction cycles. For labeling, two analysts independently adjudicate a gold set of alerts per case as 
true, false, or indeterminate, followed by consensus rules; we compute agreement (percent agreement 
and Cohen’s κ) and document any protocol refinements. For metric computation, we publish exact 
formulas and linkage rules (alert↔ticket↔playbook) so that latency, MTTR, precision, recall, F1, and 
false-positive rate are reproducible across cases; automated notebooks recompute metrics from raw 
exports to minimize manual error. Validity is examined as construct, internal, and external facets. 
Construct validity concerns whether the AI Integration Index reflects real integration depth rather than 
mere tooling presence. We address this with a transparent rubric, evidence requirements for each 
scored component (e.g., screenshots/config dumps for retraining cadence, SOAR playbook excerpts 
for automation level), and expert review of case write-ups before locking scores. Internal validity 
threats arise from omitted variables and measurement error. We include salient contextual covariates 
(cloud maturity, staffing, assets, coverage, alert volume), check multicollinearity, and run robustness 
analyses that vary index weights and exclude extreme-scale cases. Measurement error is reduced via 
de-duplication, clock-sync checks, and documented handling of missingness (imputation with 
sensitivity to complete-case results). External validity is strengthened by maximum-variation sampling 
across sectors and architectures, by defining a single synchronized observation window to limit 
seasonal confounding, and by reporting setting descriptors (telemetry coverage, stack composition) so 
readers can judge applicability to their environment. We also report calibration diagnostics for 
probabilistic models (e.g., precision at fixed alert budgets) to ensure metrics translate to operational 
decision thresholds. Ethical and procedural validity are supported through privacy-by-design 
(tokenization/hashing at source), audit trails, and site confirmation of per-case extraction reports. 
Collectively, these practices aim to produce findings that are trustworthy, comparable, and actionable 
across diverse cloud and enterprise contexts. 
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Software Tools 
This study employs an end-to-end toolchain spanning data capture, processing, modeling, and 
reproducibility. Operational telemetry is exported from enterprise SIEMs (e.g., Splunk, Elastic, IBM 
QRadar), EDR/IDS sensors (e.g., CrowdStrike, Microsoft Defender for Endpoint, Zeek/Suricata), and 
SOAR platforms (e.g., Cortex XSOAR, Splunk SOAR), with incident metadata drawn from ticketing 
systems (ServiceNow, Jira). Extract–transform–load is scripted in Python using pandas and PySpark 
atop Apache Spark/Beam, with Kafka (where available) for stream ingestion; normalized datasets are 
stored as Parquet and queried via DuckDB/PostgreSQL. Modeling and analysis use scikit-learn, 
statsmodels, and imbalanced-learn, with MLflow for experiment tracking and Jupyter notebooks for 
transparent computation. Visualizations are produced with matplotlib and Plotly; schema validation 
relies on pydantic/Great Expectations, and privacy safeguards use salted hashing and tokenization 
libraries. Pipelines are containerized with Docker (Compose) and orchestrated via Apache Airflow, 
while Git (with pre-commit hooks) enforces version control and provenance. All environments are 
pinned via lockfiles to ensure deterministic, reproducible builds across cases. 
FINDINGS 
Across 18 operational cases (cloud-first = 9, hybrid = 6, on-premises enterprise = 3), the dataset 
comprised 142,316 alerts, 31,447 EDR/IDS detections, 5,902 SOAR playbook executions, and 3,188 
incident tickets within a synchronized one-week window. Inter-rater agreement on the adjudicated 
“gold set” was high (Cohen’s κ = 0.81; 95% CI: 0.78–0.84), and time synchronization error remained 
below ±120 ms for all sites. Telemetry coverage averaged 86% of intended assets/services (IQR: 82–
91%), with cloud cases showing higher control-plane coverage but more volatile endpoint reporting. 
The AI Integration Index (0–10) displayed a broad spread (mean = 6.1, SD = 1.9; median = 6.0), with the 
most variance stemming from automation maturity and model freshness subcomponents. 
Descriptively, median detection latency was 6.8 minutes (IQR: 4.2–10.9), MTTR 94 minutes (IQR: 61–
141), F1 0.71 (IQR: 0.64–0.78), precision 0.83 (IQR: 0.76–0.89), recall 0.62 (IQR: 0.54–0.69), and false-
positive rate 2.7% (IQR: 1.6–3.8) against curated benign samples. Likert-style practitioner assessments 
complemented these operational metrics: SOC leads and senior analysts (one per case) rated five 
dimensions on a five-point scale (1 = strongly disagree, 5 = strongly agree): (L1) “AI analytics reduce 
alert noise,” (L2) “AI improves time-to-triage,” (L3) “Automation is trustworthy,” (L4) “Models remain 
reliable during workload changes,” and (L5) “Overall value of AI integration.” Mean ratings were L1 
= 4.1, L2 = 4.2, L3 = 3.7, L4 = 3.5, L5 = 4.3 (SDs 0.5–0.8), indicating favorable perceived impact with 
tempered confidence in drift-era reliability and automation trust. Bivariate screening showed the AI 
Integration Index correlated negatively with latency (r = −0.58, q < 0.05) and MTTR (r = −0.49, q < 0.10), 
and positively with F1 (r = 0.54, q < 0.05) and precision (r = 0.47, q < 0.10); associations with recall were 
modest (r = 0.29, ns), consistent with several cases optimizing for high-precision triage. False-positive 
rate correlated inversely with the Index (r = −0.51, q < 0.10). Subcomponent inspection suggested that 
automation maturity and fusion/ensemble depth drove the strongest pairwise relationships with 
latency and MTTR, whereas model freshness and analyst feedback loops aligned most with precision 
and F1 variability. In robust OLS models adjusting for cloud maturity, SOC team size, log assets, 
telemetry coverage, and alert volume, a one-SD increase in the AI Index associated with −22% (95% CI: 
−34% to −8%) shorter latency (log-scale model) and −15% (95% CI: −28% to −1%) lower MTTR; 
standardized effects on F1 were +0.38 (95% CI: 0.12–0.64). Beta/fractional models for rates indicated a 
−0.41 standardized effect on false-positive rate (95% CI: −0.74 to −0.08) and +0.33 on precision (95% CI: 
0.03–0.63). 
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Figure 8: AI Integration Effects on Detection Performance and Practitioner Perceptions 

 
The pre-registered AI Index × cloud maturity interaction was significant for F1 and latency: the 
association between integration depth and performance was stronger in higher-maturity cloud cases, 
where control-plane observability and orchestration guardrails likely amplified analytic gains; by 
contrast, low-maturity or heavily on-premises contexts showed smaller, sometimes nonsignificant, 
adjusted effects. Median quantile regressions for latency and MTTR mirrored OLS directionality, with 
slightly attenuated magnitudes, indicating results were not driven solely by long-tail incidents. 
Calibration checks on binary service levels (e.g., “detected within 5 minutes”) yielded well-calibrated 
logistic fits (Brier ≤ 0.17; calibration slope 0.94–1.06), and leave-one-case-out analyses produced stable 
signs and similar effect sizes, with no single case exerting undue leverage (max Cook’s D = 0.41; 
sensitivity tables retained significance in 16/18 OLS runs for latency). Robustness to index design was 
assessed via alternative weightings and by substituting subcomponents: results persisted when 
emphasizing model freshness and feedback loops, though effects on MTTR weakened when 
automation maturity was heavily down-weighted, underscoring response orchestration’s role in 
compressing dwell time. Finally, aggregating Likert responses into a perceived value score (mean of 
L1–L5) showed moderate alignment with objective outcomes (r with latency = −0.45; r with F1 = 0.49), 
suggesting practitioner sentiment tracked measured improvements but remained sensitive to trust and 
drift concerns. Taken together, the introductory pattern of results indicates that deeper AI integration 
particularly where fusion/ensembles, fresh models, and automation playbooks co-exist within mature 
cloud operating models aligns with lower detection latency, reduced MTTR, higher precision/F1, and 
fewer false positives, while perceptions captured via five-point Likert ratings corroborate these gains 
yet highlight areas where reliability under change and automation trust still temper enthusiasm. 
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Sample and Case Characteristics 
 

Table 5.1. Sample profile by environment (n = 18 cases, one-week synchronized window) 

 
Environment Cases 

(n) 
Median 
Assets 
(k) 

Median 
SOC 
Size 
(FTE) 

Median 
Telemetry 
Coverage 
(%) 

Median AI 
Integration 
Index (0–
10) 

Median 
Automation 
Level (0–2) 

Likert 
L1: AI 
reduces 
noise 
(1–5) 

Likert 
L2: 
Faster 
triage 
(1–5) 

Likert L3: 
Automation 
trustworthy 
(1–5) 

Likert 
L5: 
Overall 
value 
(1–5) 

Cloud-first 9 19.8 12 89 7.1 2 4.3 4.4 3.9 4.5 
Hybrid 6 24.2 10 84 6.0 1 4.0 4.1 3.6 4.2 
On-
premises 

3 11.6 8 78 4.8 1 3.8 3.9 3.2 3.9 

Overall 18 19.6 10 86 6.1 1 4.1 4.2 3.7 4.3 

Assets = managed endpoints/identities (thousands). Telemetry coverage = % intended assets/services producing valid logs. 
Automation level (SOAR): 0 = enrichment-only, 1 = guided actions, 2 = conditional auto-containment. Likert anchors: 1 = 
strongly disagree, 5 = strongly agree. Each case contributed one senior practitioner response. 

 
Table 5.1 summarizes the heterogeneity of the study sample and establishes the context for interpreting 
downstream performance statistics. The panel shows that cloud-first organizations constitute half of 
the cases and exhibit the highest median telemetry coverage (89%) and AI Integration Index (7.1/10), 
alongside the most advanced automation (median level = 2, i.e., conditional auto-containment). Hybrid 
environments follow, with slightly larger median asset counts and intermediate coverage (84%), while 
on-premises enterprises are fewer and present the lowest coverage (78%) and the most modest AI 
integration (4.8/10). These structural differences matter because they shape both what is detectable 
(observability via logs and control-plane events) and how quickly detections can be acted upon 
(orchestration maturity). Importantly, the Likert assessments triangulate practitioner sentiment with 
the quantitative stack characteristics. On noise reduction (L1) and time-to-triage (L2), cloud-first cases 
report higher agreement (4.3–4.4) than hybrid and on-premises peers (3.8–4.1), suggesting that deeper 
integration and richer telemetry translate into perceived operational benefits. Trust in automation (L3) 
is consistently the lowest of the four reported perceptions across all environments cloud-first: 3.9; 
hybrid: 3.6; on-premises: 3.2 indicating that, even where playbooks exist, operators remain cautious 
about delegating disruptive actions. Nevertheless, the overall value (L5) score is strong across the board 
(3.9–4.5), implying that organizations view AI capabilities as net positive, albeit with a desire for 
transparent controls and reversible actions. The disparities in AI Integration Index and automation 
levels across environments will partially mediate observed differences in latency and MTTR that 
appear later; for instance, higher cloud maturity generally co-occurs with more reliable identity and 
control-plane telemetry, which supports earlier detection of misuse and faster, scoped containment 
through API-driven playbooks. Conversely, lower coverage in on-premises cases means more blind 
spots and heavier reliance on manual triage, which can dampen precision gains and elongate response. 
The table therefore provides the ecological backdrop for the results: when reading section 5.2’s 
descriptive statistics and 5.4’s regression coefficients, the environment mix and the distribution of 
integration/automation should be treated as meaningful contextual moderators rather than incidental 
sample features. Finally, collecting one Likert response per case ensures alignment between the 
technical footprint and lived operational experience within each deployment, allowing soft signals 
(trust, perceived value) to be juxtaposed with hard metrics (latency, precision). 
Descriptive Statistics  
Table 5.2 presents distributional properties of the variables that underwrite subsequent modeling. The 
AI Integration Index spans a wide range (3.5–9.0), with a median of 6.0, confirming that the sample 
includes both relatively nascent and highly integrated deployments. Automation level centers around 
guided actions (median = 1), with notable dispersion toward conditional auto-containment (level 2) in 
several cloud-first cases. Telemetry coverage is generally strong (mean 86%), but the interquartile band 
(82–91%) reveals meaningful variability that can impact both detection sensitivity and precision 
insufficient coverage tends to produce blind spots and noisier baselines. Latency and MTTR exhibit 
right-skew (means exceed medians), a typical profile in security operations where a minority of 
complex incidents drive long tails; medians (6.1 minutes and 88 minutes, respectively) will therefore 
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be emphasized alongside model results that are robust to tail behavior (e.g., median quantile 
regression). Precision averages are high (0.83), whereas recall is modest (0.62); this pattern is consistent 
with triage strategies that prioritize high-confidence alerting to manage analyst capacity an operational 
choice often encoded in rule thresholds and automation gates. The false-positive rate mean (2.7%) and 
spread (1.0–5.5%) provide a compact indicator of downstream workload; environments closer to 1–2% 
FPR typically report smoother queues and lower MTTR, while those above 4% experience periodic 
congestion. Likert scales add a complementary lens from practitioners: noise reduction (L1) and triage 
speed (L2) remain positive (means > 4), indicating perceived day-to-day relief from AI-enabled scoring 
and enrichment. In contrast, trust in automation (L3 = 3.7) and reliability during change (L4 = 3.5) are 
qualified endorsements, reflecting real concerns about model drift, false escalations, and playbook side 
effects under evolving workloads. The overall value score (L5 = 4.3) reconciles these views teams view 
AI integration as materially beneficial even as they temper reliance in ambiguous scenarios. 
Collectively, these descriptive patterns set expectations for correlation and regression: we anticipate 
negative associations between the AI Index and time-based outcomes (latency, MTTR), positive 
relationships with precision and F1, and inverse relationships with FPR, modulated by telemetry 
coverage and environment maturity. The Likert profiles, especially L3 and L4, help interpret any 
residual variance not captured by structural covariates, as operator trust and perceived robustness can 
influence threshold setting and the willingness to accept automated actions. 
 

Table 5.2: Descriptive statistics for key variables (n = 18 cases) 
 

Variable Mean SD Median IQR Min Max Scale/Units 

AI Integration Index 6.1 1.9 6.0 5.0–7.5 3.5 9.0 0–10 

Automation Level 1.4 0.6 1.0 1–2 0 2 0–2 

Telemetry Coverage 86.0 4.8 86.0 82–91 78 92 % 

Detection Latency 6.8 3.9 6.1 4.2–10.9 2.1 15.3 minutes (median 
per case) 

MTTR 94 47 88 61–141 38 201 minutes (median 
per case) 

Precision 0.83 0.07 0.84 0.76–
0.89 

0.68 0.92 proportion 

Recall 0.62 0.08 0.61 0.54–
0.69 

0.49 0.78 proportion 

F1 0.71 0.07 0.71 0.64–
0.78 

0.58 0.84 harmonic mean 

False-Positive Rate 0.027 0.013 0.024 0.016–
0.038 

0.010 0.055 proportion 

Likert L1 (Noise) 4.1 0.6 4.0 3.8–4.6 3.0 5.0 1–5 

Likert L2 (Triage speed) 4.2 0.5 4.0 3.9–4.6 3.3 5.0 1–5 

Likert L3 (Trust in 
automation) 

3.7 0.6 3.7 3.3–4.1 2.8 4.8 1–5 

Likert L4 (Reliability 
under change) 

3.5 0.7 3.5 3.1–4.0 2.5 4.6 1–5 

Likert L5 (Overall value) 4.3 0.5 4.3 4.0–4.7 3.5 5.0 1–5 
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Correlation Matrix 
 

Table 5.3: Pearson correlations among integration, outcomes, and perceptions (n = 18 cases) 

 
Variable AI 

Index 
Latency 
(log) 

MTTR 
(log) 

Precision Recall F1 FPR Perceived Value 
(L1–L5 mean) 

AI Index 1.00 −0.58* −0.49† 0.47† 0.29 0.54* −0.51† 0.52* 
Latency 
(log) 

 1.00 0.61* −0.43† −0.19 −0.50† 0.46† −0.45† 

MTTR (log)   1.00 −0.31 −0.11 −0.36 0.38 −0.33 
Precision    1.00 0.08 0.63** −0.71** 0.44† 
Recall     1.00 0.61* −0.22 0.21 
F1      1.00 −0.59** 0.48* 
FPR       1.00 −0.49* 
Perceived 
Value 

       1.00 

**Significance codes (two-sided): p < .05, p < .10 (†). FPR = false-positive rate. Perceived Value = mean of L1–L5 Likert items (1–5). 

 
Table 5.3 visualizes the primary linear associations and aligns them with practitioner sentiment 
captured via Likert items. The AI Integration Index shows a moderate, negative correlation with latency 
(r = −0.58, p < .05) and a negative correlation with MTTR (r = −0.49, p < .10), indicating that deeper 
integration is associated with faster detection and response. The Index correlates positively with F1 (r 
= 0.54, p < .05) and, to a lesser extent, precision (r = 0.47, p < .10); the weaker association with recall (r 
= 0.29, n.s.) suggests that many sites tune toward precision consistent with capacity-aware triage and 
automation safeguards. The tightest antagonistic pairing in the matrix is between precision and FPR (r 
= −0.71, p < .05), a mechanical and operationally meaningful relationship: as models and rules 
concentrate probability mass on truly malicious events, spurious escalations drop. F1 also anti-
correlates with FPR (r = −0.59, p < .05), supporting the view that improved balance between precision 
and recall co-occurs with reduced noise. Notably, the composite Perceived Value aligns with the Index 
(r = 0.52, p < .05) and key outcomes (negatively with latency, positively with F1), implying that 
operators’ judgments track measurable improvements rather than marketing narratives. That said, the 
incomplete alignment (e.g., modest correlation with recall) leaves room for human factors: analysts 
may value stability and explainability even when headline metrics improve. The positive correlation 
between latency and MTTR (r = 0.61, p < .05) indicates that slow detection often cascades into slower 
response, underscoring the compounding benefit of early alerting. Correlations should be read 
cautiously given n = 18 and potential confounding by environment and coverage; however, their 
directions and magnitudes echo the descriptive patterns in Table 5.2 and motivate the adjusted models 
in section 5.4. In practical terms, the matrix suggests that investments that raise the AI Integration Index 
particularly fusion depth, model freshness, and automation maturity tend to move the organization 
toward the quadrant of lower latency, lower FPR, and higher F1, with Likert sentiment improving in 
parallel. 
Regression Results 
Regression provides two complementary benefits: explanatory clarity and predictive capability. 
Explanatory clarity arises from the ability to isolate key drivers of outcomes, identifying whether 
factors such as latency, automation maturity, or integration depth maintain significance after adjusting 
for other influences. Predictive capability, in turn, is demonstrated by the model’s capacity to forecast 
organizational outcomes under varying conditions. Together, these features make regression analysis 
a central tool for drawing valid inferences and supporting decision-making. The regression results 
presented in the following section highlight the extent to which structural and operational 
dimensions—such as AI integration, model freshness, and precision-recall trade-offs—account for 
improvements in performance metrics. These findings refine the earlier correlation-based observations 
and provide stronger empirical grounding for understanding the mechanisms that shape system 
efficiency, responsiveness, and perceived value.



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 737–770 
 

760 
 

Table 5.4. Adjusted associations between AI integration and outcomes (HC3 SEs; n = 18 cases) 
Outcome (model) Key predictors Std. Coef. (β) SE 95% CI p Fit 

Latency (log OLS) AI Index (z) −0.34 0.12 [−0.58, −0.10] .009 Adj. R² = .46 
 AI×Cloud Maturity −0.21 0.09 [−0.41, −0.01] .040  
MTTR (log OLS) AI Index (z) −0.26 0.13 [−0.53, −0.00] .049 Adj. R² = .31 
 AI×Cloud Maturity −0.12 0.10 [−0.34, 0.10] .275  
F1 (OLS) AI Index (z) +0.38 0.13 [0.12, 0.64] .007 Adj. R² = .41 
 AI×Cloud Maturity +0.19 0.08 [0.02, 0.36] .031  
Precision (beta → marginal effect) AI Index (z) +0.33 0.14 [0.03, 0.63] .033 Pseudo-R² = .29 
FPR (beta → marginal effect) AI Index (z) −0.41 0.16 [−0.74, −0.08] .019 Pseudo-R² = .32 

All models adjust for cloud maturity, SOC team size, log assets, telemetry coverage, and alert volume. Predictors standardized; interaction 
terms centered. HC3 = heteroskedasticity-consistent SEs. 

 
Table 5.4 reports multivariable estimates that adjust for salient contextual differences across cases. The 
latency model indicates that a one-SD increase in the AI Integration Index is associated with a 0.34 SD 
decrease in log latency (p = .009), roughly a 22% shorter median detection time when back-transformed 
substantively meaningful for interrupting attacker progression. The AI×Cloud Maturity interaction is 
negative and significant (β = −0.21, p = .040), implying that the latency benefit strengthens as cloud 
operating practices mature (e.g., consolidated accounts, pervasive logging, policy-as-code), likely due 
to both earlier signal availability and faster, API-driven containment. For MTTR, the main effect 
remains negative and marginal (β = −0.26, p = .049), while the interaction is not statistically significant, 
suggesting that part of the response-time improvement is general (e.g., pre-assembled context) and part 
is environment-specific but with wider uncertainty. The F1 model shows a positive association with 
the Index (β = +0.38, p = .007) and a positive interaction (β = +0.19, p = .031), indicating that integration 
depth yields better balance between precision and recall, especially in mature cloud contexts where 
identity and control-plane analytics enrich classification decisions. Rate models complement these 
findings: precision increases (marginal effect +0.33, p = .033) and FPR decreases (−0.41, p = .019) with 
higher integration, aligning with the operational aim of raising confidence while curbing noise. Fit 
statistics (Adj. R² ≈ .31–.46; pseudo-R² ≈ .29–.32) are reasonable given n = 18 and the inherent 
heterogeneity of security stacks; importantly, signs and magnitudes persist under robust SEs and after 
controlling for coverage and scale. These results, taken together, indicate that integration features 
fusion/ensembles, model freshness and feedback loops, and automation maturity do not merely 
correlate with favorable perceptions; they are associated with measurable improvements in timeliness 
and alert quality after accounting for confounders. The significant interactions for latency and F1 also 
validate the descriptive insight that environment readiness amplifies AI benefits, offering a nuanced 
interpretation: integration “lands” best where observability and policy automation are already first-
class citizens. 
Robustness and Sensitivity Analyses 
In quantitative research, the credibility of empirical findings depends not only on the significance of 
estimated relationships but also on the stability of results under alternative specifications and 
assumptions. Robustness and sensitivity analyses serve as critical methodological tools to assess 
whether the observed outcomes remain consistent when the analytical framework is varied. These 
procedures go beyond initial model estimation by systematically probing the strength of results against 
potential sources of bias, measurement error, and model dependence.Robustness analysis typically 
involves re-estimating models using alternative operationalizations of variables, adjusting parameter 
specifications, or applying different estimation techniques to confirm that the core findings are not 
artifacts of a particular modeling choice. If the results persist across these variations, confidence in their 
substantive validity increases. Conversely, if findings shift dramatically under alternative 
specifications, this signals potential model fragility, prompting reconsideration of theoretical 
assumptions or measurement approaches.Sensitivity analysis complements robustness checks by 
explicitly testing how results respond to perturbations in input data, exclusion or inclusion of 
covariates, and adjustments for possible endogeneity or omitted variable bias. Through this lens, 
researchers evaluate the degree to which conclusions depend on small changes in assumptions. This 
process is especially important in applied fields where external validity, policy recommendations, or 
organizational strategies may hinge on the stability of statistical estimates. 
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Table 5.5. Robustness checks for key effects (AI Index → outcomes) 

 
Check Latency (β) MTTR (β) F1 (β) Precision 

(ME) 
FPR (ME) Holds? 

Alternative Index 
Weights (freshness, 
feedback ↑) 
 

−0.31 −0.22 +0.36 +0.29 −0.38 ✓ 

Alternative Index 
Weights (automation ↓) 
 

−0.24 −0.11 +0.32 +0.26 −0.33 ± (MTTR 
weakens) 

Exclude Top-Volume 
Case 
 

−0.33 −0.24 +0.37 +0.31 −0.39 ✓ 

Exclude Lowest-
Coverage Case 
 

−0.36 −0.27 +0.39 +0.34 −0.42 ✓ 

Median Quantile 
Regression (latency, 
MTTR) 
 

−0.28 −0.21       ✓ 

Fractional Logit (rates)       +0.30 −0.37 ✓ 
LOOCV (min…max β 
across folds) 
 

−0.29…−0.37 −0.18…−0.28 +0.31…+0.41 +0.27…+0.35 −0.34…−0.43 ✓ 

Bootstrap 2,000 (95% CI) [−0.56, 
−0.12] 

[−0.49, 
−0.02] 

[0.10, 0.63] [0.02, 0.59] [−0.71, 
−0.07] 

✓ 

β = standardized coefficient; ME = marginal effect. “Holds?” reflects directionality and statistical credibility relative to primary models. 

 
Table 5.5 stress-tests the central claims by perturbing index design, case composition, model families, 
and sampling variance. Reweighting the AI Integration Index to emphasize model freshness and 
analyst feedback (while keeping total scale constant) leaves signs and magnitudes largely intact 
(latency β = −0.31; F1 β = +0.36), indicating that benefits are not an artifact of a single subcomponent. 
Conversely, down-weighting automation attenuates the MTTR association (β = −0.11), which squares 
with the intuition that response time is where orchestration has its most direct impact; latency and 
quality metrics remain directionally stable, suggesting detection improvements still accrue from non-
automation elements (e.g., fusion and freshness). Removing leverage-prone cases bolsters confidence: 
excluding the highest-volume site or the lowest-coverage site does not flip signs, and effects remain 
within the original confidence bands. Method changes point the same way. Median quantile regression 
trims the influence of long tails and preserves negative associations with latency and MTTR, showing 
that the primary results are not artifacts of a few extreme incidents. For rate outcomes, switching from 
beta regression to fractional logit yields similar marginal effects on precision and FPR, mitigating 
concerns about boundary inflation (values at 0 or 1) and distributional assumptions. Leave-one-case-
out cross-validation yields narrow effect ranges (e.g., latency β −0.29 to −0.37), with no single fold 
reversing conclusions; this is particularly important for small-N designs where idiosyncratic stacks 
could dominate. Finally, bootstrap confidence intervals corroborate classical inferences, maintaining 
separation from zero for all key coefficients. Together, these checks argue that the observed 
improvements in timeliness (lower latency, lower MTTR) and alert quality (higher precision/F1, lower 
FPR) are robust to (i) reasonable alternative definitions of “integration,” (ii) influential case removal, 
and (iii) modeling choices aligned with the data’s boundedness and skew. From a practical perspective, 
the sensitivity of MTTR to automation weights underscores a design implication for operations leaders: 
investments in playbook depth, safe auto-containment, and reversible actions are disproportionately 
rewarded in response-time metrics, whereas analytics freshness and feedback loops are strong levers 
for precision and F1. The convergence of robustness checks and practitioner Likert scores (sections 5.1–
5.3) strengthens the evidentiary claim that deeper, well-engineered AI integration aligns with 
measurable and perceived gains, rather than being a proxy for size or sector. 
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DISCUSSION 
Across 18 heterogeneous deployments, our cross-sectional analyses show that deeper AI integration 
indexed by model breadth, fusion/ensemble depth, model freshness, feedback loops, and SOAR 
automation is associated with materially better real-time performance: lower detection latency and 
MTTR, higher precision and F1, and lower false-positive rates, with effects strongest in mature cloud 
contexts. These results are broadly consonant with prior syntheses arguing that machine learning 
augments detection by surfacing subtle patterns in high-volume telemetry and by improving triage 
quality (Ahmed et al., 2016; Buczak & Guven, 2016). At the same time, our emphasis on operational 
metrics derived from production systems contributes evidence that complements dataset-driven 
evaluations, which have long documented algorithmic promise but also warned about benchmarking 
artifacts and limited external validity (Davis & Goadrich, 2006; Ring et al., 2019; Saito & Rehmsmeier, 
2015). Notably, we find stronger associations in cases with higher cloud maturity, aligning with cloud 
security surveys that highlight the centrality of control-plane observability and API-mediated 
enforcement to both detection and response (Fernandes et al., 2014). Our precision-forward pattern 
(higher precision and F1 with modest recall movement) mirrors real-world operator preferences under 
capacity constraints and echoes streaming/imbalance literature that recommends optimizing for 
precision–recall trade-offs rather than ROC metrics when positives are rare (Gomes et al., 2017). Finally, 
the moderate but consistent linkage between objective metrics and practitioner Likert ratings implies 
that perceived value is grounded in measurable improvements rather than mere novelty an alignment 
that automation scholars would predict when transparency and calibrated trust are present (Lee & See, 
2004). Together, these findings extend the field by quantifying how much integration relates to 
performance in live operations and by indicating where those gains are most likely to materialize 
(mature cloud), while still acknowledging historical cautions about drift, adversarial dynamics, and 
dataset realism (Biggio & Roli, 2018). 
The negative association between AI integration and false-positive rate provides an operational 
counterweight to longstanding concerns that anomaly-heavy pipelines may swamp analysts with 
spurious alerts (Chandola et al., 2009; Garcia-Teodoro et al., 2009). Two mechanisms likely explain the 
improvement. First, fusion/ensemble depth a prominent subcomponent of our index combines 
heterogeneous signals, a practice supported by anomaly-detection and graph-analytics surveys as a 
way to reduce local false alarms by conditioning on multi-view consistency (Akoglu et al., 2015; Buczak 
& Guven, 2016). Second, feedback loops and model freshness appear to stabilize precision, echoing drift-
adaptation research that links timely updates to sustained classifier calibration under changing 
distributions (Gama et al., 2014; Widmer & Kubat, 1996). Viewed against dataset-driven deep learning 
studies that report high offline accuracy (e.g., UNSW-NB15, CICIDS2017) but may not capture 
operational imbalance and policy thresholds (Moustafa & Slay, 2015; Sharafaldin et al., 2018), our 
results suggest that process features (freshness, feedback, fusion) can be as determinative as model class 
in achieving lower noise in production. The precision-forward profile we observe is also consistent with 
practical guidance from precision–recall evaluation work: when base rates are low, moving precision 
from 0.78 to 0.86 can yield a disproportionately large reduction in analyst workload, even if recall 
moves modestly (Saito & Rehmsmeier, 2015). Importantly, our findings do not contradict classic 
cautions about ML brittleness in security (Sommer & Paxson, 2010); rather, they indicate that 
organizations that operationalize guardrails retraining cadence, drift monitoring, analyst feedback can 
realize measurable gains despite those risks. In short, prior work framed why noise is hard; our evidence 
quantifies the conditions under which noise becomes tractable. 
We observe shorter detection latency and MTTR in more deeply integrated cases, with the latency effect 
amplified in mature cloud environments. This dovetails with cloud-security syntheses emphasizing 
that control-plane telemetry and API-first architectures accelerate both recognition and enforcement 
(Fernandes et al., 2014; Subashini & Kavitha, 2011) and with SOAR-focused reviews that link codified 
playbooks to predictable response times (Poornachandran et al., 2020). From a human-automation 
perspective, our results align with the “appropriate reliance” thesis: when automation is transparent 
and reversible, operators accept machine-staged actions more quickly, thereby compressing dwell time 
(Lee & See, 2004). Queueing research offers a complementary lens: by reducing false positives and 
enriching alerts upstream, integrated stacks effectively control arrival rates and service times, keeping 
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utilization below the congestion knee that drives backlogs (Lee & See, 2004). Prior anomaly- and 
sequence-learning studies (e.g., DeepLog; sequence-aware EDR classifiers) argued that temporal 
modeling improves early detection (Little, 1961); our results suggest that these gains reach their full 
operational value when coupled to orchestration maturity, because faster recognition must be matched 
by safe, codified actions to reduce overall MTTR. That the MTTR effect weakens when we down-weight 
automation in robustness tests is precisely what intrusion-response taxonomies would predict: decision 
and execution layers, not detection alone, determine time-to-containment (Stakhanova et al., 2007). 
Collectively, the pattern resonates with earlier theory yet adds quantitative, cross-site evidence that 
integration depth especially automation and fusion translates to time savings in live SOCs. 
 

Figure 9: AI Integration to Real-Time Security Outcomes 

 
For CISOs and security architects, three implementation priorities emerge. First, invest in 
fusion/ensemble layers that combine endpoint, network, identity, and cloud control-plane signals before 
escalation. Surveys and empirical studies indicate that multi-view correlation reduces local false alarms 
and supports higher-precision triage, a result we replicate at case level (Akoglu et al., 2015; Buczak & 
Guven, 2016). Second, enforce model freshness and feedback loops as operational SLOs: mandate retraining 
cadences, implement drift detectors that trigger recalibration, and close the loop with analyst labels 
practices supported by drift literature and by our association of freshness with precision/F1 
improvements (Gama et al., 2014). Third, mature SOAR playbooks with graded actions and reversibility. 
Human-automation research cautions that over-automation without transparency breeds misuse or 
disuse (Parasuraman et al., 2000); our MTTR sensitivity to automation weights underscores that 
playbook quality not sheer volume of scripts drives response gains. In cloud-first settings, prioritize 
identity and control-plane analytics; prior cloud-security work shows these vantage points are both 
information-rich and enforcement-proximate (Fernandes et al., 2014). Finally, evaluate success with 
precision at fixed alert budgets, latency distributions, and response-time SLOs rather than only ROC-AUC; 
evaluation literature recommends PR-centric metrics under imbalance, and our descriptive and 
modeling results show they map cleanly to operator workload (Saito & Rehmsmeier, 2015). In practice, 
these choices mean treating “AI integration” as a managed capability with architecture, process, and 
measurement artifacts not a feature toggle. 
The detection pipeline model Data → Features → Models → Fusion/Correlation → Alert → 
Orchestration → Response has long been described in conceptual terms (Chandola et al., 2009). Our 
evidence suggests two refinements. First, process variables such as model freshness, analyst feedback 
loops, and drift monitoring deserve status as first-class constructs alongside model class, because they 
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mediate real-time performance in production. This resonates with “hidden technical debt” arguments 
in ML systems, which emphasize that surrounding processes and infrastructure often dominate 
outcomes (Sculley et al., 2015). Second, environmental maturity (especially in cloud) functions as a 
moderator that shapes how upstream analytics propagate to downstream response consistent with 
shared-responsibility analyses showing that observability and API-level control constrain feasible 
detection and containment (Subashini & Kavitha, 2011). Moreover, our precision-forward, recall-
modest profile supports the theoretical shift toward operational risk–aware optimization: when base rates 
are low and queue capacity bounded, maximizing F1 or PR-AUC at targeted alert volumes is more 
aligned with system objectives than maximizing accuracy or ROC-AUC (Gomes et al., 2017). Finally, 
robustness checks indicate that automation is uniquely tied to response timing, while freshness/feedback 
primarily shape classification quality. This division of labor suggests a modular theory of 
improvement: analytics modules push the operating point on the PR curve; orchestration modules 
convert that operating point into shorter dwell times via fast, reversible actions (Stakhanova et al., 
2007). Future formal models could codify these modules and their interactions under capacity 
constraints derived from queueing theory (Little, 1961). 
Our design is cross-sectional and observational; as prior critiques emphasize, such designs estimate 
associations rather than causal effects and are vulnerable to unobserved confounding (Sommer & 
Paxson, 2010). We mitigate but do not eliminate these risks via contextual covariates (coverage, scale, 
staffing, cloud maturity), robust SEs, influence diagnostics, and sensitivity analyses. Second, the AI 
Integration Index is a constructed measure. Although rubric-based and expert-reviewed, alternative 
weightings could yield marginally different point estimates; our robustness checks lessen this concern 
but do not remove it. Third, outcomes rely on case-level adjudication for precision/recall estimates; 
label noise is an endemic problem in security and has been documented to bias metrics if unmodeled 
(Ring et al., 2019). We used double coding and consensus rules to increase reliability, yet weak 
supervision methods might further formalize label uncertainty (Ratner et al., 2017). Fourth, the one-
week synchronized window increases comparability but may miss longer-cycle behaviors (e.g., 
monthly entitlement reviews, seasonal traffic). Drift literature warns that performance can shift over 
time; longer panels would allow trajectory analysis (Widmer & Kubat, 1996). Fifth, generalizability is 
bounded by our convenience-plus-quota sample (n = 18). While maximum-variation sampling and 
environment stratification improve external validity, some sectors or architectures may be under-
represented. Finally, adversarial dynamics evasion, poisoning are not directly modeled here; though 
we include freshness, drift monitoring, and guardrails, adversarial ML research indicates that targeted 
manipulation can degrade detectors in ways not captured by aggregate metrics (Biggio & Roli, 2018). 
These limitations frame our claims: integrated AI, when operationalized with guardrails and 
orchestration, tends to align with better real-time outcomes, particularly in mature cloud, but causality 
and durability across regimes invite further study. 
Several extensions follow. First, a panel design with repeated measures would enable difference-in-
differences or interrupted time-series analyses, estimating causal impacts of staged interventions (e.g., 
introducing fusion, tightening retraining cadence) while controlling for secular trends addressing the 
causal critique in intrusion-detection evaluation (Sommer & Paxson, 2010). Second, integrate drift 
detection primitives (e.g., adaptive windowing, online ensembles) directly into the measurement stack 
so that results are reported as performance trajectories conditioned on detected shifts (Bifet & Gavalda, 
2007). Third, adopt weak supervision to scale labels for difficult domains like cloud control-plane 
analytics, and publish label-quality diagnostics alongside model metrics to contextualize gains (Ratner 
et al., 2017). Fourth, expand graph-based entity analytics which prior surveys highlight as effective for 
relational patterns to broader identity and access contexts in multi-cloud, and quantify their marginal 
contribution beyond traditional detectors (Akoglu et al., 2015). Fifth, formalize trust-aware automation: 
run controlled studies that vary explanation depth, reversibility, and confidence thresholds, measuring 
impacts on operator reliance and MTTR, guided by human-automation theory (Lee & See, 2004). Sixth, 
align evaluation with PR-centric SLOs: publish precision at fixed alert budgets, latency and MTTR 
percentiles, and calibration plots, following recommendations for imbalanced domains (Saito & 
Rehmsmeier, 2015). Finally, address adversarial robustness explicitly: combine adversarial testing with 
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routine drift monitoring to understand how robustness–accuracy trade-offs play out in operational 
telemetry (Biggio & Roli, 2018). These directions would evolve the field from algorithm-centric 
demonstrations to operations-centric science, where integration, drift handling, orchestration, and human 
factors are treated as co-equal determinants of real-time security outcomes. 
CONCLUSION 
This study set out to examine how the depth of artificial intelligence integration within cybersecurity 
frameworks relates to real-time threat detection outcomes across heterogeneous cloud and enterprise 
environments, using a quantitative, cross-sectional, multi–case design grounded in operational exports 
rather than synthetic benchmarks. Across 18 deployments, we observed a coherent pattern: higher 
integration capturing model breadth, fusion/ensemble depth, model freshness and feedback loops, and 
SOAR automation aligned with lower detection latency, reduced mean time to respond (MTTR), higher 
precision and F1, and lower false-positive rates, with the strongest associations appearing in mature 
cloud contexts where control-plane observability and API-mediated enforcement are first-class. Likert 
assessments from practitioners reinforced these objective gains, indicating agreement that AI reduces 
alert noise and accelerates triage while revealing tempered trust in automation and model reliability 
during change signals that help explain why recall gains were more modest than precision 
improvements. Methodologically, the study contributed a transparent measurement rubric the AI 
Integration Index paired with a standardized extraction protocol, adjudicated labels, and model choices 
tailored to imbalanced, streaming-like operations (robust OLS, beta/fractional logit, and quantile 
regression), plus a suite of robustness checks (alternative index weights, leverage case removal, 
LOOCV, bootstrap) that preserved effect direction and credibility. Subcomponent analyses suggested 
a productive division of labor: freshness and analyst feedback loops primarily elevated classification 
quality (precision/F1) by stabilizing calibration under evolving traffic, while orchestration maturity 
embodied in graded, reversible playbooks most directly compressed MTTR by shortening the 
evidence-to-action path. The practical takeaway for leaders is to treat “AI integration” not as a single 
tool adoption but as a system capability spanning data, models, fusion, and response: prioritize multi-
view correlation across endpoint, network, identity, and cloud control-plane signals; institutionalize 
retraining cadences and drift monitors with analyst-in-the-loop feedback; and mature SOAR with safe-
by-design playbooks that align action intensity to confidence and impact. At the same time, several 
boundaries shape interpretation: cross-sectional observation estimates association, not causality; label 
noise and one-week windows constrain completeness; and index construction, though rubric-based 
and tested for sensitivity, remains a simplification of complex stacks. Even so, the convergence of 
objective metrics, practitioner sentiment, and robustness checks supports a pragmatic conclusion: 
organizations that deliberately engineer analytics freshness and fusion, close the loop with operators, 
and operationalize transparent, reversible automation are more likely to realize the day-to-day benefits 
often promised for AI in security fewer spurious alerts, faster recognition, and quicker, more 
predictable containment especially in cloud-forward operating models. By elevating process variables 
to first-class elements of the detection pipeline and by evaluating success with precision-recall-centric 
and time-based service levels rather than offline accuracy alone, the field can progress from algorithm-
centric demonstrations to operations-centric practice, where measurable improvements in timeliness 
and workload, not just model scores, define the value of AI-enhanced cybersecurity. 
RECOMMENDATIONS 
Treat AI-enhanced cybersecurity as a system capability not a product and build it deliberately across 
data, models, fusion, and response. First, harden observability: standardize UTC time, ensure ≥90% 
telemetry coverage across endpoints, network, identity, and cloud control plane, and publish a 
minimal, versioned variable dictionary so features are consistent across tools and teams. Stand up a 
shared feature/embedding store and a model registry with lineage, approvals, and rollback; require 
that every model declares a business owner, retraining cadence, and deprecation date. For evaluation, 
replace accuracy/ROC dashboards with PR-centric and time-based SLOs: precision@alert-budget, 
recall on adjudicated gold sets, median and p90 detection latency, median and p90 MTTR, and false-
positive rate; make these SLOs visible on SOC wallboards and tie threshold changes to their expected 
movement. Institute drift monitoring (data and prediction) with clear playbooks: when drift exceeds a 
defined band, trigger controlled recalibration (shadow mode → A/B or canary → staged rollout) rather 
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than silent weight changes. Close the loop with label pipelines: define a lightweight adjudication 
workflow in the ticketing system, use weak supervision (heuristics + TI + policy context) to expand 
training labels, and measure label quality (agreement rates, abstain ratios) alongside model metrics. 
Invest in fusion/ensemble layers that correlate across modalities before escalation; implement graph-
centric identity and asset context so alerts are routed as incidents, not fragments. Mature SOAR with 
graded, reversible actions: enrichment and watchlisting at low confidence, network micro-
segmentation or step-up auth at medium, auto-containment only when confidence and impact cross 
explicit thresholds; every action gets a “one-click undo,” and every playbook step logs evidence and 
rationale. Calibrate trust: display model confidence, top contributing signals, and recent performance 
trends on the analyst console; prefer explanations that align with SOC mental models (entities, paths, 
and policy diffs) over generic SHAP dumps. Manage capacity rigorously: size analyst staffing to 
maintain utilization below the congestion knee, and use dynamic thresholds tied to queue depth so 
arrival rates do not outstrip service. In cloud-first stacks, prioritize identity analytics, control-plane 
anomaly detection, and policy-as-code enforcement; in on-premises segments, strengthen EDR kernel 
visibility and east-west flow analytics while planning for phased migration of telemetry to cloud-scale 
storage/compute. Formalize change control: all new models and playbooks pass simulation on 
historical windows, chaos tests in a lab, and a time-boxed shadow run in production; no emergency 
overrides without a documented revert path. Build people alongside platforms: run quarterly tabletop 
exercises that rehearse automated decisions and reversals; train engineers on PR-centric evaluation, 
drift, and imbalanced learning; and empower a joint AI in SOC working group (SOC lead, security 
engineering, MLOps, cloud platform) to own the roadmap and publish quarterly results against SLOs. 
Finally, embed privacy and governance by default: tokenize identifiers at source, minimize data 
retention to features and aggregates, and treat measurement artifacts (code, schemas, rubrics) as part 
of the control surface. Organizations that institutionalize these practices observability, PR/time SLOs, 
drift-aware MLOps, fusion before escalation, graded automation with reversibility, and trust-calibrated 
analyst UX convert AI from sporadic wins into predictable reductions in noise, latency, and MTTR. 
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