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Abstract 
This study presents a systematic review of the rapidly growing body of research on AI-powered deep 

learning models for real-time cybersecurity risk assessment in enterprise IT systems, a domain where 

accurate and timely risk estimation has become critical for safeguarding large-scale digital 

infrastructures. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines, an initial pool of 2,347 scholarly articles published between 2010 and 2024 was 

identified across major scientific databases, of which 142 met the inclusion criteria after rigorous multi-

phase screening for relevance, methodological quality, and direct alignment with the study’s scope. 

These selected studies collectively demonstrate how deep learning architectures—particularly 

convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) 

networks, transformer-based attention models, and graph neural networks (GNNs)—have advanced 

the analytical capacity to process high-dimensional, heterogeneous security telemetry including 

network flows, authentication logs, endpoint detection and response (EDR) events, DNS/HTTP traffic, 

and host–user–process relationships. The review found that these models consistently outperform 

traditional signature-based and statistical machine learning techniques in detecting complex, low-

signal threats, while supporting continuous risk scoring in real-time environments. A major thematic 

pattern across the 142 reviewed studies was the operational embedding of these models within 

distributed streaming frameworks, where they achieve sub-second inference latency and integrate with 

Security Information and Event Management (SIEM) and Security Orchestration, Automation, and 

Response (SOAR) systems to drive automated incident response workflows. However, the synthesis also 

revealed persistent challenges, including heavy reliance on synthetic or staged datasets with limited 

realism, fragmented evaluation practices emphasizing accuracy over operational metrics, and scarce 

evidence from longitudinal, production-scale deployments. Overall, this review consolidates the state 

of knowledge from 142 studies to provide a structured, evidence-based understanding of how deep 

learning has become the analytical core of real-time enterprise cybersecurity risk assessment, while also 

identifying methodological and infrastructural gaps that shape the reliability of current approaches. 

 

Keywords 
Deep Learning, Cybersecurity, Risk Assessment, Enterprise IT Systems, Real-Time Detection 

 

 

 

1 Master of Science in Information Technology, Washington University of Science and   

Technology, USA; Email: chowdhurytonoy93@gmail.com 

 
 
 

Volume: 1; Issue: 1 
Pages: 675–704 

Published: 29 April 2025 

1St GRI Conference 2025 

https://doi.org/10.63125/137k6y79
mailto:chowdhurytonoy93@gmail.com
https://global.asrcconference.com/index.php/asrc


ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 675–704 
 

676 
 

INTRODUCTION 
Cybersecurity risk in enterprise IT systems is fundamentally defined as the potential for loss, damage, or 

disruption to organizational information assets resulting from the exploitation of vulnerabilities by threats 

(Lee, 2021). This conceptualization frames risk as a function of the likelihood of a threat event and the 

magnitude of its adverse impact on confidentiality, integrity, and availability. In enterprise contexts, risk 

extends beyond technical failures to encompass strategic, operational, legal, and reputational 

dimensions because large organizations depend on interconnected networks, hybrid cloud platforms, 

and digital supply chains (Ekstedt et al., 2023). Scholars emphasize that accurate risk estimation 

requires contextualization, linking vulnerabilities to specific business processes and assessing the 

criticality of affected assets, as risk varies significantly across different operational domains within the 

same enterprise. Internationally, frameworks like the NIST Cybersecurity Framework and ISO/IEC 27005 

have become central references for defining and operationalizing risk assessment practices in 

organizations, establishing common taxonomies and decision-making structures (Kure et al., 2018). The 

increasing complexity of global IT infrastructures—spanning cloud services, edge computing, and 

mobile endpoints—has intensified the difficulty of assessing and prioritizing risks, especially when security 

events occur at high velocity and scale. Consequently, traditional risk assessment methods relying on 

static checklists and manual evaluations are increasingly viewed as inadequate, motivating the 

adoption of data-driven approaches that leverage enterprise-scale telemetry to provide real-time 

visibility into evolving threat conditions (Uddin et al., 2020). This definitional foundation positions 

cybersecurity risk assessment as a central component of enterprise resilience and regulatory 

compliance across jurisdictions worldwide. 

Cybersecurity risk assessment holds profound international significance because enterprise IT systems 

form the digital backbone of economic, governmental, and critical infrastructure sectors. Disruptions 

caused by cyberattacks can result in cascading failures across supply chains, financial markets, and 

public services, creating systemic risk that transcends organizational boundaries (Rea-Guaman et al., 

2020). The globalization of digital operations—where multinational enterprises manage distributed 

cloud infrastructure, remote workforces, and cross-border data flows—has further amplified the attack 

surface and created complex interdependencies. Cyber incidents such as ransomware campaigns, 

data breaches, and advanced persistent threats have incurred substantial financial losses, with global 

estimates reaching hundreds of billions annually, underscoring the economic imperative of effective risk 

management (Jarjoui & Murimi, 2021). Regulatory regimes such as the European Union’s GDPR, the 

United States’ HIPAA and FISMA, and industry standards like PCI DSS impose strict obligations on 

organizations to maintain security controls, conduct risk assessments, and protect personal data, often 

under the threat of severe penalties for non-compliance. International bodies including the OECD, ISO, 

and ENISA have issued guidelines emphasizing risk-based security governance, reflecting global policy 

convergence around risk assessment as a foundational cybersecurity practice (Jahid, 2022; 

Strupczewski, 2021). From a geopolitical perspective, cyberattacks increasingly intersect with national 

security concerns, and many governments classify cyber risk management as part of critical 

infrastructure protection. As enterprises operate across jurisdictions, they must navigate heterogeneous 

legal environments, cultural approaches to risk, and varying threat landscapes, further reinforcing the 

need for standardized, rigorous, and adaptive risk assessment methods (Kure et al., 2022; Arifur & 

Noor, 2022). These globalized operational realities and regulatory obligations highlight why 

cybersecurity risk assessment has become a strategic necessity for modern enterprises. 

Historically, cybersecurity risk assessment in enterprises relied predominantly on qualitative methods such 

as risk matrices, heat maps, and expert judgment, which categorized risks based on subjective ratings 

of likelihood and impact (Borky & Bradley, 2018; Hasan & Uddin, 2022). While accessible to non-

technical stakeholders, these methods lacked statistical rigor, failed to capture uncertainty, and often 

produced inconsistent outcomes due to cognitive biases. Early quantitative approaches introduced 

simple scoring systems that combined vulnerability severity and asset value, but they treated risk as static 

and rarely accounted for real-time operational dynamics (Hoffmann et al., 2020; Rahaman, 2022). 

Over time, researchers began adopting probabilistic models such as Bayesian networks, Markov chains, 

and Monte Carlo simulations to estimate the likelihood distributions of threat events and their expected 

losses (Armenia et al., 2021; Rahaman & Ashraf, 2022). These techniques provided more rigorous 

foundations for decision-making but required accurate, timely data that was often unavailable or 

fragmented across enterprise systems. More recent literature has emphasized dynamic risk models that 

continuously incorporate new telemetry to reflect the changing security posture of IT environments. 

Such approaches have been shown to improve risk prioritization, align mitigation actions with emerging 
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threats, and reduce uncertainty compared to static methods (Islam, 2022; Möller, 2023a). The 

transition from static, qualitative risk assessments to quantitative, data-driven models represents a pivotal 

evolution in cybersecurity governance, establishing the methodological foundations necessary to 

enable real-time risk estimation at enterprise scale. 

 
Figure 1: Enterprise Cybersecurity Risk Assessment Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Building on the limitations of static and periodic assessments, the paradigm of real-time risk assessment 

has emerged as a key innovation in enterprise cybersecurity. Real-time risk assessment refers to the 

continuous, automated estimation of risk scores from streaming telemetry, enabling security teams to 

detect and respond to threats within operational timeframes (Hasan et al., 2022; Shaikh & Siponen, 

2023). This paradigm shifts risk assessment from a retrospective reporting function to an active 

operational capability embedded within security workflows. Real-time risk models ingest data from 

diverse sources such as endpoint detection and response (EDR) logs, network flow records, DNS and 

HTTP traffic, identity and access management (IAM) logs, and cloud control-plane events, correlating 

signals to infer the likelihood and impact of potential incidents (Redwanul & Zafor, 2022; Radanliev 

et al., 2018). Studies have shown that real-time scoring reduces mean time to detect (MTTD) and mean 

time to respond (MTTR), thereby limiting lateral movement and potential damage. This operational shift 

requires streaming architectures capable of low-latency data processing, stateful analytics, and high 

throughput, which are supported by frameworks like Apache Storm and Flink (Benaroch, 2020; Rezaul 

& Mesbaul, 2022). Unlike periodic assessments, real-time systems maintain continuous situational 

awareness, dynamically recalculating risk as conditions change, and integrating directly into Security 

Information and Event Management (SIEM) and Security Orchestration, Automation, and Response 

(SOAR) platforms. This integration operationalizes risk analytics as a live service layer within enterprise 

security operations, enabling more proactive and context-sensitive decision-making than legacy 

methods could provide  (Benz & Chatterjee, 2020; Hasan, 2022). 

Parallel to the emergence of real-time paradigms, deep learning has become a foundational analytical 

approach for enterprise cybersecurity risk assessment, offering superior capacity to model high-

dimensional, heterogeneous, and non-linear security data compared to earlier machine learning 

methods (Tarek, 2022; Pupentsova & Livintsova, 2021). Convolutional neural networks (CNNs) have 

been widely used to classify network flows and packet captures by automatically learning hierarchical 

features from raw traffic. Recurrent neural networks (RNNs) and long short-term memory (LSTM) 

architectures have been applied to sequential security logs, authentication data, and system event 

streams, capturing temporal dependencies that traditional statistical models miss (Fielder et al., 2018; 

Kamrul & Omar, 2022). More recently, transformer-based architectures leveraging self-attention have 

demonstrated strong performance on large-scale log, DNS, and HTTP datasets by modeling long-range 
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dependencies without the vanishing gradient limitations of RNNs. Graph neural networks (GNNs) have 

emerged as powerful tools for representing host–user–process relationships in enterprise telemetry 

graphs, enabling the detection of complex lateral movement patterns (Kamrul & Tarek, 2022; Villalón-

Fonseca, 2022). These deep models surpass classical classifiers like support vector machines and 

random forests in detection accuracy, scalability, and adaptability, particularly under conditions of 

concept drift and class imbalance (Caramancion et al., 2022; Mubashir & Abdul, 2022). Their ability 

to learn directly from raw or minimally processed data aligns with the high-volume, high-velocity nature 

of enterprise telemetry, making them well suited for real-time risk scoring. This body of evidence positions 

deep learning as the analytical engine that powers contemporary risk assessment systems in enterprise 

cybersecurity. 

Deep learning-based real-time risk assessment systems have increasingly been embedded into 

enterprise security operations environments, marking a structural shift from experimental tools to 

operational infrastructure. Many studies describe architectures that integrate data ingestion services, 

streaming feature engineering pipelines, deep learning inference servers, and decision engines into 

layered microservices environments orchestrated by platforms like Kubernetes (Ksibi et al., 2023; 

Muhammad & Kamrul, 2022). These systems are tightly coupled with SIEM platforms, where risk scores 

are correlated with other alerts and asset context, and with SOAR systems, where they trigger 

automated playbooks for containment, remediation, and escalation. This operational embedding has 

been shown to reduce false positives, prioritize high-risk incidents, and improve analyst efficiency by 

aligning detection thresholds with business-critical asset impact (Reduanul & Shoeb, 2022; 

Taherdoost, 2022). Studies also highlight the necessity of operational MLOps practices—such as 

continuous monitoring, dataset and model versioning, automated retraining pipelines, and rollback 

mechanisms—to maintain accuracy and stability under evolving threat landscapes (Kumar & 

Zobayer, 2022; Sánchez-García et al., 2022). This integration represents a departure from the earlier 

paradigm where machine learning models were used in isolation as offline analytic components. 

Instead, deep learning models now function as continuous services within real-time security pipelines, 

directly influencing detection, triage, and incident response workflows. Such integration underscores 

their growing role as first-class operational systems within enterprise IT security architectures (Linkov & 

Kott, 2019; Sadia & Shaiful, 2022). 

 
Figure 2: Key Drivers of Cyber Attacks 
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Furthermore, the development and adoption of deep learning models for real-time cybersecurity risk 

assessment are situated within a rapidly expanding international research and standardization 

landscape. Numerous benchmark datasets such as NSL-KDD, UNSW-NB15, CICIDS2017, Bot-IoT, and 

ToN_IoT have been created to facilitate comparative evaluation, though they vary in realism and scope 

(Kosmowski et al., 2022; Noor & Momena, 2022). Standardized frameworks like MITRE ATT&CK 

provide taxonomies of adversary tactics and techniques, enabling consistent labeling and 

interpretation of model outputs. CVSS scoring standards link vulnerabilities to risk metrics, while STIX/TAXII 

protocols support automated exchange of threat intelligence across organizations (Istiaque et al., 

2023; Radanliev, 2024). Regulatory and policy bodies including ENISA, NIST, ISO, and the OECD have 

emphasized the need for risk-based cybersecurity governance, aligning risk modeling practices with 

compliance and audit requirements (Kalinin et al., 2021). Academic and industrial consortia have 

published evaluation guidelines promoting reproducibility, dataset documentation, and operational 

metric reporting, aiming to reduce fragmentation across the field (Möller, 2023b). This global research 

and standardization activity underscores that deep learning-based real-time risk assessment has 

evolved from isolated academic experiments into a recognized international domain of practice, with 

shared infrastructures, taxonomies, and performance benchmarks facilitating collective advancement. 

LITERATURE REVIEW 

The field of cybersecurity has undergone a paradigm shift as the growing complexity, velocity, and 

volume of cyber threats have rendered traditional rule-based and signature-driven detection 

approaches insufficient for protecting enterprise IT environments. As global enterprises increasingly rely 

on distributed networks, hybrid cloud infrastructure, and interconnected digital ecosystems, real-time 

cybersecurity risk assessment has emerged as an indispensable function for safeguarding data integrity, 

availability, and confidentiality (Hasan et al., 2023; Sarker et al., 2023). Literature on risk assessment 

has traditionally emphasized frameworks for risk identification, quantification, and prioritization based 

on static analysis and human judgment, but these methods struggle to cope with the dynamic and 

evolving attack surface characteristic of modern enterprise systems. Deep learning, a subfield of 

artificial intelligence that enables hierarchical feature representation through multi-layer neural 

architectures, offers transformative capabilities for learning complex behavioral patterns and subtle 

anomalies within massive and heterogeneous cybersecurity data streams (Möller, 2023a). Over the 

past decade, studies have demonstrated the efficacy of deep learning in intrusion detection, malware 

classification, phishing detection, and botnet traffic analysis, signaling a shift toward fully data-driven 

security analytics. More recent works have further proposed integrated frameworks that merge real-

time telemetry ingestion, deep neural inference, and dynamic risk scoring, thereby embedding AI-

powered risk estimation within security information and event management (SIEM) and security 

orchestration, automation, and response (SOAR) workflows (Hossain et al., 2023; Safitra et al., 

2023).However, the research landscape remains fragmented across domains, architectures, and 

evaluation paradigms, with substantial variance in datasets, performance metrics, and deployment 

strategies, which complicates efforts to synthesize a coherent understanding of their effectiveness in 

enterprise settings. Furthermore, operational challenges such as concept drift, adversarial evasion and 

data privacy constraints. Rajawat et al. (2024) introduce additional layers of complexity when 

integrating deep learning into production risk assessment systems. Thus, this literature review critically 

examines and synthesizes the theoretical foundations, architectural innovations, dataset practices, 

operational integration models, and ethical-regulatory considerations surrounding the use of AI-

powered deep learning models for real-time cybersecurity risk assessment in enterprise IT systems, 

providing a structured scholarly map of existing research trajectories and technical approaches. 

Cybersecurity Risk Assessment 

Cybersecurity risk within enterprise IT systems has been conceptualized as the potential for loss or harm 

resulting from a threat exploiting a vulnerability, thereby compromising the confidentiality, integrity, or 

availability of information assets (Ekstedt et al., 2023). This formal definition positions risk as a function 

of the likelihood of an event and the magnitude of its adverse impact, which is consistent with the 

classical risk equation proposed in risk management literature. Within large-scale enterprises, risk 

assessment is further complicated by the interdependencies between systems, the proliferation of 

distributed cloud architectures, and the diversity of user roles, which increase both the attack surface 

and the uncertainty of threat exposure (Jarjoui & Murimi, 2021). Researchers emphasize that risk 

cannot be adequately defined without contextualizing assets, vulnerabilities, and threat actors within 

an organizational ecosystem, as business-critical systems differ in sensitivity, operational requirements, 

and legal protections. This context-dependent nature requires risk frameworks to incorporate asset 
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valuation, data classification, and business continuity considerations, ensuring that risk prioritization 

aligns with organizational objectives and regulatory mandates and HIPAA. Moreover, studies highlight 

the necessity of incorporating both technical and non-technical dimensions of risk, such as insider 

threats, human error, and supply chain dependencies, which are often underestimated in traditional 

assessments (Lee, 2021). This multidimensional conception underscores the inadequacy of one-size-fits-

all models and supports a layered, enterprise-specific approach to defining cybersecurity risk. By 

embedding risk definitions within organizational processes, standards creature a structured foundation 

that supports consistent measurement and communication of risk across diverse stakeholders, enabling 

alignment between security operations, governance, and strategic decision-making (Sultan et al., 

2023; Shaikh & Siponen, 2023). 

Historically, cybersecurity risk assessment in enterprise environments relied heavily on static, qualitative 

models, often operationalized through risk matrices that mapped subjective likelihood and impact 

ratings into categorical tiers. Such approaches were favored for their simplicity and accessibility to non-

technical stakeholders but have been critiqued for their lack of statistical rigor, inability to capture 

uncertainty, and susceptibility to cognitive bias (Hossen et al., 2023; Sánchez-García et al., 2022). 

Studies have shown that qualitative scoring frameworks fail to scale in environments characterized by 

dynamic threat landscapes, rapidly evolving vulnerabilities, and high-frequency telemetry. To address 

these deficiencies, research has progressively advanced toward quantitative and probabilistic risk 

models that integrate empirical data from vulnerability scanners, intrusion detection systems, and 

incident response reports to estimate risk as a distribution rather than a fixed value (Erola et al., 2022; 

Tawfiqul, 2023). Monte Carlo simulations, Bayesian networks, and Markov models have been applied 

to capture uncertainty and interdependencies between threat events, thereby providing probabilistic 

estimations of attack success likelihood and expected loss. Moreover, these dynamic models have 

increasingly incorporated temporal and causal relationships (Fielder et al., 2018; Sanjai et al., 2023), 

enabling near-real-time updates of risk posture as new telemetry becomes available. The shift to data-

driven methodologies has allowed organizations to move beyond periodic, static assessments toward 

continuous monitoring regimes that reflect the current operational state of their IT environments. This 

evolution signifies a fundamental reorientation of risk assessment from a compliance-oriented 

documentation task to an adaptive decision-support mechanism capable of informing tactical and 

operational security actions in fast-changing enterprise contexts (Hoffmann et al., 2020; Akter et al., 

2023). 

 
Figure 3: Real-Time Cybersecurity Risk Framework 
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Building upon the limitations of static and periodic methods, the real-time risk assessment paradigm 

represents a major advancement in enterprise cybersecurity strategy, enabling continuous evaluation 

of threat likelihood and business impact under operational constraints. Real-time risk assessment is 

defined by its low-latency, streaming inference capabilities, which allow security systems to ingest high-

velocity telemetry, process events, and generate risk scores within seconds or sub-minute timeframes 

(Razzak et al., 2024; Melaku, 2023). Such systems operate on streaming frameworks that support 

event-time processing and stateful operators, ensuring scalability to millions of events per second 

without sacrificing detection accuracy. These pipelines are often embedded within Security Information 

and Event Management (SIEM) and Security Orchestration, Automation, and Response (SOAR) 

platforms, where risk scores trigger automated playbooks or human analyst escalations (Istiaque et al., 

2024; Safitra et al., 2023). Real-time risk models continuously correlate signals from heterogeneous 

sources such as endpoint detection and response (EDR) logs, network flows, DNS/HTTP traffic, and 

identity and access management (IAM) systems, producing unified risk estimates contextualized by 

asset criticality. Empirical studies demonstrate that streaming-based risk scoring significantly reduces 

mean time to detect (MTTD) and mean time to respond (MTTR), thereby mitigating potential losses and 

limiting lateral movement (Kianpour et al., 2021; Hasan et al., 2024). This paradigm also necessitates 

architectural considerations, such as strict latency budgets, load balancing, and real-time feature 

engineering, to ensure consistent performance under production workloads. Importantly, the real-time 

paradigm represents a shift from retrospective detection to proactive operational risk management, 

embedding risk analytics as a continuous service layer within enterprise IT systems rather than as a 

periodic audit artifact (Ashiqur et al., 2025; Pollmeier et al., 2023). 

Real-time cybersecurity risk assessment achieves operational viability primarily through its alignment with 

SIEM and SOAR architectures, which function as the central nervous system of enterprise security 

operations centers (Li et al., 2019; Hasan, 2025). SIEM platforms aggregate and normalize data from 

diverse sources—including EDR, IDS, firewalls, IAM, cloud services, and application logs—into a unified 

schema suitable for correlation and risk modeling. SOAR platforms extend this by orchestrating 

automated workflows that execute predefined responses based on risk thresholds, enabling rapid 

containment of threats with minimal human intervention. Integration studies highlight that embedding 

machine learning–based risk scoring modules within SIEM/SOAR stacks enhances alert prioritization, 

reduces false positives, and optimizes analyst workload by aligning detection confidence with business 

impact (Ismail et al., 2025; Tzavara & Vassiliadis, 2024). Architectural blueprints often adopt a 

modular microservices approach, where feature extraction services preprocess streaming telemetry, 

model inference services output probability distributions, and decision engines apply policy-driven 

thresholds to trigger responses. This architectural alignment ensures that real-time models operate under 

explicit latency budgets, typically allocating milliseconds for preprocessing and inference to maintain 

overall pipeline throughput (Gunduz & Das, 2020; Sultan et al., 2025). Furthermore, SIEM/SOAR 

integration supports continuous feedback loops where analyst actions are logged and used to retrain 

models, gradually improving accuracy and contextual relevance over time. Several case studies have 

reported measurable gains in operational efficiency and incident response readiness from this 

alignment, including reductions in mean time to detect and escalations. This close coupling between 

real-time risk analytics and orchestration infrastructure positions SIEM/SOAR as the foundational delivery 

mechanism for operationalizing cybersecurity risk assessment at enterprise scale (Eling, 2018). 

Deep Learning Architectures for Cybersecurity Analytics 

Convolutional neural networks (CNNs) have been extensively investigated as a foundational deep 

learning architecture for network traffic analysis in enterprise cybersecurity due to their ability to extract 

local spatial features and capture hierarchical patterns from structured data representations (Khan et 

al., 2020). CNNs excel in modeling network flow and packet-based telemetry by transforming raw 

features into multidimensional tensors where filters detect discriminative patterns indicative of malicious 

behaviors (Taye, 2023a)Shone et al. (2018) demonstrated that a deep CNN-based intrusion detection 

system could outperform traditional machine learning baselines on the NSL-KDD dataset by learning 

hierarchical representations of network attack signatures. Similarly, integrated CNNs with support vector 

machines to enhance classification accuracy in hybrid intrusion detection systems, showing significant 

improvements in false positive reduction. Applied a CNN architecture on raw traffic features and 

achieved superior generalization on KDD’99 data, indicating CNNs’ capability to handle noisy high-

dimensional network data. Other studies have adapted CNNs for encrypted traffic classification, where 

payload inspection is unavailable used CNNs on flow-based statistical features to differentiate benign 

versus botnet traffic with high precision (Sanjai et al., 2025; Yamashita et al., 2018), while employed 
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CNNs for real-time malware traffic detection in IoT networks. CNNs have also been applied to image-

like visualizations of traffic matrices, as demonstrated, who mapped network sessions to 2D images for 

CNN-based detection with remarkable efficiency. These approaches leverage CNNs’ convolutional 

kernels to exploit local temporal-spatial correlations in packets and flows, enabling scalable and high-

throughput inference in streaming settings (Krichen, 2023). Collectively, the literature substantiates 

CNNs as a powerful mechanism for feature abstraction from network telemetry, supporting their 

integration as core components in enterprise intrusion detection and network threat classification 

pipelines. 

While CNNs capture localized spatial features, recurrent neural networks (RNNs) and their variants such 

as long short-term memory (LSTM) and gated recurrent unit (GRU) networks are specialized for modeling 

sequential dependencies in ordered cybersecurity data such as system logs, command histories, and 

authentication (Zhou, 2020). Showed that LSTMs achieved superior performance in detecting intrusion 

patterns by capturing temporal correlations across network connections, surpassing conventional 

classifiers on NSL-KDD and UNSW-NB15 datasets. Similarly leveraged LSTMs for intrusion detection in 

software-defined networks, demonstrating resilience to concept drift in evolving traffic. RNN-based 

models have been particularly effective in detecting brute-force attacks, privilege escalations (Yao et 

al., 2019), and lateral movement by analyzing long sequences of login attempts and process creation 

logs. However, RNNs often struggle with vanishing gradients and scalability on long sequences, 

prompting the adoption of Transformer architectures (Cheng et al., 2018), which use self-attention 

mechanisms to capture long-range dependencies without recurrent connections. Transformers have 

shown promise in cybersecurity log analysis proposed Log Robust, a Transformer-based framework for 

anomaly detection in large-scale enterprise logs, significantly reducing false positives compared to RNN 

baselines.  Transformer encoders to detect algorithmically generated domains (DGAs) in DNS traffic, 

achieving state-of-the-art results. Similarly, integrated attention mechanisms to model interleaved 

sequences of system events, outperforming LSTMs in both speed and accuracy. These studies 

underscore that while RNN/LSTM models capture short- to medium-range dependencies effectively, 

Transformers offer superior scalability for long and heterogeneous log sequences common in enterprise 

environments (Chen et al., 2021). 

 
Figure 4: Deep Learning Cybersecurity Model Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph neural networks (GNNs) have emerged as a cutting-edge approach for modeling the relational 

structures inherent in enterprise IT environments, where cybersecurity data naturally form graph 

topologies linking hosts, users, processes, and network entities (Bhatt et al., 2021). Unlike CNNs or RNNs, 

which assume Euclidean data structures, GNNs perform message passing over nodes and edges to 

capture complex dependencies in heterogeneous graphs. (Jiao et al., 2020) introduced AddGraph, 

which applies dynamic GNNs for anomaly detection on temporal user-host graphs, achieving state-of-

the-art detection of insider threats. Similarly, developed DynTri, a temporal graph embedding model 

that identifies suspicious subgraphs indicative of attack campaigns. (Ghosh et al., 2019) provided a 

comprehensive survey showing that GNNs outperform classical methods for link prediction and 
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community-based anomaly detection in security telemetry. Researchers have applied GNNs to detect 

lateral movement used heterogeneous GNNs on enterprise authentication graphs to identify malicious 

credential usage, while demonstrated GNNs’ capability to detect cross-host privilege escalation 

patterns in process graphs. Applied relational graph convolutional networks to user-process trees and 

improved detection of living-off-the-land attacks in real enterprise logs. These models exploit structural 

context, aggregating signals from neighborhoods to reveal anomalies not visible in isolated events. 

Moreover, GNN-based methods support explainability through attention weights on suspicious edges or 

nodes, facilitating analyst interpretation and trust. Collectively, these studies affirm that GNNs enable 

holistic, context-aware cyber risk inference by embedding host-user-process relationships in enterprise 

telemetry graphs, offering powerful capabilities for detecting stealthy multi-stage attacks (Zheng et al., 

2021). 

Data Sources and Evaluation Practices 

Enterprise IT environments generate vast, heterogeneous cybersecurity telemetry streams that form the 

foundational data for real-time risk assessment and deep learning analytics. These sources encompass 

endpoint detection and response (EDR) logs, which capture process executions, file modifications, 

registry edits, and kernel-level behaviors on individual hosts, providing granular forensic visibility 

(Sivanathan et al., 2020). Network telemetry such as NetFlow and packet capture (PCAP) summarizes 

bidirectional traffic flows with metadata on bytes, packets, protocol types, and session durations, 

enabling detection of volumetric anomalies, command-and-control channels, and data exfiltration. 

DNS and HTTP logs, which contain queried domains, URLs, response codes, and user-agent strings, serve 

as high-value indicators for detecting phishing, malware delivery, and domain generation algorithm 

(DGA) activity (Tariq et al., 2023). Identity and access management (IAM) telemetry logs 

authentication attempts, privilege escalations, token issuance, and role assignments, which are critical 

for detecting insider threats, lateral movement, and credential misuse. Additionally, cloud control plane 

logs from platforms like AWS CloudTrail and Azure Activity Logs capture administrative actions, API calls, 

and resource configuration changes, providing essential visibility into misconfigurations and privilege 

abuse in multi-tenant environments (Allioui & Mourdi, 2023). Studies emphasize that these telemetry 

modalities vary in structure (structured, semi-structured, or unstructured) and temporal granularity, 

requiring normalization into feature-rich event schemas for machine learning models. Integrating 

multimodal telemetry has been shown to significantly improve detection accuracy, as isolated event 

types often lack sufficient context to distinguish benign anomalies from malicious behaviors (Masip-

Bruin et al., 2021). Collectively, this diverse telemetry ecosystem provides the raw substrate for deep 

learning models to infer complex threat behaviors and estimate risk in real-time across large-scale 

enterprise infrastructures. 

Benchmark datasets have been instrumental in driving research on deep learning-based cybersecurity 

analytics, offering reproducible baselines for evaluating model performance, though their 

representativeness of real enterprise environments varies significantly. The KDD’99 dataset, derived from 

DARPA 1998 traffic traces, was one of the earliest widely used intrusion detection corpora, providing 

labeled normal and attack connections with 41 features (Amangeldy et al., 2025). However, it has 

been criticized for outdated attack types, redundant records, and unrealistic traffic patterns, prompting 

the creation of NSL-KDD, which removed duplicates and balanced class distributions to reduce bias. 

UNSW-NB15, generated using the IXIA PerfectStorm tool, contains modern attack categories and 

realistic background traffic, addressing limitations of earlier datasets (Alaghbari et al., 2022). Similarly, 

CICIDS2017 incorporates benign and malicious traffic with comprehensive flow features, while Bot-IoT 

provides labeled IoT botnet traffic across DDoS, scanning, and exfiltration scenarios. ToN_IoT extends this 

by including telemetry from IoT devices, network, and log sources, enabling cross-domain detection 

studies (Moustafa, 2021). UGR’16 offers large-scale backbone network flows labeled with temporal 

attack annotations for studying low base-rate attacks. Studies show that dataset choice significantly 

influences reported model accuracy due to varying feature spaces, traffic realism, and class balance 

(Alani, 2021). While these datasets support architectural benchmarking, they often lack the scale, 

diversity, and noise of real enterprise environments, which can lead to overly optimistic performance 

metrics. Researchers have emphasized combining multiple datasets or augmenting them with red-team 

generated traces to approximate real-world complexity. Consequently, while benchmark datasets are 

foundational to methodological progress, their limitations must be carefully accounted for when 

interpreting deep learning performance claims (Serpanos & Wolf, 2018). 
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Figure 5: Enterprise Cybersecurity Telemetry Data Pipeline 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Real-Time Enterprise Security Pipelines 

Real-time inference architectures are a cornerstone of deploying deep learning models for 

cybersecurity risk assessment in enterprise environments, as they must process high-volume, high-

velocity telemetry streams under stringent latency constraints. Modern pipelines are commonly built 

atop distributed stream processing frameworks such as Apache Storm and Apache Flink, which enable 

event-time processing, stateful operators, and low-latency fault-tolerant computation (Kang & Chung, 

2018). These frameworks are designed for horizontal scalability, allowing security systems to process 

millions of events per second while maintaining bounded end-to-end latencies. Within these pipelines, 

data preprocessing plays a crucial role, converting heterogeneous raw telemetry—such as EDR logs, 

NetFlow, DNS, and IAM events—into structured feature tensors consumable by deep learning models 

(Rodriguez-Conde et al., 2023). Studies emphasize the need for streaming feature engineering 

methods that compute rolling statistics, temporal aggregates, and embeddings on the fly without 

introducing latency bottlenecks. Ngo et al. (2025) highlight that feature services must operate at 

microsecond-to-millisecond timescales to meet production service-level agreements (SLAs). 

Architectural patterns often separate the ingest layer, feature service, model server, and decision 

engine into microservices, enabling independent scaling and fault isolation. This modular design is 

reinforced by container orchestration technologies such as Kubernetes, which manage resource 

allocation and auto-scaling based on incoming load (Karras et al., 2020). Empirical studies 

demonstrate that integrating GPUs or specialized inference accelerators into these architectures 

substantially reduces latency for deep neural models, particularly CNN and Transformer-based 

detection systems. Collectively, the literature positions real-time inference architectures as layered, 

streaming-first ecosystems that transform raw cyber telemetry into actionable risk scores at enterprise 

scale. 

The operational viability of deep learning-based cybersecurity risk assessment depends heavily on its 

seamless integration with Security Information and Event Management (SIEM) and Security 

Orchestration, Automation, and Response (SOAR) platforms, which serve as the central nervous system 

of enterprise security operations. SIEM systems aggregate, normalize, and correlate telemetry from 

diverse sources—such as EDR, network devices, IAM, and cloud infrastructure—into structured event 

streams suitable for risk modeling (Mshragi & Petri, 2025). SOAR platforms complement this by 

automating response workflows triggered by detection outputs, thereby orchestrating containment, 

remediation, and notification actions in real time. Studies have shown that embedding machine 

learning risk scoring modules within SIEM/SOAR pipelines enhances alert prioritization and reduces false 
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positives, enabling analysts to focus on high-risk incidents (Hamid & Singh, 2024). Architectural 

blueprints typically insert deep learning inference services between SIEM event correlation engines and 

SOAR playbooks, allowing probabilistic threat scores to dynamically drive response automation. 

Integration studies emphasize the importance of schema alignment—mapping model outputs such as 

tactic likelihoods or risk scores to standardized fields  used in SIEM dashboards (Karaman et al., 2023). 

MLOps practices underpin this integration: Sculley highlight the necessity of model versioning, 

continuous evaluation on shadow traffic, and drift-aware retraining pipelines to ensure stable 

performance within production SIEM/SOAR systems. Feedback loops that log analyst actions and 

outcomes for retraining have been shown to incrementally improve detection precision over time. This 

literature consistently underscores that SIEM/SOAR alignment operationalizes deep learning risk models, 

embedding them as continuous analytic services within enterprise detection-response ecosystems (Ijari 

& Paternina-Arboleda, 2024). 

Meeting real-time performance requirements in enterprise cybersecurity pipelines necessitates strict 

adherence to latency budgets and operational constraints that govern the end-to-end processing path 

from data ingestion to automated response. (Cao et al., 2024) emphasize that deep learning 

inference systems must deliver predictions within tight millisecond-level SLAs to support automated 

threat mitigation. Studies reveal that inference latency is influenced by multiple factors including model 

complexity, input batch size, hardware configuration, and feature preprocessing overhead. To reduce 

latency, practitioners employ micro-batching strategies, which group events into small batches for 

vectorized processing while maintaining low end-to-end delay. Quantization techniques that convert 

32-bit floating point model weights to lower precision (e.g., INT8) are widely used to accelerate deep 

neural network inference without substantial accuracy loss (Wang et al., 2025). Parallel serving 

architectures, where multiple model replicas run concurrently behind load balancers, further ensure 

consistent throughput during traffic surges. Studies demonstrated that optimizing model graph 

execution and using GPU acceleration can cut inference latency for Transformer-based log anomaly 

detectors by over 70%. Real-time systems must also incorporate backpressure mechanisms and 

autoscaling to prevent queue buildup during load spikes, as described (Wang et al., 2024). 

Operational studies note that exceeding latency budgets can disrupt SOAR playbooks, leading to 

delayed containment and increased dwell time for adversaries. Consequently, engineering deep 

learning models for operational cybersecurity requires treating latency as a primary design constraint 

equal to accuracy (Chen et al., 2020). 

 
Figure 6: Real-Time Deep Learning Cybersecurity Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Security and Privacy Considerations 

Research characterizes robustness risks to cybersecurity ML along three major threat classes: evasion at 

inference time, poisoning during training, and inference attacks that extract model or data properties. 

Evasion attacks perturb inputs to induce misclassification while remaining close to the data manifold; 

seminal work formalized gradient-based perturbations and optimization-driven attacks that reliably 
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reduce detector confidence (McCarthy et al., 2022). Systematizations in security settings 

documented that learned decision boundaries can be brittle under adaptive adversaries and that 

obfuscated gradients provide only an illusion of robustness. Poisoning modifies training distributions or 

labels to bias the learned classifier; studies quantified how small fractions of crafted samples shift 

boundaries or introduce backdoors that activate on specific triggers (Katzir & Elovici, 2018). Inference 

attacks target confidentiality: model extraction replicates decision surfaces via query synthesis, 

membership inference reveals whether particular records were used for training, and property inference 

leaks aggregate attributes. Empirical analyses in cyber telemetry (e.g., network flows, logs) report 

transferability of adversarial examples across models and feature sets, underscoring risk for deployed 

detectors (Aiyanyo et al., 2020). Defensive mechanisms appear in parallel strands: adversarial training 

minimizes worst-case loss within perturbation sets; certified defenses bound risk via randomized 

smoothing; input sanitization filters distributional outliers; and robust optimization frames detection under 

threat models aligned to operational constraints. Studies also examine gradient masking pitfalls, 

adaptive evaluation protocols, and cost-sensitive analyses relevant to SOC alert budgets. This corpus 

positions evasion, poisoning, and inference as concrete, empirically validated vectors that shape 

training data hygiene, model selection, and deployment hardening in enterprise cybersecurity contexts 

(Wang et al., 2023). 

Defensive literature converges on two complementary needs: improve worst-case robustness and 

quantify uncertainty to guide analyst escalation. Adversarial training consistently provides the strongest 

empirical robustness under ℓp-bounded attacks by optimizing a min–max objective (Hernández-Rivas 

et al., 2024), while certified defenses like randomized smoothing yield probabilistic robustness 

guarantees at scale. Additional techniques include input preprocessing and denoising (Nankya et al., 

2023), feature squeezing and JPEG compression to reduce high-frequency adversarial artifacts, and 

ensemble diversity to mitigate correlated failure modes (Dini et al., 2023). Yet robustness alone does 

not resolve operational triage; research in predictive uncertainty offers principled routing of ambiguous 

cases. Monte-Carlo dropout approximates Bayesian inference by treating dropout at test time as a 

variational distribution, enabling epistemic uncertainty estimates. Deep ensembles produce strong, 

well-calibrated uncertainty and out-of-distribution (OOD) signals via variance across independently 

trained models. Additional methods quantify aleatoric noise in inputs, calibrate predicted probabilities 

via temperature scaling, and detect distribution shift through confidence degradation and OOD 

scoring. 

 
Figure 7: Defense-in-Depth Cybersecurity Control Framework 
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Large-scale studies found that uncertainty quality degrades under dataset shift and improves with 

ensembling and proper calibration, with direct implications for alert thresholds and abstention policies 

in SOC workflows. Selective prediction frameworks formalize reject options that defer uncertain 

decisions to humans under budget constraints (Alharbi et al., 2021). In cyber analytics—where base 

rates are low and costs asymmetric—these tools align model confidence with escalation logic, 

connecting robustness methods to operator-centric metrics such as precision@budget and mean time 

to detect. 

Privacy-preserving ML addresses regulatory and organizational constraints that limit centralizing security 

telemetry, especially identity and cloud control-plane logs. Differential privacy (DP) provides formal 

bounds on information leakage from training datasets by injecting calibrated noise into gradients or 

outputs (Al-Shehari et al., 2024). DP-SGD implements per-example gradient clipping with Gaussian 

noise, enabling end-to-end training of deep networks under quantifiable privacy loss. Federated 

learning (FL) trains shared models across decentralized clients while keeping raw data local; secure 

aggregation and cryptographic protocols prevent the server from inspecting individual updates (Liu et 

al., 2024). Surveys synthesize advances and open problems in FL, including systems scalability, non-IID 

data, and personalization—factors pertinent to heterogeneous enterprise endpoints. Privacy attacks 

demonstrate practical risks: membership inference reveals training inclusion, property inference extracts 

sensitive aggregate attributes (Javed et al., 2024), and gradient leakage reconstructs private 

examples from updates. Empirical work shows that naive FL can leak via update dynamics, motivating 

DP at the client or server and secure aggregation by default. Complementary anonymization and 

minimization practices—hashing identifiers, truncating payloads, and limiting retention—align model 

inputs with legal frameworks such as GDPR while preserving utility for anomaly detection (Kim et al., 

2025). Audits of utility–privacy trade-offs report that moderate privacy budgets or partial DP fine-tuning 

retain useful detection accuracy in classification and sequence models. Collectively, DP, FL, and secure 

aggregation constitute a toolkit for training deep detectors on sensitive cyber telemetry under explicit 

leakage constraints, with attack literature clarifying residual risk and defense configurations (Anthi et 

al., 2021). 

Organizational Dimensions 

Cybersecurity analytics in enterprises operates within legal regimes that define boundaries for 

collection, processing, and retention of personal data, shaping every stage of risk assessment and 

model development. The General Data Protection Regulation (GDPR) codifies principles of lawfulness, 

fairness, transparency, purpose limitation, data minimization, accuracy, storage limitation, integrity, and 

accountability, which collectively constrain feature engineering and cross-system correlation in security 

monitoring (Hurel & Lobato, 2018). Guidance from ENISA emphasizes proportionality of monitoring, 

necessity assessments, and organizational accountability for controls and incident handling, including 

security of processing and breach notification timelines. Risk management standards such as NIST SP 

800-30 and ISO/IEC 27005 position privacy and security governance within enterprise risk frameworks, 

linking impact categories and likelihood modeling to documented controls and decision rights (Mishra 

et al., 2022). Operational research shows that heterogeneous telemetry—EDR, NetFlow, DNS/HTTP, IAM, 

and cloud control plane logs—requires normalization strategies that avoid unnecessary personal data 

while preserving forensic value, often through hashing identifiers, truncating payloads, and role-based 

access to raw events. Studies on data sharing and collaborative analytics document constraints on 

cross-border transfers and emphasize contractual and technical safeguards, including standard 

contractual clauses, pseudonymization, and localized processing (Kosseff, 2018). Privacy-preserving 

learning methods, such as differential privacy and federated learning, appear in governance 

playbooks to reconcile analytical utility with legal obligations under data minimization and data transfer 

rules. MLOps literature further embeds governance via dataset versioning, lineage, and audit trails that 

capture model, configuration, and data snapshots necessary for regulatory accountability. Empirical 

critiques of intrusion detection underscore the operational cost of excessive collection and false 

positives, reinforcing proportionality and necessity as practical governance levers. Together, these works 

describe a governance stack where legal principles, standards, and engineering practices cohere to 

bound cybersecurity analytics within compliant, auditable processes (Kianpour & Raza, 2024). 
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Figure 8: Legal Frameworks for Cybersecurity Analytics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scholarly analyses of algorithmic risk in security settings describe fairness as the absence of systematic 

error disparities across groups or contexts, and accountability as the ability to trace, justify, and audit 

model-driven decisions (Shandilya et al., 2024). In enterprise cybersecurity, bias may arise from proxy 

features correlated with geography, shift patterns, or job roles, producing disparate alerting burdens or 

escalation rates. Documentation frameworks such as model cards and dataset statements promote 

transparency about intended use, data provenance, evaluation metrics, and known limitations, 

enabling stakeholders to interrogate the conditions under which a detector performs reliably. Fairness 

measurement literature proposes subgroup analyses, stratified PR/AUC reporting, and calibration 

assessments to detect and quantify disparities, including reliability diagrams and expected calibration 

error that reveal misalignment between predicted probabilities and observed event frequencies 

(Wylde et al., 2022). Explain ability methods—LIME, SHAP, and gradient-based attributions—support 

accountability by surfacing feature contributions for individual alerts and by enabling aggregate audits 

of model behavior across populations. Studies caution that explanation artifacts can be unstable or 

insensitive without sanity checks and counterfactual evaluations, which are necessary to avoid 

misleading narratives in high-stakes SOC decisions (Azmi et al., 2018). Governance research links 

fairness controls to access policies and labeling workflows, noting that skewed or low-quality labels from 

historic rule systems propagate inequities into supervised models. Security-specific standards and 

taxonomies offer a scaffold for accountable interpretation by mapping alerts to ATT&CK techniques 

and CVSS-style impact semantics, aligning model outputs with shared operational language (Srinivas 

et al., 2019). Collectively, this literature characterizes fairness and accountability as operational 

properties requiring measurement protocols, documentation, explanations, and audited data practices 

in concert. 

Fragmentation in the Literature 

The literature exhibits fragmentation across data domains, modeling paradigms, and operational 

targets, which complicates cumulative progress in real-time cybersecurity risk assessment. Network-

centric intrusion detection studies prioritize flow or packet features and report results on long-standing 

corpora, often emphasizing discriminative accuracy without alignment to enterprise triage economics 

(Guérineau et al., 2022). Log-centric work focuses on sequential models over authentication or system 

events, frequently adopting different preprocessing conventions and objective functions than flow-

based studies. Graph-based research models host–user–process relations, introducing yet another 

representational layer and bespoke metrics. Heterogeneity extends to labels and taxonomies: some 

studies use attack families, others use ATT&CK techniques, and others rely on anomaly/normal 

dichotomies, limiting comparability (Castro-Medina et al., 2020). Data handling practices also 
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diverge: static train/test splits coexist with temporal or prequential protocols, and leakage controls vary, 

producing inconsistent claims of generalization. Reported metrics oscillate between accuracy, AUC, 

and F1, with occasional calibration or cost-sensitive indicators, while SOC-relevant measures such as 

precision at alert budget and mean time to detect appear sporadically (Schreiber et al., 2023). 

Differences in streaming infrastructure and latency budgets further segment findings, as Storm/Flink 

pipelines and micro batch systems impose distinct constraints on feature services and model servers. 

Privacy and governance choices—e.g., data minimization and cross-border handling—introduce 

additional domain-specific methods such as federated or differentially private learning that are rarely 

evaluated alongside centralized baselines. These divergences compound, yielding a landscape where 

architecture-specific advances, dataset idiosyncrasies, and pipeline assumptions inhibit synthesis across 

studies (Bruneliere et al., 2019). 

Benchmark corpora underpin much of the evidence base, yet many datasets diverge from enterprise 

reality in traffic composition, attacker sophistication, and annotation fidelity. KDD’99 and NSL-KDD 

remain common for comparability, but they exhibit artifacts such as redundant records, outdated 

attack mixes, and simplified feature spaces that inflate performance (Rejeb et al., 2024). Newer 

resources—UNSW-NB15, CICIDS2017, Bot-IoT, ToN_IoT, and UGR’16—introduce richer features and more 

modern scenarios, but they still rely on staged attacks, synthetic backgrounds, or limited enterprise 

diversity (Meyers et al., 2021). Label provenance varies: rule-based heuristics, sandbox verdicts, or red-

team traces provide supervision with unknown false-negative rates, while benign traffic is often assumed 

rather than verified, biasing class priors. Temporal structure is frequently collapsed by random shuffles, 

hindering drift-aware evaluation. Imbalance ratios differ markedly from operational settings, where 

malicious prevalence is extremely low; resampling and focal losses improve internal metrics but may not 

reflect SOC alert budgets (Thayyib et al., 2023). Heterogeneous modalities—EDR, IAM, DNS/HTTP, and 

cloud control-plane logs—are underrepresented relative to flow datasets, limiting multimodal fusion 

studies. Privacy and governance constraints reduce availability of realistic enterprise corpora, 

reinforcing reliance on proxies and limiting external validity. Cross-dataset tests frequently reveal sharp 

generalization drops, indicating overfitting to dataset quirks rather than robust behavioral signals 

(Dominguez et al., 2023). As a result, claims about deep models’ effectiveness rest on benchmarks 

whose realism and labels embed uncertainties that propagate into reported accuracies. 

Evaluation practices rarely converge on standardized, real-time protocols that mirror streaming 

constraints and SOC decision economics. Many studies compute offline metrics—accuracy, AUC, 

precision, recall, F1—on static splits, which obscures latency, throughput, and backpressure constraints 

that govern production viability (Muñoz-La Rivera et al., 2021). Few experiments report prequential 

evaluation, delayed labels, or temporal cross-validation that capture distribution shift and label arrival 

dynamics. Calibration, essential for thresholding risk scores in runbooks, is inconsistently measured, with 

limited use of reliability diagrams or expected calibration error (Abid et al., 2025). Operational 

indicators—precision at fixed alert budgets, mean time to detect/respond, analyst-hours per true 

incident, and false positive rates under rate limits—appear sporadically despite their centrality to SOC 

workload. Reporting of latency budgets and serving envelopes is inconsistent; batch sizes, quantization, 

and accelerator use strongly shape inference delay but are often omitted (Hu et al., 2023). Drift 

monitors and failure modes are seldom stress-tested with explicit shift scenarios or adversarial 

contamination, even though streaming settings face evolving baselines and adaptive threats (Zhang 

et al., 2025). Documentation artifacts—dataset cards, model cards, and data/metric lineage—are 

unevenly applied, reducing auditability and comparability. The aggregate effect is a patchwork of 

offline scores that under-specify real-time behavior, limiting meaningful comparisons across 

architectures, datasets, and pipeline designs. 

Published evidence from longitudinal, production-scale deployments remains sparse relative to the 

volume of laboratory studies, creating uncertainty about durability, cost, and organizational fit of deep 

learning detectors in enterprises. Case-based reports describe promising improvements but often lack 

controlled baselines, standardized metrics, or ablation analyses that attribute gains to specific 

components (Fanti et al., 2022). Production environments operate under strict governance—privacy, 

data minimization, and cross-border transfer rules—that shape telemetry availability and model choice 

but are rarely quantified in performance reports. Streaming infrastructure, feature services, and serving 

stacks impose latency budgets and throughput targets that influence architecture selection and 

hardware allocation, yet reproducible descriptions of these envelopes are limited (Langley et al., 

2021). Empirical accounts of drift management, retraining cadence, and rollback/canary practices 

appear in mops literature but are infrequently tied to concrete SOC outcomes such as precision at fixed 
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alert budgets or mean time to detect. Studies documenting cross-org or cross-region generalization 

remain uncommon, even though base rates, software stacks, and work patterns vary markedly across 

sites (Sepasgozar, 2021). Reports that integrate ATT&CK mappings, CVSS impact semantics, and 

SIEM/SOAR workflows help situate predictions within operational narratives, but they represent a subset 

of the literature. Hardware, quantization, and accelerator details—which materially affect cost and 

responsiveness—are frequently under-specified. Consequently, the public record contains limited 

production-grade evidence linking deep learning designs to sustained SOC performance under 

regulatory and organizational constraints (Schöbel et al., 2024). 

 
Figure 9: Fragmentation in Cybersecurity Risk Literature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

METHOD 

This study systematically explored the literature on AI-powered deep learning models for real-time 

cybersecurity risk assessment in enterprise IT systems by following the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The PRISMA framework ensured that the 

review process was transparent, structured, and rigorous at every stage, from search strategy to 

synthesis. The process began with a comprehensive search across multiple academic databases using 

a combination of controlled vocabulary and keyword terms associated with deep learning, real-time 

inference, cybersecurity risk assessment, and enterprise IT environments. After removing duplicates, the 

titles and abstracts of more than two thousand retrieved studies were screened for relevance. Those 

that addressed deep learning models without any emphasis on real-time operational contexts or 

enterprise IT risk scoring were excluded. The remaining studies underwent full-text review, and only those 

meeting predefined inclusion criteria—empirical evidence, architectural proposals, benchmark 

evaluations, or systematic analyses related to the intersection of deep learning and real-time 

cybersecurity risk assessment—were retained.The final set of eligible studies highlighted several 

dominant technical approaches. Convolutional neural networks were widely used for network flow and 

packet analysis, where their spatial feature extraction capabilities made them suitable for detecting 

malicious patterns hidden within traffic streams. Recurrent neural networks and long short-term memory 

architectures appeared frequently in research focusing on system logs, authentication events, and 

sequential security telemetry, where capturing temporal dependencies was crucial to identifying 

anomalies such as lateral movement or privilege abuse. Transformer-based architectures were 

increasingly adopted in studies involving large-scale logs, DNS records, and HTTP data because their 

self-attention mechanisms allowed modeling of long-range dependencies with higher accuracy. 

Graph neural networks emerged as a distinct approach in work modeling host–user–process 

relationships, representing enterprise IT environments as graphs to reveal complex multi-stage attack 
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chains. These architectural patterns were often combined into hybrid systems that fused anomaly 

detection with supervised classification, further illustrating the diversity of modeling strategies within the 

literature.  
Figure 10: Adapted methodology for this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The PRISMA-guided review also showed that real-time operational integration was a central focus across 

many studies. These pipelines often used layered architectures with ingestion modules, feature services, 

model servers, and decision engines orchestrated as microservices to ensure scalability and fault 

isolation. Integration into Security Information and Event Management (SIEM) and Security 

Orchestration, Automation, and Response (SOAR) platforms was a recurring theme, where model-

generated risk scores and threat probabilities triggered automated playbooks or analyst escalations. 

Studies also documented the necessity of strict latency budgets, parallel serving, quantization, and 

hardware acceleration to maintain throughput while meeting real-time service level 

agreements.Despite these innovations, the review found substantial heterogeneity in datasets, 

evaluation practices, and deployment evidence. Some studies used legacy datasets with outdated 

attacks and redundant records, while others used newer corpora with synthetic traffic and staged 

attack scenarios, often lacking the complexity and noise of operational enterprise environments. 

Evaluation metrics were inconsistent, with most studies reporting accuracy or AUC while neglecting 

operational indicators such as precision under alert budget constraints, mean time to detect, or system 

latency. Few studies described longitudinal deployments or addressed concept drift, domain shift, and 

governance constraints such as data minimization and cross-border data handling. By consolidating 

this scattered evidence base, the PRISMA process revealed both the technical maturity and the 

methodological gaps within the field, providing a structured synthesis of how deep learning has been 

positioned as the analytical engine of real-time cybersecurity risk assessment in enterprise IT systems. 

FINDINGS 

Among the 142 articles retained through the systematic PRISMA screening, 87 focused directly on the 

design, training, and evaluation of deep learning architectures for enterprise cybersecurity risk 

assessment. Within this subset, the most frequently examined models were convolutional neural 

networks, recurrent neural networks, long short-term memory networks, transformer-based attention 

models, and graph neural networks. Collectively, these 87 articles had accumulated over 6,400 

citations, reflecting their high influence and visibility within the research community. The findings across 

these studies demonstrated that deep learning models consistently outperformed traditional rule-based 
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systems and classical machine learning methods in detecting complex and previously unseen threats 

in enterprise telemetry. CNNs showed marked strength in classifying network flows and packet captures, 

with multiple studies reporting detection accuracy increases of 10–25% over baseline models. RNNs and 

LSTMs were found to be especially effective on sequential security logs, including authentication and 

process creation data, where their ability to capture temporal dependencies produced clear gains in 

anomaly detection sensitivity. Transformer-based architectures emerged in 19 of the reviewed studies, 

and these achieved state-of-the-art results in modeling large-scale log and DNS telemetry by capturing 

long-range dependencies that RNNs struggled to handle. GNN-based approaches were present in 14 

articles, and these showed unique strengths in modeling host–user–process relationships and lateral 

movement patterns across enterprise systems. The combined evidence strongly indicates that deep 

learning architectures enable more nuanced behavioral modeling than legacy approaches, especially 

when large volumes of heterogeneous security data must be analyzed in real time. The sheer volume 

of citations attributed to these architectural studies also underscores the central role of deep learning 

as the current technical foundation of risk assessment research, demonstrating widespread 

acceptance and replication of their reported findings.  

A second major finding was that real-time operational integration has become a core concern of the 

field. Of the 142 included studies, 61 explicitly addressed system architectures and infrastructural 

approaches for deploying deep learning models under real-time constraints. These 61 articles together 

accounted for over 3,900 citations, indicating a rapidly growing scholarly interest in production-grade 

integration. The studies described how models are embedded within distributed streaming frameworks 

capable of handling millions of events per second while sustaining sub-second end-to-end latency. 

Architectural blueprints consistently featured layered pipelines with data ingestion services, feature 

engineering modules, model inference servers, and decision engines orchestrated as microservices. 

Studies highlighted how these pipelines incorporated GPU acceleration, quantized model weights, and 

parallel serving replicas to meet strict service level agreements. Integration into existing enterprise 

security operations environments was another recurring theme, with 48 studies specifically describing 

how deep learning risk scores were routed into Security Information and Event Management platforms 

for correlation and visualization. 
 

Figure 11: Influence Trends in AI Cybersecurity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another 22 studies detailed deployments where these scores directly triggered Security Orchestration, 

Automation, and Response playbooks for automated containment, quarantine, or analyst escalation. 

Several articles reported measurable reductions in mean time to detect and mean time to respond 

when deep models were operationalized in this way. The consistent emphasis on throughput, latency 

budgets, load balancing, and system observability across these studies reflects a clear recognition that 

model accuracy alone is insufficient without reliable, low-latency serving pipelines. The number of 

citations received by these deployment-focused works confirms that real-time integration is now 
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considered an indispensable dimension of risk assessment research, signaling a maturing shift from 

laboratory proof-of-concept studies toward operational cybersecurity environments. 

The review also revealed significant patterns regarding datasets and evaluation practices, which were 

analyzed across 79 of the included studies, collectively cited more than 5,100 times. These articles 

documented widespread reliance on a small set of benchmark datasets—such as NSL-KDD, UNSW-

NB15, CICIDS2017, Bot-IoT, Tomtit, and UGR’16—while simultaneously acknowledging their limitations. 

Multiple studies noted that these datasets often contain staged or synthetic traffic, outdated attack 

types, and artificially balanced class distributions, which can inflate performance metrics compared to 

real operational environments. Only 18 of the 79 studies incorporated enterprise-origin telemetry with 

authentic noise, incomplete labels, or naturally occurring class imbalance. Furthermore, evaluation 

metrics showed substantial inconsistency. Nearly all of the 79 studies reported accuracy, precision, 

recall, F1, or AUC, while only 11 studies included operational indicators such as precision under fixed 

alert budgets, mean time to detect, or system latency. Calibration metrics, such as expected calibration 

error, were reported in just 6 studies. This imbalance of evaluation criteria highlights how much of the 

current evidence base prioritizes statistical classification performance over operational utility. The 

dataset-focused articles also reported large performance drops when models trained on one dataset 

were tested on another, underscoring generalization challenges caused by domain shift. This cross-

dataset decline appeared in 23 studies, several of which measured up to 30% accuracy loss under 

domain transfer. Collectively, the large citation counts of these works demonstrate that their findings 

are widely acknowledged, and they reveal a critical bottleneck: the field lacks standardized, realistic, 

and diverse datasets as well as consistent evaluation protocols that reflect enterprise security 

operations. These issues reduce the interpretability and comparability of reported model performance 

across studies. 

Another prominent finding was the increasing recognition of robustness, privacy, and human-in-the-

loop considerations, documented in 54 studies with a combined citation count exceeding 4,200. These 

articles analyzed how deep models in enterprise cybersecurity risk assessment are vulnerable to 

adversarial machine learning threats, including evasion, poisoning, and model extraction attacks. 

Twenty-one studies demonstrated that even minor perturbations to inputs could cause deep intrusion 

detection models to misclassify threats as benign, while 15 studies explored how poisoned training data 

could embed backdoors or degrade overall accuracy. Alongside these vulnerabilities, privacy 

constraints were identified as major barriers to real-world deployment, especially in environments 

governed by data minimization principles and cross-border data transfer regulations. Twenty-four 

studies explored privacy-preserving learning techniques such as federated learning and differential 

privacy to enable collaborative model training without centralized data pooling. Human factors were 

also emphasized, with 19 studies describing uncertainty estimation techniques that route low-

confidence alerts to analysts while automating responses to high-confidence detections. These 

approaches used deep ensembles, Bayesian dropout, or abstention thresholds to align model behavior 

with human decision-making workflows. Several articles showed that human feedback captured 

through SOC analyst interactions can be looped back to retrain and recalibrate models, progressively 

improving accuracy and reducing false positives. Collectively, these highly cited studies indicate that 

robustness, privacy, and human oversight are now understood as core dimensions of trustworthy risk 

assessment systems, not optional add-ons. The large number of citations confirms their relevance, 

showing that the field increasingly views these dimensions as operational prerequisites for safe and 

responsible deployment of deep learning in enterprise cybersecurity. 

Finally, the review identified pervasive evidence gaps and fragmentation, discussed in 49 of the 

analyzed studies which together had accumulated over 3,300 citations. These works highlighted that 

research in this field remains scattered across domains, data types, and objectives, which has hindered 

the formation of cumulative knowledge. Many network-centric studies emphasize packet or flow 

analysis but rarely evaluate log-based or identity telemetry, while log-focused studies often neglect 

network and cloud control-plane data. Different studies define and label threats inconsistently, using 

categories such as attack families, anomaly/normal dichotomies, or ATT&CK tactics, which makes results 

difficult to compare. The review also noted that fewer than 12 studies reported on long-term production-

scale deployments, meaning most findings remain validated only in controlled laboratory conditions. 

Reporting of operational metrics, latency budgets, infrastructure costs, and analyst workload impact 

was sparse, with fewer than 10 studies providing quantitative evidence in these areas. Additionally, very 

few studies addressed the effects of concept drift, data governance restrictions, or multi-region 

organizational heterogeneity on model performance, even though these factors dominate enterprise 

environments. The combination of limited deployment evidence, inconsistent evaluation methods, and 

highly siloed data domains means that the current literature provides only partial insight into how deep 
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learning performs as a real-time risk assessment tool at scale. The fact that these 49 studies have 

collectively been cited over 3,300 times underscores that their critiques and gap analyses are widely 

acknowledged, yet the same citation patterns also show that most empirical work continues to operate 

within fragmented, narrow scopes. This evidence gap remains one of the most significant findings to 

emerge from the review, as it frames the limitations that shape the reliability and operational 

applicability of existing research on AI-driven cybersecurity risk assessment in enterprise IT systems. 

DISCUSSION 

The findings of this review indicate that deep learning architectures have significantly advanced the 

technical capabilities of enterprise cybersecurity risk assessment by outperforming traditional detection 

and rule-based systems, a conclusion that aligns with yet also expands upon earlier studies. Classical 

approaches such as signature-based intrusion detection and statistical anomaly detection historically 

relied on manually crafted features and rule sets, which struggled to detect novel or obfuscated attacks 

(Alzubaidi et al., 2021). Earlier machine learning-based frameworks, including decision trees, support 

vector machines, and random forests, offered modest improvements but remained constrained by their 

dependence on feature engineering and their limited scalability in high-dimensional data. In contrast 

(Shrestha & Mahmood, 2019), this review synthesized evidence from over 80 studies showing that 

convolutional neural networks (CNNs) achieved notable gains by autonomously learning hierarchical 

feature representations from raw network flows and packet data, improving detection accuracy and 

reducing false positives compared to conventional baselines. Similarly, long short-term memory (LSTM) 

models consistently outperformed older statistical temporal models such as hidden Markov models in 

log and authentication data by capturing long-range dependencies (Alom et al., 2019). Transformers, 

which were not examined in older cybersecurity research, emerged in newer studies as especially 

effective for large-scale log and DNS analysis due to their self-attention mechanisms. Graph neural 

networks (GNNs) also offered a leap beyond earlier relational mining techniques by modeling host–

user–process graphs with message passing, surpassing traditional graph mining and clustering methods 

(Alom et al., 2019). Compared with earlier literature, the reviewed evidence shows that deep learning 

not only improves accuracy but also enhances adaptability across diverse telemetry types, marking a 

paradigm shift from manual-feature models to end-to-end representation learning in real-time 

enterprise cybersecurity. 

Another major advancement identified in the findings was the operational integration of deep learning 

models into real-time enterprise security pipelines, which represents a substantial departure from the 

batch-oriented approaches that dominated earlier literature. Earlier studies primarily trained and 

evaluated intrusion detection systems in offline or batch environments, where models processed stored 

data and returned results without strict latency constraints (Taye, 2023b). This approach limited their 

applicability in security operations centers (SOCs) that require streaming analytics capable of detecting 

and responding to threats as they occur. By contrast, the reviewed studies demonstrated the 

emergence of distributed streaming architectures using frameworks such as Apache Storm and Apache 

Flink to serve deep learning models with sub-second inference latency. These newer studies emphasized 

layered microservices architectures, GPU acceleration, model quantization, and parallel serving—

technical strategies rarely documented in older research but now central to meeting enterprise service 

level agreements (Khan et al., 2020). Integration with Security Information and Event Management 

(SIEM) and Security Orchestration, Automation, and Response (SOAR) systems has also transformed the 

operational role of these models: earlier studies often ended at classification accuracy, while newer 

ones showed how model outputs trigger automated containment workflows or analyst escalations 

(Yadav & Vishwakarma, 2020). This contrasts sharply with earlier batch-model paradigms, which 

treated machine learning as a post-hoc analytic tool rather than a live decision-making component 

within operational pipelines. The reviewed evidence thus reveals a clear evolutionary shift from static 

(Dargan et al., 2020), after-the-fact analysis toward embedded, real-time detection-and-response 

systems driven by deep learning models, addressing operational gaps that earlier approaches could 

not overcome. 

The findings on datasets and evaluation methodologies also diverge from earlier practices by exposing 

systematic issues of realism and comparability that were largely overlooked in prior research. Older 

literature in intrusion detection frequently relied on the KDD’99 dataset, which although foundational, 

was later criticized for redundancy, outdated attack types, and unrealistic traffic characteristics (Min 

et al., 2018). The review shows that while many contemporary studies have shifted to newer datasets 

such as UNSW-NB15, CICIDS2017, Bot-IoT, and Tomtit, these too inherit limitations of synthetic traffic, 

staged attacks, and balanced class distributions, similar to the problems of their predecessors 
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(Chauhan & Singh, 2018). Earlier works rarely questioned the external validity of results, whereas the 

newer body of evidence documented substantial performance degradation—up to 30% accuracy 

loss—when models trained on one dataset were evaluated on another, revealing domain shift and 

overfitting to dataset artifacts (Ahmed et al., 2023). Furthermore, older studies almost exclusively 

reported accuracy or AUC without operational metrics, while newer studies have begun emphasizing 

additional measures such as precision under alert budgets, mean time to detect, and inference latency 

(Khan & Yairi, 2018). However, this review found that such operational metrics remain rare, appearing 

in only a small subset of articles. Compared to earlier literature that uncritically accepted benchmark 

metrics, current findings highlight a more critical recognition that statistical accuracy alone is insufficient 

for enterprise deployment. This shift represents growing methodological maturity but also underscores 

an ongoing gap: despite modest progress, the field still lacks standardized, realistic datasets and real-

time evaluation protocols, a concern largely absents in older studies but now prominently documented. 
 

Figure 12: Key Findings in Enterprise Cybersecurity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This review also revealed that robustness concerns—particularly adversarial machine learning threats—

have become a central topic in the recent literature, contrasting sharply with their near absence in 

earlier cybersecurity detection studies. Older research generally assumed stationarity of data and 

trustworthiness of training corpora, focusing solely on accuracy under benign conditions (Saleem et 

al., 2021). In contrast, over 20 of the reviewed studies empirically demonstrated evasion attacks, 

showing that small perturbations could cause deep models to misclassify malicious traffic as benign, 

while another 15 studies examined poisoning attacks that inserted backdoors or degraded detection 

performance. These works align with advances in the broader machine learning literature showing deep 

networks’ vulnerability to adversarial examples (Kamilaris & Prenafeta-Boldú, 2018), a topic that older 

cybersecurity studies never addressed. The reviewed literature also presented countermeasures such as 

adversarial training, input sanitization, and randomized smoothing—defenses not found in earlier 

intrusion detection systems. This represents a methodological shift from older assumptions of clean, static 

data toward an adversarial risk perspective that considers adaptive threat actors. Furthermore, 

uncertainty estimation and human-in-the-loop escalation mechanisms emerged in several newer 

studies (Nash et al., 2018), using Bayesian dropout and deep ensembles to defer low-confidence cases 

to analysts. Earlier systems generally operated as black-box classifiers without confidence calibration or 

analyst feedback loops. The contrast highlights how the field has moved from purely accuracy-oriented 

designs to architectures explicitly engineered for robustness, trustworthiness, and operational 

resilience—dimensions that earlier research did not incorporate or evaluate (Ismail Fawaz et al., 2019). 

This development indicates a maturation of risk assessment models from experimental classifiers toward 

dependable components of enterprise security operations. 
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Privacy-preserving model development has also emerged as a prominent dimension in the recent 

literature, which was largely absent from earlier studies that assumed unconstrained centralized data 

access. Older works rarely discussed privacy or legal constraints when using network or log data, 

reflecting an era when regulatory frameworks such as GDPR were not yet enforced (Da’u & Salim, 

2020). In contrast, over 20 of the studies in this review explicitly applied federated learning, secure 

aggregation, or differential privacy to train deep models across distributed enterprise data sources while 

minimizing personal data exposure (Suganyadevi et al., 2022). These approaches allow security 

models to learn from data distributed across different business units or geographic regions without 

directly transferring raw data, addressing legal restrictions on cross-border data movement and data 

minimization principles (Zhang et al., 2021). Earlier centralized training methods could not be deployed 

under such constraints. Additionally, newer studies incorporated dataset versioning, lineage tracking, 

and model cards to document compliance, whereas such governance practices were not reported in 

older literature. This contrast shows a paradigm shift: while earlier models prioritized technical feasibility 

alone, the current evidence base integrates privacy and governance as first-class operational 

constraints. This development reflects how the field has adapted to the legal and organizational realities 

of enterprise IT (Huang et al., 2020), something largely ignored in prior research. The incorporation of 

privacy-preserving learning not only broadens the applicability of deep models but also ensures their 

legitimacy under modern compliance regimes, marking a major departure from the assumptions 

underlying older studies. 

Another key difference between the current findings and earlier research is the growing incorporation 

of human-in-the-loop designs, in sharp contrast to the fully automated paradigms that characterized 

prior studies. Older intrusion detection and machine learning systems typically assumed that models 

would operate independently, aiming for maximum automation and minimal human involvement 

(Caldera et al., 2018). However, this review found that over 15 recent studies embedded feedback 

loops where analyst responses to alerts were logged and used to retrain and recalibrate models, 

gradually improving precision and reducing false positives. Uncertainty estimation techniques, such as 

deep ensembles and Monte Carlo dropout, were applied in 12 studies to identify low-confidence 

predictions and route them to human analysts while automatically actioning high-confidence 

detections (Singh et al., 2020). This design approach differs from earlier systems that made binary 

predictions without any measure of confidence or selective abstention. Additionally, explain ability 

methods like SHAP, LIME, and ATT&CK mapping were integrated in many of the newer models to provide 

analysts with interpretable evidence for model decisions, whereas older systems offered little 

transparency (Sreenu & Durai, 2019). These developments align cybersecurity risk assessment with 

principles of human–AI collaboration rather than full automation. The comparison reveals a conceptual 

shift: older systems treated analysts as external evaluators of model outputs, while newer systems embed 

analysts as active participants whose feedback directly influences model behavior. This change 

represents an important step toward operationalizing deep learning within the sociotechnical realities 

of enterprise security operations, bridging the gap between algorithmic output and human decision-

making in ways that earlier literature did not attempt (Cao et al., 2018). 

Finally, the review’s identification of fragmentation and limited production-scale deployment evidence 

contrasts with the uncritical optimism of earlier literature. Prior research often presented new algorithms 

with high benchmark accuracy while providing little information on operational costs, infrastructure 

constraints, or long-term stability (Law et al., 2019). This review found that fewer than a dozen studies 

reported longitudinal enterprise deployments, and fewer than ten measured real-world metrics such as 

latency, analyst workload, or incident response speed. This scarcity of deployment evidence echoes 

critiques from earlier meta-analyses that warned of evaluation–deployment gaps but were not widely 

heeded (Christopher et al., 2018). Furthermore, the review found sharp silos between network-based, 

log-based, and graph-based research streams, with little cross-domain integration, whereas earlier 

literature often assumed that findings from one data type would generalize to others. The current 

findings show that such assumptions are unfounded, as models trained on one telemetry type or dataset 

often fail under domain shift (Batmaz et al., 2019). This recognition of fragmentation and generalization 

failure represents a departure from earlier narratives, which emphasized algorithmic novelty over 

operational realism. In short, while older studies claimed rapid progress based on isolated benchmarks, 

the current evidence base exposes how heterogeneous data domains, inconsistent labeling practices, 

and absent deployment evaluations limit the reliability of reported performance (Stetco et al., 2019). 

This critical stance distinguishes the present findings from earlier work by explicitly foregrounding the 

structural and methodological barriers that continue to impede operational adoption of deep learning 
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for real-time enterprise cybersecurity risk assessment. 

 

CONCLUSION 

AI-Powered Deep Learning Models for Real-Time Cybersecurity Risk Assessment in Enterprise IT Systems 

represent a transformative advancement in how organizations defend complex digital infrastructures, 

integrating high-capacity learning architectures with real-time operational pipelines to detect, prioritize, 

and respond to emerging cyber threats at enterprise scale. Deep learning models such as convolutional 

neural networks, recurrent and long short-term memory networks, transformer-based attention 

mechanisms, and graph neural networks have demonstrated the ability to model diverse and high-

dimensional telemetry including network flows, DNS/HTTP traffic, authentication logs, endpoint 

detection data, and host–user–process relationships, enabling the identification of subtle attack 

patterns and previously unseen threats that traditional signature-based and rule-driven systems 

frequently miss. These architectures have been deployed within distributed streaming frameworks 

capable of processing millions of security events per second, leveraging GPU acceleration, model 

quantization, and parallel serving to meet strict latency service level agreements while producing 

calibrated risk scores suitable for immediate action. Integration into Security Information and Event 

Management and Security Orchestration, Automation, and Response environments allows these risk 

scores to drive automated containment, quarantine, and escalation workflows, reducing mean time to 

detect and mean time to respond while minimizing analyst fatigue through prioritized alerting. However, 

the literature also reveals persistent challenges including heavy reliance on synthetic benchmark 

datasets with limited realism, inconsistent evaluation methodologies that favor accuracy and AUC over 

operational metrics like latency and precision under alert budgets, and a scarcity of longitudinal 

deployment studies demonstrating resilience under concept drift, data governance constraints, and 

cross-domain generalization pressures. Recent studies have begun addressing these gaps through 

federated learning, differential privacy, adversarial robustness techniques, uncertainty estimation for 

human-in-the-loop escalation, and explain ability tools such as SHAP, LIME, and ATT&CK-based 

mappings, which collectively enhance trust, transparency, and compliance alignment. Altogether, this 

body of work positions deep learning as the analytical core of next-generation enterprise cybersecurity 

risk assessment, while also highlighting the methodological, infrastructural, and governance conditions 

that determine whether these models can achieve sustained and reliable operational performance in 

real-time environments. 

RECOMMENDATIONS 

Based on the synthesis of current evidence on AI-powered deep learning models for real-time 

cybersecurity risk assessment in enterprise IT systems, several strategic recommendations can enhance 

both research and operational deployment. First, organizations and researchers should prioritize the 

development and use of more realistic, heterogeneous, and longitudinal datasets that reflect actual 

enterprise environments, including authentic noise, incomplete labels, natural class imbalance, and 

multimodal telemetry from endpoint, network, identity, and cloud sources. Reliance on synthetic or 

overly balanced datasets should be reduced, as they often inflate performance and hinder 

generalization. Second, evaluation protocols should extend beyond accuracy and AUC to incorporate 

operational metrics such as precision under fixed alert budgets, mean time to detect and respond, 

system latency, throughput, and analyst workload impact. Establishing standardized real-time 

benchmarking frameworks and reporting guidelines will make results more comparable and actionable 

across studies. Third, operational deployments should embed robust Mops practices, including 

continuous monitoring for concept drift, versioned dataset and model lineage tracking, automated 

retraining pipelines, and rollback mechanisms to ensure sustained performance under evolving threat 

landscapes. Fourth, organizations should implement privacy-preserving methods such as federated 

learning and differential privacy to enable collaborative model training while complying with data 

minimization and cross-border transfer restrictions. Fifth, systems should be designed with human-in-the-

loop workflows, incorporating uncertainty estimation, selective abstention, and explain ability tools like 

SHAP, LIME, and ATT&CK mappings to support analyst decision-making and improve trust. Finally, future 

development should explicitly integrate adversarial robustness techniques—such as adversarial training, 

input sanitization, and ensemble diversity—to withstand evasion and poisoning attacks in operational 

settings. These recommendations collectively aim to improve the realism, reliability, resilience, and 

accountability of deep learning models deployed for real-time cybersecurity risk assessment in 

enterprise IT infrastructures. 
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