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Abstract

This study presents a systematic review of the rapidly growing body of research on Al-powered deep
learning models for real-time cybersecurity risk assessment in enterprise IT systems, a domain where
accurate and timely risk estimation has become critical for safeguarding large-scale digital
infrastructures. Following the Preferred Reporting ltems for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines, an initial pool of 2,347 scholarly articles published between 2010 and 2024 was
identified across major scientific databases, of which 142 met the inclusion criteria after rigorous multi-
phase screening for relevance, methodological quality, and direct alignment with the study’s scope.
These selected studies collectively demonstrate how deep learning architectures—particularly
convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM)
networks, fransformer-based attention models, and graph neural networks (GNNs)—have advanced
the analytical capacity to process high-dimensional, heterogeneous security telemetry including
network flows, authentication logs, endpoint detection and response (EDR) events, DNS/HTIP traffic,
and host-user—process relationships. The review found that these models consistently outperform
fraditional signature-based and statistical machine learning techniques in detecting complex, low-
signal threats, while supporting continuous risk scoring in real-time environments. A major thematic
pattern across the 142 reviewed studies was the operational embedding of these models within
distributed stfreaming frameworks, where they achieve sub-second inference latency and infegrate with
Security Information and Event Management (SIEM) and Security Orchestration, Automation, and
Response (SOAR) systems to drive automated incident response workflows. However, the synthesis also
revealed persistent challenges, including heavy reliance on synthetic or staged datasets with limited
realism, fragmented evaluation practices emphasizing accuracy over operational metrics, and scarce
evidence from longitudinal, production-scale deployments. Overall, this review consolidates the state
of knowledge from 142 studies to provide a structured, evidence-based understanding of how deep
learning has become the analytical core of real-fime enterprise cybersecurity risk assessment, while also
identifying methodological and infrastructural gaps that shape the reliability of current approaches.

Keywords
Deep Learning, Cybersecurity, Risk Assessment, Enterprise IT Systems, Real-Time Detection

675


https://doi.org/10.63125/137k6y79
mailto:chowdhurytonoy93@gmail.com
https://global.asrcconference.com/index.php/asrc

ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 675-704

INTRODUCTION

Cybersecurity risk in enterprise IT systems is fundamentally defined as the potential for loss, damage, or
disruption to organizational information assets resulting from the exploitation of vulnerabilities by threats
(Lee, 2021). This conceptualization frames risk as a function of the likelihood of a threat event and the
magnifude of its adverse impact on confidentiality, integrity, and availability. In enterprise contexts, risk
extends beyond technical failures to encompass strategic, operational, legal, and reputational
dimensions because large organizations depend on interconnected networks, hybrid cloud platforms,
and digital supply chains (Ekstedt et al., 2023). Scholars emphasize that accurate risk estimation
requires contextualization, linking vulnerabilities to specific business processes and assessing the
criticality of affected assets, as risk varies significantly across different operational domains within the
same enterprise. Internationally, frameworks like the NIST Cybersecurity Framework and ISO/IEC 27005
have become central references for defining and operationalizing risk assessment practices in
organizations, establishing common taxonomies and decision-making structures (Kure et al., 2018). The
increasing complexity of global IT infrastructures—spanning cloud services, edge computing, and
mobile endpoints—has intensified the difficulty of assessing and prioritizing risks, especially when security
events occur at high velocity and scale. Consequently, traditional risk assessment methods relying on
static checklists and manual evaluations are increasingly viewed as inadequate, motivating the
adoption of data-driven approaches that leverage enterprise-scale telemetry to provide real-time
visibility into evolving threat conditions (Uddin et al., 2020). This definitional foundation positions
cybersecurity risk assessment as a central component of enterprise resiience and regulatory
compliance across jurisdictions worldwide.

Cybersecurity risk assessment holds profound international significance because enterprise IT systems
form the digital backbone of economic, governmental, and critical infrastructure sectors. Disruptions
caused by cyberattacks can result in cascading failures across supply chains, financial markets, and
public services, creating systemic risk that transcends organizational boundaries (Rea-Guaman et al.,
2020). The globalization of digital operations—where multinational enterprises manage distributed
cloud infrastructure, remote workforces, and cross-border data flows—has further amplified the attack
surface and created complex interdependencies. Cyber incidents such as ransomware campaigns,
data breaches, and advanced persistent threats have incurred substantial financial losses, with global
estimates reaching hundreds of billions annually, underscoring the economic imperative of effective risk
management (Jarjoui & Murimi, 2021). Regulatory regimes such as the European Union’'s GDPR, the
United States’ HIPAA and FISMA, and industry standards like PCI DSS impose strict obligations on
organizations to maintain security controls, conduct risk assessments, and protect personal data, often
under the threat of severe penalties for non-compliance. International bodies including the OECD, ISO,
and ENISA have issued guidelines emphasizing risk-based security governance, reflecting global policy
convergence around risk assessment as a foundational cybersecurity practice (Jahid, 2022;
Strupczewski, 2021). From a geopolitical perspective, cyberattacks increasingly intersect with nationall
security concerns, and many governments classify cyber risk management as part of critical
infrastructure protection. As enterprises operate across jurisdictions, they must navigate heterogeneous
legal environments, culfural approaches to risk, and varying threat landscapes, further reinforcing the
need for standardized, rigorous, and adaptive risk assessment methods (Kure et al., 2022; Arifur &
Noor, 2022). These globalized operational realities and regulatory obligations highlight why
cybersecurity risk assessment has become a strategic necessity for modern enterprises.

Historically, cybersecurity risk assessment in enterprises relied predominantly on qualitative methods such
as risk matrices, heat maps, and expert judgment, which categorized risks based on subjective ratings
of likelihood and impact (Borky & Bradley, 2018; Hasan & Uddin, 2022). While accessible to non-
technical stakeholders, these methods lacked statistical rigor, failed fo capture uncertainty, and often
produced inconsistent outcomes due to cognitive biases. Early quantitative approaches infroduced
simple scoring systems that combined vulnerability severity and asset value, but they freated risk as static
and rarely accounted for real-time operational dynamics (Hoffmann et al., 2020; Rahaman, 2022).
Over time, researchers began adopting probabilistic models such as Bayesian networks, Markov chains,
and Monte Carlo simulations to estimate the likelihood distributions of threat events and their expected
losses (Armenia et al., 2021; Rahaman & Ashraf, 2022). These techniques provided more rigorous
foundations for decision-making but required accurate, timely data that was often unavailable or
fragmented across enterprise systems. More recent literature has emphasized dynamic risk models that
continuously incorporate new telemeftry to reflect the changing security posture of IT environments.
Such approaches have been shown to improve risk prioritization, align mitigation actions with emerging
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threats, and reduce uncertainty compared to static methods (Islam, 2022; Mdller, 2023a). The
transition from static, qualitative risk assessments fo quantitative, data-driven models represents a pivotal
evolution in cybersecurity governance, establishing the methodological foundations necessary to
enable real-time risk estimation at enterprise scale.

Figure 1: Enterprise Cybersecurity Risk Assessment Framework
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Building on the limitations of static and periodic assessments, the paradigm of real-time risk assessment
has emerged as a key innovation in enterprise cybersecurity. Real-time risk assessment refers to the
confinuous, automated estimation of risk scores from streaming telemetry, enabling security teams to
detect and respond to threats within operational timeframes (Hasan et al., 2022; Shaikh & Siponen,
2023). This paradigm shifts risk assessment from a retrospective reporting function to an active
operational capability embedded within security workflows. Real-time risk models ingest data from
diverse sources such as endpoint detection and response (EDR) logs, network flow records, DNS and
HTTP traffic, identity and access management (IAM) logs, and cloud control-plane events, correlating
signals to infer the likelihood and impact of potential incidents (Redwanul & Zafor, 2022; Radanliev
et al., 2018). Studies have shown that real-time scoring reduces mean time to detect (MTTD) and mean
time to respond (MTTR), thereby limiting lateral movement and potential damage. This operational shift
requires streaming architectures capable of low-latency data processing, stateful analytics, and high
throughput, which are supported by frameworks like Apache Storm and Flink (Benaroch, 2020; Rezaul
& Mesbaul, 2022). Unlike periodic assessments, real-fime systems maintain continuous situationall
awareness, dynamically recalculating risk as conditions change, and integrating directly intfo Security
Information and Event Management (SIEM) and Security Orchestration, Automation, and Response
(SOAR) platforms. This integratfion operationalizes risk analytics as a live service layer within enterprise
security operations, enabling more proactive and context-sensitive decision-making than legacy
methods could provide (Benz & Chatterjee, 2020; Hasan, 2022).

Parallel to the emergence of real-fime paradigms, deep learning has become a foundational analytical
approach for enterprise cybersecurity risk assessment, offering superior capacity to model high-
dimensional, heterogeneous, and non-linear security data compared to earlier machine learning
methods (Tarek, 2022; Pupentsova & Livintsova, 2021). Convolutional neural networks (CNNs) have
been widely used to classify network flows and packet captures by automatically learning hierarchical
features from raw fraffic. Recurrent neural networks (RNNs) and long short-term memory (LSTM)
architectures have been applied to sequential security logs, authentication data, and system event
streams, capturing temporal dependencies that traditional statistical models miss (Fielder et al., 2018;
Kamrul & Omar, 2022). More recently, fransformer-based architectures leveraging self-attention have
demonstrated strong performance on large-scale log, DNS, and HTTP datasets by modeling long-range
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dependencies without the vanishing gradient limitations of RNNs. Graph neural networks (GNNs) have
emerged as powerful tools for representing host—user—process relationships in enterprise telemetry
graphs, enabling the detection of complex lateral movement patterns (Kamrul & Tarek, 2022; Villalon-
Fonseca, 2022). These deep models surpass classical classifiers like support vector machines and
random forests in detection accuracy, scalability, and adaptability, particularly under conditions of
concept drift and class imbalance (Caramancion et al., 2022; Mubashir & Abdul, 2022). Their ability
to learn directly from raw or minimally processed data aligns with the high-volume, high-velocity nature
of enterprise telemetry, making them well suited for real-time risk scoring. This body of evidence positions
deep learning as the analytical engine that powers contemporary risk assessment systems in enterprise
cybersecurity.

Deep learning-based real-time risk assessment systems have increasingly been embedded into
enterprise security operations environments, marking a structural shift from experimental tools to
operational infrastructure. Many studies describe architectures that integrate data ingestion services,
stfreaming feature engineering pipelines, deep learning inference servers, and decision engines into
layered microservices environments orchestrated by platforms like Kubernetes (Ksibi et al., 2023;
Muhammad & Kamrul, 2022). These systems are tightly coupled with SIEM platforms, where risk scores
are correlated with other alerts and asset context, and with SOAR systems, where they frigger
automated playbooks for containment, remediation, and escalation. This operational embedding has
been shown to reduce false positives, prioritize high-risk incidents, and improve analyst efficiency by
aligning detection thresholds with business-critical asset impact (Reduanul & Shoeb, 2022;
Taherdoost, 2022). Studies also highlight the necessity of operational MLOps practices—such as
continuous monitoring, dataset and model versioning, automated refraining pipelines, and rollback
mechanisms—to maintain accuracy and stability under evolving threat landscapes (Kumar &
Zobayer, 2022; Sdnchez-Garcia et al., 2022). This integration represents a departure from the earlier
paradigm where machine learning models were used in isolation as offline analytic components.
Instead, deep learning models now function as continuous services within real-time security pipelines,
directly influencing detection, triage, and incident response workflows. Such integration underscores
their growing role as first-class operational systems within enterprise IT security architectures (Linkov &
Kott, 2019; Sadia & Shaiful, 2022).

Figure 2: Key Drivers of Cyber Attacks
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Furthermore, the development and adoption of deep learning models for real-time cybersecurity risk
assessment are situated within a rapidly expanding international research and standardization
landscape. Numerous benchmark datasets such as NSL-KDD, UNSW-NB15, CICIDS2017, Bot-loT, and
ToN_loT have been created to facilitate comparative evaluation, though they vary in realism and scope
(Kosmowski et al., 2022; Noor & Momena, 2022). Standardized frameworks like MITRE ATT&CK
provide taxonomies of adversary tactics and techniques, enabling consistent labeling and
interpretation of model outputs. CVSS scoring standards link vulnerabilities to risk metrics, while STIX/TAXII
protocols support automated exchange of threat inteligence across organizations (Isticque et al.,
2023; Radanliev, 2024). Regulatory and policy bodies including ENISA, NIST, ISO, and the OECD have
emphasized the need for risk-based cybersecurity governance, aligning risk modeling practices with
compliance and audit requirements (Kalinin et al., 2021). Academic and industrial consortia have
published evaluation guidelines promoting reproducibility, dataset documentation, and operational
metric reporting, aiming to reduce fragmentation across the field (Moller, 2023b). This global research
and standardization activity underscores that deep learning-based real-time risk assessment has
evolved from isolated academic experiments into a recognized international domain of practice, with
shared infrastructures, taxonomies, and performance benchmarks facilitating collective advancement.
LITERATURE REVIEW

The field of cybersecurity has undergone a paradigm shift as the growing complexity, velocity, and
volume of cyber threats have rendered traditional rule-based and signature-driven detection
approaches insufficient for protecting enterprise IT environments. As global enterprises increasingly rely
on distributed networks, hybrid cloud infrastructure, and interconnected digital ecosystems, real-tfime
cybersecurity risk assessment has emerged as an indispensable function for safeguarding data integrity,
availability, and confidentiality (Hasan et al., 2023; Sarker et al., 2023). Literature on risk assessment
has traditionally emphasized frameworks for risk identification, quantification, and prioritization based
on static analysis and human judgment, but these methods struggle to cope with the dynamic and
evolving aftack surface characteristic of modern enterprise systems. Deep learning, a subfield of
artificial intelligence that enables hierarchical feature representation through multi-layer neural
architectures, offers transformative capabilities for learning complex behavioral patterns and subtle
anomalies within massive and heterogeneous cybersecurity data streams (Moller, 2023a). Over the
past decade, studies have demonstrated the efficacy of deep learning in intrusion detection, malware
classification, phishing detection, and botnet fraffic analysis, signaling a shift toward fully data-driven
security analytics. More recent works have further proposed integrated frameworks that merge real-
time telemetry ingestion, deep neural inference, and dynamic risk scoring, thereby embedding Al-
powered risk estimation within security information and event management (SIEM) and security
orchestration, automation, and response (SOAR) workflows (Hossain et al., 2023; Safitra et al.,
2023) However, the research landscape remains fragmented across domains, architectures, and
evaluation paradigms, with substantial variance in datasets, performance metrics, and deployment
strategies, which complicates efforts to synthesize a coherent understanding of their effectiveness in
enterprise settings. Furthermore, operational challenges such as concept drift, adversarial evasion and
data privacy constraints. Rajawat et al. (2024) introduce additional layers of complexity when
infegrating deep learning into production risk assessment systems. Thus, this literature review critically
examines and synthesizes the theoretical foundations, architectural innovations, dataset practices,
operational integrafion models, and ethical-regulatory considerations surrounding the use of Al-
powered deep learning models for real-time cybersecurity risk assessment in enterprise IT systems,
providing a structured scholarly map of existing research trajectories and technical approaches.
Cybersecurity Risk Assessment

Cybersecurity risk within enterprise IT systems has been conceptualized as the potential for loss or harm
resulting from a threat exploiting a vulnerability, thereby compromising the confidentiality, integrity, or
availability of information assets (Ekstedt et al., 2023). This formal definition positions risk as a function
of the likelihood of an event and the magnitude of its adverse impact, which is consistent with the
classical risk equation proposed in risk management literature. Within large-scale enterprises, risk
assessment is further complicated by the interdependencies between systems, the proliferafion of
distributed cloud architectures, and the diversity of user roles, which increase both the attack surface
and the uncertainty of threat exposure (Jarjoui & Murimi, 2021). Researchers emphasize that risk
cannot be adequately defined without contextualizing assets, vulnerabilities, and threat actors within
an organizational ecosystem, as business-critical systems differ in sensitivity, operational requirements,
and legal protections. This context-dependent nature requires risk frameworks to incorporate asset
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valuation, data classification, and business continuity considerations, ensuring that risk prioritization
aligns with organizational objectives and regulatory mandates and HIPAA. Moreover, studies highlight
the necessity of incorporating both technical and non-technical dimensions of risk, such as insider
threats, human error, and supply chain dependencies, which are often underestimated in fraditional
assessments (Lee, 2021). This multidimensional conception underscores the inadequacy of one-size-fits-
all models and supports a layered, enterprise-specific approach to defining cybersecurity risk. By
embedding risk definitions within organizational processes, standards creature a structured foundation
that supports consistent measurement and communication of risk across diverse stakeholders, enabling
alignment between security operations, governance, and strategic decision-making (Sultan et al.,
2023; Shaikh & Siponen, 2023).

Historically, cybersecurity risk assessment in enterprise environments relied heavily on static, qualitative
models, often operationalized through risk matrices that mapped subjective likelihood and impact
ratings into categorical tiers. Such approaches were favored for their simplicity and accessibility to non-
technical stakeholders but have been critiqued for their lack of statistical rigor, inability fo capture
uncertainty, and susceptibility to cognitive bias (Hossen et al., 2023; Sanchez-Garcia et al., 2022).
Studies have shown that qualitative scoring frameworks fail to scale in environments characterized by
dynamic threat landscapes, rapidly evolving vulnerabilities, and high-frequency telemetry. To address
these deficiencies, research has progressively advanced toward quantitative and probabilistic risk
models that integrate empirical data from vulnerability scanners, infrusion detection systems, and
incident response reports to estimate risk as a distribution rather than a fixed value (Erola et al., 2022;
Tawfiqul, 2023). Monte Carlo simulations, Bayesian networks, and Markov models have been applied
to capture uncertainty and interdependencies between threat events, thereby providing probabilistic
estimations of attack success likelihood and expected loss. Moreover, these dynamic models have
increasingly incorporated temporal and causal relationships (Fielder et al., 2018; Sanjai et al., 2023),
enabling near-real-fime updates of risk posture as new telemetry becomes available. The shift to data-
driven methodologies has allowed organizations to move beyond periodic, static assessments toward
contfinuous monitoring regimes that reflect the current operational state of their IT environments. This
evolution signifies a fundamental reorientation of risk assessment from a compliance-oriented
documentation task to an adaptive decision-support mechanism capable of informing tactical and
operational security actions in fast-changing enterprise contexts (Hoffmann et al., 2020; Akter et al.,
2023).

Figure 3: Real-Time Cybersecurity Risk Framework
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Building upon the limitations of static and periodic methods, the real-time risk assessment paradigm
represents a major advancement in enterprise cybersecurity strategy, enabling continuous evaluation
of threat likelihood and business impact under operational constraints. Real-time risk assessment is
defined by its low-latency, streaming inference capabilities, which allow security systems to ingest high-
velocity telemetry, process events, and generate risk scores within seconds or sub-minute timeframes
(Razzak et al., 2024; Melaku, 2023). Such systems operate on streaming frameworks that support
event-time processing and stateful operators, ensuring scalability fo millions of events per second
without sacrificing detection accuracy. These pipelines are offen embedded within Security Information
and Event Management (SIEM) and Security Orchestrafion, Automation, and Response (SOAR)
platforms, where risk scores trigger automated playbooks or human analyst escalations (Istiaque et al.,
2024; Safitra et al., 2023). Real-time risk models continuously correlate signals from heterogeneous
sources such as endpoint detection and response (EDR) logs, network flows, DNS/HTTP traffic, and
identity and access management (IAM) systems, producing unified risk estimates contextualized by
asset criticality. Empirical studies demonstrate that streaming-based risk scoring significantly reduces
mean time to detect (MTTD) and mean time to respond (MTTR), thereby mitigating potential losses and
limiting lateral movement (Kianpour et al., 2021; Hasan et al., 2024). This paradigm also necessitates
architectural considerations, such as strict latency budgets, load balancing, and real-time feature
engineering, to ensure consistent performance under production workloads. Importantly, the real-time
paradigm represents a shift from retrospective detection to proactive operational risk management,
embedding risk analytics as a continuous service layer within enterprise IT systems rather than as a
periodic audit artifact (Ashiqur et al., 2025; Polimeier et al., 2023).

Real-time cybersecurity risk assessment achieves operational viability primarily through its alignment with
SIEM and SOAR architectures, which function as the central nervous system of enterprise security
operations centers (Li et al., 2019; Hasan, 2025). SIEM platforms aggregate and normalize data from
diverse sources—including EDR, IDS, firewalls, IAM, cloud services, and application logs—into a unified
schema suitable for correlafion and risk modeling. SOAR platforms extend this by orchestrating
automated workflows that execute predefined responses based on risk thresholds, enabling rapid
containment of threats with minimal human intervention. Integration studies highlight that embedding
machine learning-based risk scoring modules within SIEM/SOAR stacks enhances alert prioritization,
reduces false positives, and optimizes analyst workload by aligning detection confidence with business
impact (Ismail et al.,, 2025; Tzavara & Vassiliadis, 2024). Architectural blueprints often adopt a
modular microservices approach, where feature extraction services preprocess streaming felemetry,
model inference services output probability distributions, and decision engines apply policy-driven
thresholds to trigger responses. This architectural alignment ensures that real-fime models operate under
explicit latency budgets, typically allocating milliseconds for preprocessing and inference to maintain
overall pipeline throughput (Gunduz & Das, 2020; Sultan et al., 2025). Furthermore, SIEM/SOAR
integration supports continuous feedback loops where analyst actions are logged and used to retrain
models, gradually improving accuracy and contextual relevance over time. Several case studies have
reported measurable gains in operational efficiency and incident response readiness from this
alignment, including reductions in mean time to detect and escalations. This close coupling between
real-time risk analytics and orchestration infrastructure positions SIEM/SOAR as the foundational delivery
mechanism for operationalizing cybersecurity risk assessment at enterprise scale (Eling, 2018).

Deep Learning Architectures for Cybersecurity Analytics

Convolutional neural networks (CNNs) have been extensively investigated as a foundational deep
learning architecture for network traffic analysis in enterprise cybersecurity due o their ability fo extract
local spatial features and capture hierarchical patterns from structured data representations (Khan et
al., 2020). CNNs excel in modeling network flow and packet-based telemetry by transforming raw
features info multidimensional tensors where filters detect discriminative patterns indicative of malicious
behaviors (Taye, 2023a)Shone et al. (2018) demonstrated that a deep CNN-based intrusion detection
system could outperform fraditional machine learning baselines on the NSL-KDD dataset by learning
hierarchical representations of network attack signatures. Similarly, integrated CNNs with support vector
machines to enhance classification accuracy in hybrid infrusion detection systems, showing significant
improvements in false positive reduction. Applied a CNN architecture on raw fraffic features and
achieved superior generalization on KDD'?9 data, indicating CNNs' capability to handle noisy high-
dimensional network data. Other studies have adapted CNNs for encrypted traffic classification, where
payload inspection is unavailable used CNNs on flow-based statistical features to differentiate benign
versus botnet traffic with high precision (Sanjai et al., 2025; Yamashita et al., 2018), while employed
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CNNs for real-time malware traffic detection in loT networks. CNNs have also been applied to image-
like visualizations of traffic matrices, as demonstrated, who mapped network sessions to 2D images for
CNN-based detection with remarkable efficiency. These approaches leverage CNNs' convolutional
kernels to exploit local temporal-spatial correlations in packets and flows, enabling scalable and high-
throughput inference in streaming settings (Krichen, 2023). Collectively, the literature substantiates
CNNs as a powerful mechanism for feature abstraction from network telemetry, supporting their
infegration as core components in enterprise infrusion detection and network threat classification
pipelines.

While CNNs capture localized spatial features, recurrent neural networks (RNNs) and their variants such
as long short-term memory (LSTM) and gated recurrent unit (GRU) networks are specialized for modeling
sequential dependencies in ordered cybersecurity data such as system logs, command histories, and
authentication (Zhou, 2020). Showed that LSTMs achieved superior performance in detecting intrusion
patterns by capturing temporal correlations across network connections, surpassing conventional
classifiers on NSL-KDD and UNSW-NB15 datasets. Similarly leveraged LSTMs for infrusion detection in
software-defined networks, demonstrating resilience to concept drift in evolving traffic. RNN-based
models have been particularly effective in detecting brute-force attacks, privilege escalations (Yao et
al., 2019), and lateral movement by analyzing long sequences of login attempts and process creation
logs. However, RNNs often struggle with vanishing gradients and scalability on long sequences,
prompting the adoption of Transformer architectures (Cheng et al., 2018), which use self-attention
mechanisms to capture long-range dependencies without recurrent connections. Transformers have
shown promise in cybersecurity log analysis proposed Log Robust, a Transformer-based framework for
anomaly detection in large-scale enterprise logs, significantly reducing false positives compared to RNN
baselines. Transformer encoders to detect algorithmically generated domains (DGAs) in DNS fraffic,
achieving state-of-the-art results. Similarly, integrated attention mechanisms to model interleaved
sequences of system events, outperforming LSTMs in both speed and accuracy. These studies
underscore that while RNN/LSTM models capture short- o medium-range dependencies effectively,
Transformers offer superior scalability for long and heterogeneous log sequences common in enterprise
environments (Chen et al., 2021).

Figure 4: Deep Learning Cybersecurity Model Framework
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Graph neural networks (GNNs) have emerged as a cutting-edge approach for modeling the relational
structures inherent in entferprise IT environments, where cybersecurity data naturally form graph
topologies linking hosts, users, processes, and network entities (Bhatt et al., 2021). Unlike CNNs or RNNs,
which assume Euclidean data structures, GNNs perform message passing over nodes and edges to
capture complex dependencies in heterogeneous graphs. (Jiao et al., 2020) intfroduced AddGraph,
which applies dynamic GNNs for anomaly detection on temporal user-host graphs, achieving state-of-
the-art detection of insider threats. Similarly, developed DynTri, a temporal graph embedding model
that identifies suspicious subgraphs indicative of attack campaigns. (Ghosh et al., 2019) provided @
comprehensive survey showing that GNNs outperform classical methods for link prediction and
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community-based anomaly detection in security telemetry. Researchers have applied GNNs to detect
lateral movement used heterogeneous GNNs on enterprise authentication graphs to identify malicious
credential usage, while demonstrated GNNs' capability fo detect cross-host privilege escalation
patterns in process graphs. Applied relational graph convolutional networks to user-process trees and
improved detection of living-off-the-land attacks in real enterprise logs. These models exploit structural
context, aggregating signals from neighborhoods to reveal anomalies not visible in isolated events.
Moreover, GNN-based methods support explainability through attention weights on suspicious edges or
nodes, facilitating analyst interpretation and frust. Collectively, these studies affirm that GNNs enable
holistic, context-aware cyber risk inference by embedding host-user-process relationships in enterprise
telemetry graphs, offering powerful capabilities for detecting stealthy multi-stage attacks (Zheng et al.,
2021).

Data Sources and Evaluation Practices

Enterprise IT environments generate vast, heterogeneous cybersecurity telemetry streams that form the
foundational data for real-time risk assessment and deep learning analytics. These sources encompass
endpoint detection and response (EDR) logs, which capture process executions, file modifications,
registry edits, and kernel-level behaviors on individual hosts, providing granular forensic visibility
(Sivanathan et al., 2020). Network telemetry such as NetFlow and packet capture (PCAP) summarizes
bidirectional traffic flows with metadata on bytes, packets, protocol types, and session durations,
enabling detection of volumetric anomalies, command-and-control channels, and data exfiltration.
DNS and HTTP logs, which contain queried domains, URLs, response codes, and user-agent strings, serve
as high-value indicators for detecting phishing, malware delivery, and domain generation algorithm
(DGA) activity (Tarig et al., 2023). Identity and access management (IAM) telemetry logs
authentication attempts, privilege escalations, token issuance, and role assignments, which are critical
for detecting insider threats, lateral movement, and credential misuse. Additionally, cloud conftrol plane
logs from platforms like AWS CloudTrail and Azure Activity Logs capture administrative actions, API calls,
and resource configuration changes, providing essential visibility info misconfigurations and privilege
abuse in multi-tenant environments (Allioui & Mourdi, 2023). Studies emphasize that these telemetry
modalities vary in structure (structured, semi-structured, or unstructured) and temporal granularity,
requiring normalization into feature-rich event schemas for machine learning models. Integrating
multimodal telemetry has been shown to significantly improve detection accuracy, as isolated event
types often lack sufficient context to distinguish benign anomalies from malicious behaviors (Masip-
Bruin et al., 2021). Collectively, this diverse telemetry ecosystem provides the raw substrate for deep
learning models to infer complex threat behaviors and estimate risk in real-time across large-scale
enterprise infrastructures.

Benchmark datasets have been instrumental in driving research on deep learning-based cybersecurity
analyfics, offering reproducible baselines for evaluating model performance, though their
representativeness of real enterprise environments varies significantly. The KDD'99 dataset, derived from
DARPA 1998 traffic traces, was one of the earliest widely used intrusion detection corpora, providing
labeled normal and attack connections with 41 features (Amangeldy et al., 2025). However, it has
been criticized for outdated attack types, redundant records, and unrealistic traffic patterns, prompting
the creation of NSL-KDD, which removed duplicates and balanced class distributions to reduce bias.
UNSW-NB15, generated using the IXIA PerfectStorm tool, contains modern attack categories and
realistic background traffic, addressing limitations of earlier datasets (Alaghbari et al., 2022). Similarly,
CICIDS2017 incorporates benign and malicious traffic with comprehensive flow features, while Bot-loT
provides labeled loT botnet traffic across DDoS, scanning, and exfiltration scenarios. TON_loT extends this
by including telemetry from loT devices, network, and log sources, enabling cross-domain detection
studies (Moustafa, 2021). UGR'16 offers large-scale backbone network flows labeled with temporal
aftack annotations for studying low base-rate attacks. Studies show that dataset choice significantly
influences reported model accuracy due to varying feature spaces, traffic realism, and class balance
(Alani, 2021). While these datasets support architectural benchmarking, they often lack the scale,
diversity, and noise of real enterprise environments, which can lead to overly optimistic performance
meftrics. Researchers have emphasized combining multiple datasets or augmenting them with red-team
generated tfraces to approximate real-world complexity. Consequently, while benchmark datasets are
foundational to methodological progress, their limitations must be carefully accounted for when
interpreting deep learning performance claims (Serpanos & Wolf, 2018).
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Figure 5: Enterprise Cybersecurity Telemetry Data Pipeline
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Real-Time Enterprise Security Pipelines

Real-fime inference architectures are a cornerstone of deploying deep learning models for
cybersecurity risk assessment in enterprise environments, as they must process high-volume, high-
velocity telemetry streams under stringent latency constraints. Modern pipelines are commonly built
atop distributed stream processing frameworks such as Apache Storm and Apache Flink, which enable
event-time processing, stateful operators, and low-latency fault-tolerant computation (Kang & Chung,
2018). These frameworks are designed for horizontal scalability, allowing security systems to process
millions of events per second while maintaining bounded end-to-end latencies. Within these pipelines,
data preprocessing plays a crucial role, converting heterogeneous raw telemetry—such as EDR logs,
NetFlow, DNS, and IAM events—into structured feature tensors consumable by deep learning models
(Rodriguez-Conde et al., 2023). Studies emphasize the need for streaming feature engineering
methods that compute rolling statistics, femporal aggregates, and embeddings on the fly without
introducing latency bottlenecks. Ngo et al. (2025) highlight that feature services must operate at
microsecond-to-millisecond tfimescales to meet production service-level agreements (SLAS).
Architectural patterns often separate the ingest layer, feature service, model server, and decision
engine into microservices, enabling independent scaling and fault isolation. This modular design is
reinforced by container orchestration technologies such as Kubernetes, which manage resource
allocation and auto-scaling based on incoming load (Karras et al., 2020). Empirical studies
demonstrate that integrating GPUs or specialized inference accelerators info these architectures
substantially reduces latency for deep neural models, particularly CNN and Transformer-based
detection systems. Collectively, the literature positions real-time inference architectures as layered,
stfreaming-first ecosystems that tfransform raw cyber telemetry into actionable risk scores at enterprise
scale.

The operational viability of deep learning-based cybersecurity risk assessment depends heavily on its
seamless integration with Security Information and Event Management (SIEM) and Security
Orchestration, Automation, and Response (SOAR) platforms, which serve as the central nervous system
of enterprise security operations. SIEM systems aggregate, normalize, and correlate telemetry from
diverse sources—such as EDR, network devices, IAM, and cloud infrastructure—into structured event
streams suitable for risk modeling (Mshragi & Petri, 2025). SOAR platforms complement this by
automating response workflows tfriggered by detection outputs, thereby orchestrating containment,
remediation, and notification actions in real time. Studies have shown that embedding machine
learning risk scoring modules within SIEM/SOAR pipelines enhances alert prioritization and reduces false
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positives, enabling analysts to focus on high-risk incidents (Hamid & Singh, 2024). Architectural
blueprints typically insert deep learning inference services between SIEM event correlation engines and
SOAR playbooks, allowing probabilistic threat scores to dynamically drive response automation.
Integration studies emphasize the importance of schema alignment—mapping model outputs such as
tactic likelihoods or risk scores to standardized fields used in SIEM dashboards (Karaman et al., 2023).
MLOps practices underpin this integration: Sculley highlight the necessity of model versioning,
continuous evaluation on shadow fraffic, and driff-aware retraining pipelines to ensure stable
performance within production SIEM/SOAR systems. Feedback loops that log analyst actions and
outcomes for retraining have been shown to incrementally improve detection precision over time. This
literature consistently underscores that SIEM/SOAR alignment operationalizes deep learning risk models,
embedding them as continuous analytic services within enterprise detection-response ecosystems (ljari
& Paternina-Arboleda, 2024).

Meeting real-time performance requirements in enterprise cybersecurity pipelines necessitates strict
adherence to latency budgets and operational constraints that govern the end-to-end processing path
from data ingestion to automated response. (Cao et al., 2024) emphasize that deep learning
inference systems must deliver predictions within fight milisecond-level SLAs to support automated
threat mitigation. Studies reveal that inference latency is influenced by multiple factors including model
complexity, input batch size, hardware configuration, and feature preprocessing overhead. To reduce
latency, practitioners employ micro-batching strategies, which group events into small batches for
vectorized processing while maintaining low end-to-end delay. Quantization techniques that convert
32-bit floating point model weights to lower precision (e.g., INT8) are widely used to accelerate deep
neural network inference without substantial accuracy loss (Wang et al., 2025). Parallel serving
architectures, where mulfiple model replicas run concurrently behind load balancers, further ensure
consistent throughput during fraffic surges. Studies demonstrated that optfimizing model graph
execution and using GPU acceleration can cut inference latency for Transformer-based log anomaly
detectors by over 70%. Real-time systems must also incorporate backpressure mechanisms and
autoscaling to prevent queue buildup during load spikes, as described (Wang et al., 2024).
Operational studies note that exceeding latency budgets can disrupt SOAR playbooks, leading to
delayed containment and increased dwell time for adversaries. Consequently, engineering deep
learning models for operational cybersecurity requires treating latency as a primary design constraint
equal to accuracy (Chen et al., 2020).

Figure 6: Real-Time Deep Learning Cybersecurity Architecture
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Research characterizes robustness risks fo cybersecurity ML along three maijor threat classes: evasion at
inference time, poisoning during training, and inference attacks that extract model or data properties.
Evasion attacks perturb inputs o induce misclassification while remaining close to the data manifold;
seminal work formalized gradient-based perturbations and optimization-driven attacks that reliably
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reduce detector confidence (McCarthy et al., 2022). Systematizations in security setftings
documented that learned decision boundaries can be brittle under adaptive adversaries and that
obfuscated gradients provide only an illusion of robustness. Poisoning modifies training distributions or
labels to bias the learned classifier; studies quantified how small fractions of crafted samples shift
boundaries or infroduce backdoors that activate on specific triggers (Katzir & Elovici, 2018). Inference
aftacks target confidentiality: model extraction replicates decision surfaces via query synthesis,
membership inference reveals whether particular records were used for training, and property inference
leaks aggregate attributes. Empirical analyses in cyber telemetry (e.g., network flows, logs) report
transferability of adversarial examples across models and feature sets, underscoring risk for deployed
detectors (Aiyanyo et al., 2020). Defensive mechanisms appear in parallel strands: adversarial training
minimizes worst-case loss within perturbation sets; certified defenses bound risk via randomized
smoothing; input sanitization filters distributional outliers; and robust optimization frames detection under
threat models aligned to operational constraints. Studies also examine gradient masking pitfalls,
adaptive evaluation protocols, and cost-sensitive analyses relevant to SOC alert budgets. This corpus
positions evasion, poisoning, and inference as concrete, empirically validated vectors that shape
fraining data hygiene, model selection, and deployment hardening in enterprise cybersecurity contexts
(Wang et al., 2023).

Defensive literature converges on two complementary needs: improve worst-case robustness and
quantify uncertainty to guide analyst escalation. Adversarial training consistently provides the strongest
empirical robustness under tp-bounded attacks by optimizing a min-max objective (Herndndez-Rivas
et al.,, 2024), while certified defenses like randomized smoothing vyield probabilistic robustness
guarantees at scale. Additional techniques include input preprocessing and denoising (Nankya et al.,
2023), feature squeezing and JPEG compression to reduce high-frequency adversarial artifacts, and
ensemble diversity to mitigate correlated failure modes (Dini et al., 2023). Yet robustness alone does
not resolve operational triage; research in predictive uncertainty offers principled routing of ambiguous
cases. Monte-Carlo dropout approximates Bayesian inference by treating dropout at test time as a
variational distribution, enabling epistemic uncertainty estimates. Deep ensembles produce strong,
well-calibrated uncertainty and out-of-distribution (OOD) signals via variance across independently
frained models. Additional methods quantify aleatoric noise in inputs, calibrate predicted probabilities
via temperature scaling, and detect distribution shiftf through confidence degradation and OOD
scoring.

Figure 7: Defense-in-Depth Cybersecurity Control Framework
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Large-scale studies found that uncertainty quality degrades under dataset shiff and improves with
ensembling and proper calibration, with direct implications for alert thresholds and abstention policies
in SOC workflows. Selective prediction frameworks formalize reject options that defer uncertain
decisions to humans under budget constraints (Alharbi et al., 2021). In cyber analytics—where base
rates are low and costs asymmetric—these tools align model confidence with escalation logic,
connecting robustness methods to operator-centric metrics such as precision@budget and mean time
to detect.

Privacy-preserving ML addresses regulatory and organizational constraints that limit centralizing security
telemetry, especially identity and cloud control-plane logs. Differential privacy (DP) provides formal
bounds on information leakage from training datasets by injecting calibrated noise into gradients or
outputs (Al-Shehari et al., 2024). DP-SGD implements per-example gradient clipping with Gaussian
noise, enabling end-to-end training of deep networks under quantifiable privacy loss. Federated
learning (FL) trains shared models across decentralized clients while keeping raw data local; secure
aggregation and cryptographic protocols prevent the server from inspecting individual updates (Liu et
al., 2024). Surveys synthesize advances and open problems in FL, including systems scalability, non-IID
data, and personalization—factors pertinent to heterogeneous enterprise endpoints. Privacy attacks
demonstrate practicalrisks: membership inference reveals training inclusion, property inference extracts
sensitive aggregate attributes (Javed et al.,, 2024), and gradient leakage reconstructs private
examples from updates. Empirical work shows that naive FL can leak via update dynamics, motivating
DP at the client or server and secure aggregation by default. Complementary anonymization and
minimization practices—hashing identifiers, tfruncating payloads, and limiting retention—align model
inputs with legal frameworks such as GDPR while preserving utility for anomaly detection (Kim et al.,
2025). Audits of utility—privacy trade-offs report that moderate privacy budgets or partial DP fine-tuning
retain useful detection accuracy in classification and sequence models. Collectively, DP, FL, and secure
aggregation constitute a toolkit for training deep detectors on sensitive cyber telemetry under explicit
leakage constraints, with attack literature clarifying residual risk and defense configurations (Anthi et
al., 2021).

Organizational Dimensions

Cybersecurity analytics in enterprises operates within legal regimes that define boundaries for
collection, processing, and retentfion of personal data, shaping every stage of risk assessment and
model development. The General Data Protection Regulation (GDPR) codifies principles of lawfulness,
fairness, fransparency, purpose limitation, data minimization, accuracy, storage limitation, integrity, and
accountability, which collectively constrain feature engineering and cross-system correlation in security
monitoring (Hurel & Lobato, 2018). Guidance from ENISA emphasizes proportionality of monitoring,
necessity assessments, and organizational accountability for controls and incident handling, including
security of processing and breach notification timelines. Risk management standards such as NIST SP
800-30 and ISO/IEC 27005 position privacy and security governance within enterprise risk frameworks,
linking impact categories and likelihood modeling to documented controls and decision rights (Mishra
et al., 2022). Operational research shows that heterogeneous telemetry—EDR, NetFlow, DNS/HTTP, IAM,
and cloud control plane logs—requires normalization strategies that avoid unnecessary personal data
while preserving forensic value, often through hashing identifiers, fruncating payloads, and role-based
access to raw events. Studies on data sharing and collaborative analytics document constraints on
cross-border transfers and emphasize contractual and fechnical safeguards, including standard
contractual clauses, pseudonymization, and localized processing (Kosseff, 2018). Privacy-preserving
learning methods, such as differentfial privacy and federated learning, appear in governance
playbooks to reconcile analytical utility with legal obligations under data minimization and data transfer
rules. MLOps literature further embeds governance via dataset versioning, lineage, and audit trails that
capture model, configuration, and data snapshots necessary for regulatory accountability. Empirical
critiques of intrusion detection underscore the operational cost of excessive collection and false
positives, reinforcing proportionality and necessity as practical governance levers. Together, these works
describe a governance stack where legal principles, standards, and engineering practices cohere to
bound cybersecurity analytics within compliant, auditable processes (Kianpour & Raza, 2024).
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Figure 8: Legal Frameworks for Cybersecurity Analytics
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Scholarly analyses of algorithmic risk in security seftings describe fairness as the absence of systematic
error disparifies across groups or contexts, and accountability as the ability to frace, justify, and audit
model-driven decisions (Shandilya et al., 2024). In enterprise cybersecurity, bias may arise from proxy
features correlated with geography, shift patterns, or job roles, producing disparate alerting burdens or
escalation rates. Documentation frameworks such as model cards and dataset statements promote
fransparency about intfended use, data provenance, evaluation metrics, and known limitations,
enabling stakeholders to interrogate the conditions under which a detector performs reliably. Fairness
measurement literature proposes subgroup analyses, stratified PR/AUC reporting, and calibration
assessments to deftect and quantify disparities, including reliability diagrams and expected calibration
error that reveal misalignment between predicted probabilities and observed event frequencies
(Wylde et al., 2022). Explain ability methods—LIME, SHAP, and gradient-based attributions—support
accountability by surfacing feature confributions for individual alerts and by enabling aggregate audits
of model behavior across populations. Studies caution that explanation artifacts can be unstable or
insensitive without sanity checks and counterfactual evaluations, which are necessary to avoid
misleading narratives in high-stakes SOC decisions (Azmi et al., 2018). Governance research links
fairness controls to access policies and labeling workflows, noting that skewed or low-quality labels from
historic rule systems propagate inequities into supervised models. Security-specific standards and
taxonomies offer a scaffold for accountable interpretation by mapping alerts to ATT&CK techniques
and CVSS-style impact semantics, aligning model outputs with shared operational language (Srinivas
et al.,, 2019). Collectively, this literature characterizes fairness and accountability as operational
properties requiring measurement protocols, documentation, explanations, and audited data practices
in concert.

Fragmentation in the Literature

The literature exhibits fragmentation across data domains, modeling paradigms, and operational
targets, which complicates cumulative progress in real-time cybersecurity risk assessment. Network-
centric infrusion detection studies prioritize flow or packet features and report results on long-standing
corpora, often emphasizing discriminative accuracy without alignment to enterprise triage economics
(Guérineau et al., 2022). Log-centric work focuses on sequential models over authentication or system
events, frequently adopting different preprocessing conventions and objective functions than flow-
based studies. Graph-based research models host-user—process relations, infroducing yet another
representational layer and bespoke metrics. Heterogeneity extends to labels and taxonomies: some
stfudies use attack families, others use ATT&CK techniques, and others rely on anomaly/normal
dichotomies, limiting comparability (Castro-Medina et al., 2020). Data handling practices also
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diverge: static train/test splits coexist with temporal or prequential protocols, and leakage controls vary,
producing inconsistent claims of generalization. Reported metrics oscillate between accuracy, AUC,
and F1, with occasional calibration or cost-sensitive indicators, while SOC-relevant measures such as
precision at alert budget and mean time to detect appear sporadically (Schreiber et al., 2023).
Differences in streaming infrastructure and latency budgets further segment findings, as Storm/Flink
pipelines and micro batch systems impose distinct constraints on feature services and model servers.
Privacy and governance choices—e.g., data minimization and cross-border handling—introduce
additional domain-specific methods such as federated or differentially private learning that are rarely
evaluated alongside centralized baselines. These divergences compound, yielding a landscape where
architecture-specific advances, dataset idiosyncrasies, and pipeline assumptions inhibit synthesis across
studies (Bruneliere et al., 2019).

Benchmark corpora underpin much of the evidence base, yet many datasets diverge from enterprise
reality in tfraffic composition, attacker sophistication, and annotation fidelity. KDD'?9 and NSL-KDD
remain common for comparability, but they exhibit artifacts such as redundant records, outdated
attack mixes, and simplified feature spaces that inflate performance (Rejeb et al., 2024). Newer
resources—UNSW-NB15, CICIDS2017, Bot-loT, ToN_loT, and UGR'16—introduce richer features and more
modern scenarios, but they still rely on staged attacks, synthetic backgrounds, or limited enterprise
diversity (Meyers et al., 2021). Label provenance varies: rule-based heuristics, sandbox verdicts, or red-
team fraces provide supervision with unknown false-negative rates, while benign traffic is often assumed
rather than verified, biasing class priors. Temporal structure is frequently collapsed by random shuffles,
hindering drift-aware evaluation. Imbalance ratios differ markedly from operational settings, where
malicious prevalence is extremely low; resampling and focal losses improve internal metrics but may not
reflect SOC alert budgets (Thayyib et al., 2023). Heterogeneous modalities—EDR, IAM, DNS/HTTP, and
cloud conftrol-plane logs—are underrepresented relative to flow datasets, limiting multimodal fusion
stfudies. Privacy and governance constraints reduce availability of realistic enterprise corpora,
reinforcing reliance on proxies and limiting external validity. Cross-dataset tests frequently reveal sharp
generalization drops, indicating overfitting to dataset quirks rather than robust behavioral signals
(Dominguez et al., 2023). As a result, claims about deep models’ effectiveness rest on benchmarks
whose realism and labels embed uncertainties that propagate into reported accuracies.

Evaluation practices rarely converge on standardized, real-time protocols that mirror streaming
constraints and SOC decision economics. Many studies compute offline metrics—accuracy, AUC,
precision, recall, F1—on static splits, which obscures latency, throughput, and backpressure constraints
that govern production viability (Munoz-La Rivera et al., 2021). Few experiments report prequential
evaluation, delayed labels, or temporal cross-validation that capture distribution shift and label arrival
dynamics. Calibration, essential for thresholding risk scores in runbooks, is inconsistently measured, with
limited use of reliability diagrams or expected calibration error (Abid et al., 2025). Operational
indicators—precision at fixed alert budgets, mean time to detect/respond, analyst-hours per true
incident, and false positive rates under rate limits—appear sporadically despite their centrality to SOC
workload. Reporting of latency budgets and serving envelopes is inconsistent; batch sizes, quantization,
and accelerator use strongly shape inference delay but are often omitted (Hu et al., 2023). Drift
monitors and failure modes are seldom stress-tested with explicit shift scenarios or adversarial
contamination, even though streaming settings face evolving baselines and adaptive threats (Zhang
et al., 2025). Documentation artifacts—dataset cards, model cards, and data/metric lineage—are
unevenly applied, reducing auditability and comparability. The aggregate effect is a patchwork of
offine scores that under-specify real-time behavior, limiting meaningful comparisons across
architectures, datasets, and pipeline designs.

Published evidence from longitudinal, production-scale deployments remains sparse relafive to the
volume of laboratory studies, creating uncertainty about durability, cost, and organizational fit of deep
learning detectors in enterprises. Case-based reports describe promising improvements but often lack
confrolled baselines, standardized metrics, or ablation analyses that attribute gains to specific
components (Fanti et al., 2022). Production environments operate under strict governance—privacy,
data minimization, and cross-border transfer rules—that shape telemetry availability and model choice
but are rarely quantified in performance reports. Streaming infrastructure, feature services, and serving
stacks impose latency budgets and throughput targets that influence architecture selection and
hardware allocation, yet reproducible descriptions of these envelopes are limited (Langley et al.,
2021). Empirical accounts of drift management, refraining cadence, and rollback/canary practices
appear in mops literature but are infrequently tied to concrete SOC outcomes such as precision at fixed
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alert budgets or mean time to detect. Studies documenting cross-org or cross-region generalization
remain uncommon, even though base rates, software stacks, and work patterns vary markedly across
sites (Sepasgozar, 2021). Reports that integrate ATT&CK mappings, CVSS impact semantics, and
SIEM/SOAR workflows help situate predictions within operational narratives, but they represent a subset
of the literature. Hardware, quantization, and accelerator details—which materially affect cost and
responsiveness—are frequently under-specified. Consequently, the public record contains limited
production-grade evidence linking deep learning designs to sustained SOC performance under
regulatory and organizational constraints (Schobel et al., 2024).

Figure 9: Fragmentation in Cybersecurity Risk Literature
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This study systematically explored the literature on Al-powered deep learning models for real-time
cybersecurity risk assessment in enterprise IT systems by following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The PRISMA framework ensured that the
review process was transparent, structured, and rigorous at every stage, from search strategy to
synthesis. The process began with a comprehensive search across multiple academic databases using
a combination of controlled vocabulary and keyword terms associated with deep learning, real-time
inference, cybersecurity risk assessment, and enterprise IT environments. After removing duplicates, the
titles and abstracts of more than two thousand retrieved studies were screened for relevance. Those
that addressed deep learning models without any emphasis on real-time operafional contexts or
enterprise IT risk scoring were excluded. The remaining studies underwent full-text review, and only those
meeting predefined inclusion criteric—empirical evidence, architectural proposals, benchmark
evaluations, or systematic analyses related to the intersection of deep learning and real-time
cybersecurity risk assessment—were retained.The final set of eligible studies highlighted several
dominant technical approaches. Convolutional neural networks were widely used for network flow and
packet analysis, where their spatial feature extraction capabilities made them suitable for detecting
malicious patterns hidden within traffic streams. Recurrent neural networks and long short-term memory
architectures appeared frequently in research focusing on system logs, authentication events, and
sequential security telemetry, where capturing temporal dependencies was crucial fo identifying
anomalies such as lateral movement or privilege abuse. Transformer-based architectures were
increasingly adopted in studies involving large-scale logs, DNS records, and HTTP data because their
self-attenfion mechanisms allowed modeling of long-range dependencies with higher accuracy.
Graph neural networks emerged as a distinct approach in work modeling host—user-process
relationships, representing enterprise IT environments as graphs to reveal complex multi-stage attack
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chains. These architectural patterns were offen combined into hybrid systems that fused anomaly
detection with supervised classification, further illustrating the diversity of modeling strategies within the
literature.

Figure 10: Adapted methodology for this study
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The PRISMA-guided review also showed that real-time operational integration was a central focus across
many studies. These pipelines often used layered architectures with ingestion modules, feature services,
model servers, and decision engines orchestrated as microservices to ensure scalability and fault
isolation. Integration into Security Information and Event Management (SIEM) and Security
Orchestration, Automation, and Response (SOAR) platforms was a recurring theme, where model-
generated risk scores and threat probabilities triggered automated playbooks or analyst escalations.
Studies also documented the necessity of strict latency budgets, parallel serving, quantization, and
hardware acceleration to maintain  throughput while meeting real-time service level
agreements.Despite these innovations, the review found substantial heterogeneity in datasets,
evaluation practices, and deployment evidence. Some studies used legacy datasets with outdated
aftacks and redundant records, while others used newer corpora with synthetic traffic and staged
aftack scenarios, often lacking the complexity and noise of operational enterprise environments.
Evaluation metrics were inconsistent, with most studies reporting accuracy or AUC while neglecting
operational indicators such as precision under alert budget constraints, mean time to detect, or system
latency. Few studies described longitudinal deployments or addressed concept driff, domain shiff, and
governance constraints such as data minimization and cross-border data handling. By consolidating
this scattered evidence base, the PRISMA process revealed both the technical maturity and the
methodological gaps within the field, providing a structured synthesis of how deep learning has been
positioned as the analytical engine of real-time cybersecurity risk assessment in enterprise IT systems.
FINDINGS

Among the 142 articles retained through the systematic PRISMA screening, 87 focused directly on the
design, training, and evaluation of deep learning architectures for enterprise cybersecurity risk
assessment. Within this subset, the most frequently examined models were convolutional neural
networks, recurrent neural networks, long short-term memory networks, transformer-based attention
models, and graph neural networks. Collectively, these 87 articles had accumulated over 6,400
citations, reflecting their high influence and visibility within the research community. The findings across
these studies demonstrated that deep learning models consistently outperformed fraditional rule-based
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systems and classical machine learning methods in detecting complex and previously unseen threats
in enterprise telemetry. CNNs showed marked strength in classifying network flows and packet captures,
with multiple studies reporting detection accuracy increases of 10-25% over baseline models. RNNs and
LSTMs were found to be especially effective on sequential security logs, including authentication and
process creation data, where their ability to capture temporal dependencies produced clear gains in
anomaly detection sensitivity. Transformer-based architectures emerged in 19 of the reviewed studies,
and these achieved state-of-the-art results in modeling large-scale log and DNS telemetry by capturing
long-range dependencies that RNNs struggled to handle. GNN-based approaches were present in 14
arficles, and these showed unique strengths in modeling host-user—process relationships and lateral
movement patterns across enterprise systems. The combined evidence strongly indicates that deep
learning architectures enable more nuanced behavioral modeling than legacy approaches, especially
when large volumes of heterogeneous security data must be analyzed in real tfime. The sheer volume
of citations attributed to these architectural studies also underscores the central role of deep learning
as the current technical foundation of risk assessment research, demonstrating widespread
acceptance and replication of their reported findings.

A second major finding was that real-time operational integration has become a core concern of the
field. Of the 142 included studies, 61 explicitly addressed system architectures and infrastructural
approaches for deploying deep learning models under real-fime constraints. These 61 articles together
accounted for over 3,900 citations, indicating a rapidly growing scholarly interest in production-grade
integration. The studies described how models are embedded within distributed streaming frameworks
capable of handling millions of events per second while sustaining sub-second end-to-end latency.
Architectural blueprints consistently featured layered pipelines with data ingestion services, feature
engineering modules, model inference servers, and decision engines orchestrated as microservices.
Studies highlighted how these pipelines incorporated GPU acceleration, quantized model weights, and
parallel serving replicas to meet strict service level agreements. Integration into existing enterprise
security operations environments was another recurring theme, with 48 studies specifically describing
how deep learning risk scores were routed into Security Information and Event Management platforms
for correlation and visualization.

Figure 11: Influence Trends in Al Cybersecurity
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Another 22 studies detailed deployments where these scores directly tfriggered Security Orchestration,
Automation, and Response playbooks for automated containment, quarantine, or analyst escalation.
Several arficles reported measurable reductions in mean time to detect and mean time fo respond
when deep models were operationalized in this way. The consistent emphasis on throughput, latency
budgets, load balancing, and system observability across these studies reflects a clear recognition that
model accuracy alone is insufficient without reliable, low-latency serving pipelines. The number of
citations received by these deployment-focused works confirms that real-time integration is now
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considered an indispensable dimension of risk assessment research, signaling a maturing shift from
laboratory proof-of-concept studies toward operational cybersecurity environments.

The review also revealed significant patterns regarding datasets and evaluation practices, which were
analyzed across 79 of the included studies, collectively cited more than 5,100 ftimes. These articles
documented widespread reliance on a small set of benchmark datasets—such as NSL-KDD, UNSW-
NB15, CICIDS2017, Bot-loT, Tomtit, and UGR'16—while simultaneously acknowledging their limitations.
Multiple studies noted that these datasets often contain staged or synthetic traffic, outdated attack
types, and arfificially balanced class distributions, which can inflate performance metrics compared to
real operational environments. Only 18 of the 79 studies incorporated enterprise-origin telemetry with
authentic noise, incomplete labels, or naturally occurring class imbalance. Furthermore, evaluation
metrics showed substantial inconsistency. Nearly all of the 79 studies reported accuracy, precision,
recall, F1, or AUC, while only 11 studies included operational indicators such as precision under fixed
alert budgets, mean time to detect, or system latency. Calibration meftrics, such as expected calibration
error, were reported in just 6 studies. This imbalance of evaluation criteria highlights how much of the
current evidence base prioritizes stafistical classification performance over operational utility. The
dataset-focused articles also reported large performance drops when models tfrained on one dataset
were fested on another, underscoring generalization challenges caused by domain shift. This cross-
dataset decline appeared in 23 studies, several of which measured up to 30% accuracy loss under
domain transfer. Collectively, the large citation counts of these works demonstrate that their findings
are widely acknowledged, and they reveal a critical bottleneck: the field lacks standardized, realistic,
and diverse datfasets as well as consistent evaluation protocols that reflect enterprise security
operations. These issues reduce the interpretability and comparability of reported model performance
across studies.

Another prominent finding was the increasing recognition of robustness, privacy, and human-in-the-
loop considerations, documented in 54 studies with a combined citation count exceeding 4,200. These
articles analyzed how deep models in enterprise cybersecurity risk assessment are vulnerable to
adversarial machine learning threats, including evasion, poisoning, and model extraction attacks.
Twenty-one studies demonstrated that even minor perturbations to inputs could cause deep intrusion
detection models to misclassify threats as benign, while 15 studies explored how poisoned fraining data
could embed backdoors or degrade overall accuracy. Alongside these vulnerabilities, privacy
constraints were identified as major barriers to real-world deployment, especially in environments
governed by data minimization principles and cross-border data fransfer regulations. Twenty-four
studies explored privacy-preserving learning techniques such as federated learning and differential
privacy to enable collaborative model training without centralized data pooling. Human factors were
also emphasized, with 19 studies describing uncertainty estimation techniques that route low-
confidence alerts to analysts while automating responses to high-confidence detections. These
approaches used deep ensembles, Bayesian dropout, or abstention thresholds to align model behavior
with human decision-making workflows. Several arficles showed that human feedback captured
through SOC analyst interactions can be looped back to retrain and recalibrate models, progressively
improving accuracy and reducing false positives. Collectively, these highly cited studies indicate that
robustness, privacy, and human oversight are now understood as core dimensions of frustworthy risk
assessment systems, not opfional add-ons. The large number of citations confirms their relevance,
showing that the field increasingly views these dimensions as operational prerequisites for safe and
responsible deployment of deep learning in enterprise cybersecurity.

Finally, the review identified pervasive evidence gaps and fragmentation, discussed in 49 of the
analyzed studies which together had accumulated over 3,300 citations. These works highlighted that
research in this field remains scattered across domains, data types, and objectives, which has hindered
the formation of cumulative knowledge. Many network-centric studies emphasize packet or flow
analysis but rarely evaluate log-based or identity telemetry, while log-focused studies often neglect
network and cloud control-plane data. Different studies define and label threats inconsistently, using
categories such as attack families, anomaly/normal dichotomies, or ATT&CK tactics, which makes results
difficult to compare. The review also noted that fewer than 12 studies reported on long-term production-
scale deployments, meaning most findings remain validated only in confrolled laboratory conditions.
Reporting of operational metrics, latency budgets, infrastructure costs, and analyst workload impact
was sparse, with fewer than 10 studies providing quantitative evidence in these areas. Additionally, very
few studies addressed the effects of concept driff, data governance restrictions, or multi-region
organizational heterogeneity on model performance, even though these factors dominate enterprise
environments. The combination of limited deployment evidence, inconsistent evaluation methods, and
highly siloed data domains means that the current literature provides only partial insight info how deep
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learning performs as a real-time risk assessment tool at scale. The fact that these 49 studies have
collectively been cited over 3,300 times underscores that their critiques and gap analyses are widely
acknowledged, yet the same citation patterns also show that most empirical work continues to operate
within fragmented, narrow scopes. This evidence gap remains one of the most significant findings to
emerge from the review, as it frames the limitations that shape the reliability and operational
applicability of existing research on Al-driven cybersecurity risk assessment in enterprise IT systems.
DISCUSSION

The findings of this review indicate that deep learning architectures have significantly advanced the
technical capabilities of enterprise cybersecurity risk assessment by outperforming fraditional detection
and rule-based systems, a conclusion that aligns with yet also expands upon earlier studies. Classical
approaches such as signature-based infrusion detection and statistical anomaly detection historically
relied on manually crafted features and rule sets, which struggled to detect novel or obfuscated attacks
(Alzubaidi et al., 2021). Earlier machine learning-based frameworks, including decision trees, support
vector machines, and random forests, offered modest improvements but remained constrained by their
dependence on feature engineering and their limited scalability in high-dimensional data. In contrast
(Shrestha & Mahmood, 2019), this review synthesized evidence from over 80 studies showing that
convolutional neural networks (CNNs) achieved notable gains by autonomously learning hierarchical
feature representations from raw network flows and packet data, improving detection accuracy and
reducing false positives compared to conventional baselines. Similarly, long short-term memory (LSTM)
models consistently outperformed older statistical femporal models such as hidden Markov models in
log and authentication data by capturing long-range dependencies (Alom et al., 2019). Transformers,
which were not examined in older cybersecurity research, emerged in newer studies as especially
effective for large-scale log and DNS analysis due to their self-attention mechanisms. Graph neural
networks (GNNs) also offered a leap beyond earlier relational mining techniques by modeling host-
user—process graphs with message passing, surpassing traditional graph mining and clustering methods
(Alom et al., 2019). Compared with earlier literature, the reviewed evidence shows that deep learning
not only improves accuracy but also enhances adaptability across diverse telemetry types, marking a
paradigm shiff from manual-feature models to end-to-end representation learning in real-time
enterprise cybersecurity.

Another major advancement identified in the findings was the operational integration of deep learning
models into real-time enterprise security pipelines, which represents a substantial departure from the
batch-oriented approaches that dominated earlier literature. Earlier studies primarily trained and
evaluated infrusion detection systems in offline or batch environments, where models processed stored
data and returned results without strict latency constraints (Taye, 2023b). This approach limited their
applicability in security operations centers (SOCs) that require streaming analytics capable of detecting
and responding to threats as they occur. By contrast, the reviewed studies demonstrated the
emergence of distributed streaming architectures using frameworks such as Apache Storm and Apache
Flink to serve deep learning models with sub-second inference latency. These newer studies emphasized
layered microservices architectures, GPU acceleration, model quantization, and parallel serving—
technical strategies rarely documented in older research but now central to meeting enterprise service
level agreements (Khan et al., 2020). Integration with Security Information and Event Management
(SIEM) and Security Orchestration, Automation, and Response (SOAR) systems has also transformed the
operational role of these models: earlier studies often ended at classification accuracy, while newer
ones showed how model outputs trigger automated containment workflows or analyst escalations
(Yadav & Vishwakarma, 2020). This contrasts sharply with earlier batch-model paradigms, which
freated machine learning as a post-hoc analytic tool rather than a live decision-making component
within operational pipelines. The reviewed evidence thus reveals a clear evolutionary shift from static
(Dargan et al., 2020), after-the-fact analysis toward embedded, real-time detection-and-response
systems driven by deep learning models, addressing operational gaps that earlier approaches could
not overcome.

The findings on datasets and evaluation methodologies also diverge from earlier practices by exposing
systematic issues of realism and comparability that were largely overlooked in prior research. Older
literature in infrusion detection frequently relied on the KDD'99 dataset, which although foundational,
was later criticized for redundancy, outdated attack types, and unredlistic traffic characteristics (Min
et al., 2018). The review shows that while many contemporary studies have shifted to newer datasets
such as UNSW-NB15, CICIDS2017, Bot-loT, and Tomtit, these too inherit limitations of synthetic traffic,
staged attacks, and balanced class distributions, similar tfo the problems of their predecessors
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(Chauhan & Singh, 2018). Earlier works rarely questioned the external validity of results, whereas the
newer body of evidence documented substantial performance degradation—up to 30% accuracy
loss—when models tfrained on one dataset were evaluated on another, revealing domain shift and
overfitting to dataset artifacts (Ahmed et al., 2023). Furthermore, older studies almost exclusively
reported accuracy or AUC without operational metrics, while newer studies have begun emphasizing
additional measures such as precision under alert budgets, mean time to detect, and inference latency
(Khan & Yairi, 2018). However, this review found that such operational metrics remain rare, appearing
in only a small subset of articles. Compared to earlier literature that uncritically accepted benchmark
metrics, current findings highlight a more critical recognition that statistical accuracy alone is insufficient
for enterprise deployment. This shift represents growing methodological maturity but also underscores
an ongoing gap: despite modest progress, the field still lacks standardized, realistic datasets and real-
time evaluation protocols, a concern largely absents in older studies but now prominently documented.

Figure 12: Key Findings in Enterprise Cybersecurity
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This review also revealed that robustness concerns—particularly adversarial machine learning threats—
have become a central topic in the recent literature, contrasting sharply with their near absence in
earlier cybersecurity detection studies. Older research generally assumed stationarity of data and
trustworthiness of fraining corpora, focusing solely on accuracy under benign conditions (Saleem et
al., 2021). In contrast, over 20 of the reviewed studies empirically demonstrated evasion attacks,
showing that small perturbations could cause deep models to misclassify malicious traffic as benign,
while another 15 studies examined poisoning attacks that inserted backdoors or degraded detection
performance. These works align with advances in the broader machine learning literature showing deep
networks’ vulnerability to adversarial examples (Kamilaris & Prenafeta-BoldU, 2018), a topic that older
cybersecurity studies never addressed. The reviewed literature also presented countermeasures such as
adversarial training, input sanitization, and randomized smoothing—defenses not found in earlier
infrusion detection systems. This represents a methodological shift from older assumptions of clean, static
data toward an adversarial risk perspective that considers adaptive threat actors. Furthermore,
uncertainty estimation and human-in-the-loop escalation mechanisms emerged in several newer
studies (Nash et al., 2018), using Bayesian dropout and deep ensembles to defer low-confidence cases
to analysts. Earlier systems generally operated as black-box classifiers without confidence calibration or
analyst feedback loops. The contrast highlights how the field has moved from purely accuracy-oriented
designs to architectures explicitly engineered for robustness, trustworthiness, and operatfional
resilience—dimensions that earlier research did not incorporate or evaluate (Ismail Fawaz et al., 2019).
This development indicates a maturation of risk assessment models from experimental classifiers toward
dependable components of enterprise security operations.
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Privacy-preserving model development has also emerged as a prominent dimension in the recent
literature, which was largely absent from earlier studies that assumed unconstrained centralized data
access. Older works rarely discussed privacy or legal constraints when using network or log data,
reflecting an era when regulatory frameworks such as GDPR were not yet enforced (Da’'u & Salim,
2020). In contrast, over 20 of the studies in this review explicitly applied federated learning, secure
aggregation, or differential privacy to frain deep models across distributed enterprise data sources while
minimizing personal data exposure (Suganyadevi et al., 2022). These approaches allow security
models to learn from data distributed across different business units or geographic regions without
directly transferring raw data, addressing legal restrictions on cross-border data movement and data
minimization principles (Zhang et al., 2021). Earlier centralized fraining methods could not be deployed
under such constraints. Additionally, newer studies incorporated dataset versioning, lineage tracking,
and model cards to document compliance, whereas such governance practices were not reported in
older literature. This contrast shows a paradigm shift: while earlier models prioritized technical feasibility
alone, the current evidence base integrates privacy and governance as first-class operational
constraints. This development reflects how the field has adapted to the legal and organizational realities
of enterprise IT (Huang et al., 2020), something largely ignored in prior research. The incorporation of
privacy-preserving learning not only broadens the applicability of deep models but also ensures their
legitimacy under modern compliance regimes, marking a major departure from the assumptions
underlying older studies.

Another key difference between the current findings and earlier research is the growing incorporation
of human-in-the-loop designs, in sharp contrast to the fully automated paradigms that characterized
prior studies. Older intrusion detection and machine learning systems typically assumed that models
would operate independently, aiming for maximum automation and minimal human involvement
(Caldera et al., 2018). However, this review found that over 15 recent studies embedded feedback
loops where analyst responses to alerts were logged and used to refrain and recalibrate models,
gradually improving precision and reducing false positives. Uncertainty estimation techniques, such as
deep ensembles and Monte Carlo dropout, were applied in 12 studies to identify low-confidence
predictions and route them to human analysts while automatically actioning high-confidence
detections (Singh et al., 2020). This design approach differs from earlier systems that made binary
predictions without any measure of confidence or selective abstention. Additionally, explain ability
methods like SHAP, LIME, and ATT&CK mapping were integrated in many of the newer models to provide
analysts with interpretable evidence for model decisions, whereas older systems offered little
transparency (Sreenu & Durai, 2019). These developments align cybersecurity risk assessment with
principles of human-Al collaboration rather than full automation. The comparison reveals a conceptual
shift: older systems treated analysts as external evaluators of model outputs, while newer systems embed
analysts as active participants whose feedback directly influences model behavior. This change
represents an important step toward operationalizing deep learning within the sociotechnical realities
of enterprise security operations, bridging the gap between algorithmic output and human decision-
making in ways that earlier literature did not attempt (Cao et al., 2018).

Finally, the review's identification of fragmentation and limited production-scale deployment evidence
contrasts with the uncritical optimism of earlier literature. Prior research often presented new algorithms
with high benchmark accuracy while providing little information on operational costs, infrastructure
constraints, or long-term stability (Law et al., 2019). This review found that fewer than a dozen studies
reported longitudinal enterprise deployments, and fewer than ten measured real-world metrics such as
latency, analyst workload, or incident response speed. This scarcity of deployment evidence echoes
critiques from earlier meta-analyses that warned of evaluation—-deployment gaps but were not widely
heeded (Christopher et al., 2018). Furthermore, the review found sharp silos between network-based,
log-based, and graph-based research streams, with little cross-domain integration, whereas earlier
literature often assumed that findings from one data type would generalize to others. The current
findings show that such assumptions are unfounded, as models trained on one telemeftry type or dataset
often fail under domain shift (Batmaz et al., 2019). This recognition of fragmentation and generalization
failure represents a departure from earlier narratives, which emphasized algorithmic novelty over
operational realism. In short, while older studies claimed rapid progress based on isolated benchmarks,
the current evidence base exposes how heterogeneous data domains, inconsistent labeling practices,
and absent deployment evaluations limit the reliability of reported performance (Stetco et al., 2019).
This critical stance distinguishes the present findings from earlier work by explicitly foregrounding the
structural and methodological barriers that contfinue to impede operational adoption of deep learning
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for real-time enterprise cybersecurity risk assessment.

CONCLUSION

Al-Powered Deep Learning Models for Real-Time Cybersecurity Risk Assessment in Enterprise IT Systems
represent a fransformative advancement in how organizations defend complex digital infrastructures,
infegrating high-capacity learning architectures with real-fime operational pipelines to detect, prioritize,
andrespond to emerging cyber threats at enterprise scale. Deep learning models such as convolutional
neural networks, recurrent and long short-term memory networks, transformer-based attention
mechanisms, and graph neural networks have demonstrated the ability to model diverse and high-
dimensional telemetry including network flows, DNS/HTTP traffic, authentication logs, endpoint
detection data, and host-user-process relationships, enabling the identification of subtle afttack
patterns and previously unseen threats that traditional signature-based and rule-driven systems
frequently miss. These architectures have been deployed within distributed streaming frameworks
capable of processing millions of security events per second, leveraging GPU acceleration, model
guantization, and parallel serving to meet strict latency service level agreements while producing
calibrated risk scores suitable for immediate action. Integration intfo Security Information and Event
Management and Security Orchestration, Automation, and Response environments allows these risk
scores to drive automated containment, quarantine, and escalation workflows, reducing mean time to
detect and mean fime to respond while minimizing analyst fatigue through prioritized alerting. However,
the literature also reveals persistent challenges including heavy reliance on synthetic benchmark
datasets with limited realism, inconsistent evaluation methodologies that favor accuracy and AUC over
operational metrics like latency and precision under alert budgets, and a scarcity of longitudinal
deployment studies demonstrating resilience under concept drift, data governance constraints, and
cross-domain generalization pressures. Recent studies have begun addressing these gaps through
federated learning, differential privacy, adversarial robustness techniques, uncertainty estimation for
human-in-the-loop escalation, and explain ability tools such as SHAP, LIME, and ATT&CK-based
mappings, which collectively enhance trust, transparency, and compliance alignment. Altogether, this
body of work positions deep learning as the analytical core of next-generation enterprise cybersecurity
risk assessment, while also highlighting the methodological, infrastructural, and governance conditions
that determine whether these models can achieve sustained and reliable operational performance in
real-time environments.

RECOMMENDATIONS

Based on the synthesis of current evidence on Al-powered deep learning models for real-fime
cybersecurity risk assessment in enterprise IT systems, several strategic recommendations can enhance
both research and operational deployment. First, organizations and researchers should prioritize the
development and use of more realistic, heterogeneous, and longitudinal datasets that reflect actual
enterprise environments, including authentic noise, incomplete labels, natural class imbalance, and
multimodal telemetry from endpoint, network, identity, and cloud sources. Reliance on synthetic or
overly balanced datasets should be reduced, as they often inflate performance and hinder
generalization. Second, evaluation protocols should extend beyond accuracy and AUC to incorporate
operational metrics such as precision under fixed alert budgets, mean time fo detect and respond,
system latency, throughput, and analyst workload impact. Establishing standardized real-time
benchmarking frameworks and reporting guidelines will make results more comparable and actionable
across studies. Third, operafional deployments should embed robust Mops practices, including
continuous monitoring for concept drift, versioned dataset and model lineage tracking, automated
retraining pipelines, and rollback mechanisms to ensure sustained performance under evolving threat
landscapes. Fourth, organizations should implement privacy-preserving methods such as federated
learning and differential privacy to enable collaborative model fraining while complying with data
minimization and cross-border transfer restrictions. Fifth, systems should be designed with human-in-the-
loop workflows, incorporating uncertainty estimation, selective abstention, and explain ability tools like
SHAP, LIME, and ATT&CK mappings to support analyst decision-making and improve frust. Finally, future
development should explicitly infegrate adversarial robustness tfechniques—such as adversarial fraining,
input sanitization, and ensemble diversity—to withstand evasion and poisoning attacks in operational
settings. These recommendations collectively aim to improve the realism, reliability, resilience, and
accountability of deep learning models deployed for real-time cybersecurity risk assessment in
enterprise IT infrastructures.

697



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 675-704

REFERENCES

1.

[2].

[3].

[4].

[11].

[12].

[13].

[14].

[15].
[16].
(7).
[8].

[19].

[20].
[21].
[22].
[23].
[24].

[25].

Abdur Razzak, C., Golam Qibria, L., & Md Arifur, R. (2024). Predictive Analytics For Apparel Supply Chains:
A Review Of MIS-Enabled Demand Forecasting And Supplier Risk Management. American Journal of
Interdisciplinary Studies, 5(04), 01-23. https://doi.org/10.63125/80dwy222

Abid, A., Roy, S. K., Lees-Marshment, J., Dey, B. L., Muhammad, S. S., & Kumar, S. (2025). Political social
media marketing: a systematic literature review and agenda for future research. Electronic Commerce
Research, 25(2), 741-776.

Ahmed, S. F., Alam, M. S. B., Hassan, M., Rozbu, M. R., Ishtiak, T., Rafa, N., Mofijur, M., Shawkat Ali, A., &
Gandomi, A. H. (2023). Deep learning modelling techniques: current progress, applications, advantages,
and challenges. Artificial intelligence review, 56(11), 13521-13617.

Aiyanyo, |. D., Samuel, H., & Lim, H. (2020). A systematic review of defensive and offensive cybersecurity
with machine learning. Applied Sciences, 10(17), 5811.

Al-Shehari, T. A., Rosaci, D., Al-Razgan, M., Alfakih, T., Kadrie, M., Afzal, H., & Nawaz, R. (2024). Enhancing
insider threat detection in imbalanced cybersecurity seftings using the density-based local outlier factor
algorithm. IEEE Access, 12, 34820-34834.

Alaghbari, K. A., Saad, M. H. M., Hussain, A., & Alam, M. R. (2022). Complex event processing for physical
and cyber security in datacentres-recent progress, challenges and recommendations. Journal of Cloud
Computing, 11(1), 65.

Alani, M. M. (2021). Big data in cybersecurity: a survey of applications and future frends. Journal of Reliable
Intelligent Environments, 7(2), 85-114.

Alharbi, A., Seh, A. H., Alosaimi, W., Alyami, H., Agrawal, A., Kumar, R., & Khan, R. A. (2021). Analyzing the
impact of cyber security related afttributes for intrusion detection systems. Sustainability, 13(22), 12337.
Allioui, H., & Mourdi, Y. (2023). Exploring the full potentials of 10T for better financial growth and stability: A
comprehensive survey. Sensors, 23(19), 8015.

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Hasan, M., Van Essen, B. C.,
Awwal, A. A., & Asari, V. K. (2019). A state-of-the-art survey on deep learning theory and architectures.
Electronics, 8(3), 292.

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaria, J., Fadhel, M. A,,
Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges,
applications, future directions. Journal of big Data, 8(1), 53.

Amangeldy, B., Imankulov, T., Tasmurzayev, N., Dikhanbayeva, G., & Nurakhov, Y. (2025). A Review of
Arfificial Inteligence and Deep Learning Approaches for Resource Management in Smart Buildings.
Buildings, 15(15), 2631.

Anthi, E., Williams, L., Rhode, M., Burnap, P., & Wedgbury, A. (2021). Adversarial aftacks on machine learning
cybersecurity defences in industrial control systems. Journal of Information Security and Applications, 58,
102717.

Armenia, S., Angelini, M., Nonino, F., Palombi, G., & Schlitzer, M. F. (2021). A dynamic simulation approach
to support the evaluation of cyber risks and security investments in SMEs. Decision Support Systems, 147,
113580.

Azmi, R., Tibben, W., & Win, K. T. (2018). Review of cybersecurity frameworks: context and shared concepts.
Journal of Cyber Policy, 3(2), 258-283.

Batmaz, Z., Yurekli, A., Bilge, A., & Kaleli, C. (2019). A review on deep learning for recommender systems:
challenges and remedies. Artificial intelligence review, 52(1), 1-37.

Benaroch, M. (2020). Cybersecurity risk in IT outsourcing—Challenges and emerging redalities. In Information
systems outsourcing: The era of digital fransformation (pp. 313-334). Springer.

Benz, M., & Chatterjee, D. (2020). Calculated risk? A cybersecurity evaluation tool for SMEs. Business
Horizons, 63(4), 531-540.

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., Modi, K., & Ghayvat, H. (2021). CNN
variants for computer vision: History, architecture, application, challenges and future scope. Electronics,
10(20), 2470.

Borky, J. M., & Bradley, T. H. (2018). Protecting information with cybersecurity. In Effective model-based
systems engineering (pp. 345-404). Springer.

Bruneliere, H., Burger, E., Cabot, J., & Wimmer, M. (2019). A feature-based survey of model view
approaches. Software & Systems Modeling, 18(3), 1931-1952.

Caldera, S., Rassau, A., & Chai, D. (2018). Review of deep learning methods in robotic grasp detection.
Multimodal Technologies and Interaction, 2(3), 57.

Cao, K., Zhang, T., & Huang, J. (2024). Advanced hybrid LSTM-transformer architecture for real-tfime multi-
task prediction in engineering systems. Scientific Reports, 14(1), 4890.

Cao, W., Wang, X., Ming, Z., & Gao, J. (2018). A review on neural networks with random weights.
Neurocomputing, 275, 278-287.

Caramancion, K. M., Li, Y., Dubois, E., & Jung, E. S. (2022). The missing case of disinformation from the
cybersecurity risk confinuum: A comparative assessment of disinformation with other cyber threats. Data,
7(4), 49.

698


https://doi.org/10.63125/80dwy222

[26].

[27].
[28].
[29].

[30].

[31].

[32].

[33].

[34].
[35].
[36].
[37].
[38].

[39].

[40].

[41].

[42].

[43].

[44].

[45].

[46].
[47].

[48].

[49].
[50].

[51].

ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 675-704

Castro-Medina, F., Rodriguez-Mazahua, L., Lépez-Chau, A., Cervantes, J., Alor-Herndndez, G., & Machorro-
Cano, . (2020). Application of dynamic fragmentation methods in multimedia databases: a review.
Entropy, 22(12), 1352.

Chauhan, N. K., & Singh, K. (2018). A review on conventional machine learning vs deep learning. 2018
International conference on computing, power and communication technologies (GUCON]),

Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S., & Miao, Y. (2021). Review of image classification algorithms based
on convolutional neural networks. Remote Sensing, 13(22), 4712.

Chen, Y., Xie, Y., Song, L., Chen, F., & Tang, T. (2020). A survey of accelerator architectures for deep neural
networks. Engineering, 6(3), 264-274.

Cheng, J., Wang, P.-s., Li, G., Hu, Q.-h., & Lu, H.-g. (2018). Recent advances in efficient computation of
deep convolutional neural networks. Frontiers of Information Technology & Electronic Engineering, 19(1).
64-77.

Christopher, M., Belghith, A., Bowd, C., Proudfoot, J. A., Goldbaum, M. H., Weinreb, R. N., Girkin, C. A,,
Liebmann, J. M., & Zangwill, L. M. (2018). Performance of deep learning architectures and fransfer learning
for detecting glaucomatous optic neuropathy in fundus photographs. Scientific Reports, 8(1), 16685.
Da'u, A., & Salim, N. (2020). Recommendation system based on deep learning methods: a systematic
review and new directions. Artificial intelligence review, 53(4), 2709-2748.

Dargan, S., Kumar, M., Ayyagari, M. R., & Kumar, G. (2020). A survey of deep learning and its applications:
a new paradigm to machine learning. Archives of computational methods in engineering, 27(4), 1071-
1092.

Dini, P., Elhanashi, A., Begni, A., Saponara, S., Zheng, Q., & Gasmi, K. (2023). Overview on infrusion detection
systems design exploiting machine learning for networking cybersecurity. Applied Sciences, 13(13), 7507.
Dominguez, X., Prado, A., Arboleya, P., & Terzija, V. (2023). Evolution of knowledge mining from data in
power systems: The Big Data Analytics breakthrough. Electric Power Systems Research, 218, 109193.
Ekstedt, M., Afzal, Z., Mukherjee, P., Hacks, S., & Lagerstrom, R. (2023). Yet another cybersecurity risk
assessment framework. International Journal of Information Security, 22(6), 1713-1729.

Eling, M. (2018). Cyberrisk and cyber risk insurance: Status quo and future research. The Geneva papers on
risk and insurance-issues and practice, 43(2), 175-179.

Erola, A., Agrafiofis, I., Nurse, J. R., Axon, L., Goldsmith, M., & Creese, S. (2022). A system to calculate Cyber
Value-at-Risk. Computers & Security, 113, 102545.

Fanti, L., Guarascio, D., & Moggi, M. (2022). From Heron of Alexandria to Amazon's Alexa: a stylized history
of Al and its impact on business models, organization and work. Journal of Industfrial and Business
Economics, 49(3), 409-440.

Fielder, A., K&nig, S., Panaousis, E., Schauer, S., & Rass, S. (2018). Risk assessment uncertainties in
cybersecurity investments. Games, 9(2), 34.

Ghosh, A., Sufian, A., Sultana, F., Chakrabarti, A., & De, D. (2019). Fundamental concepts of convolutional
neural network. In Recent frends and advances in artificial intelligence and Internet of Things (pp. 519-567).
Springer.

Guérineau, J., Bricogne, M., Rivest, L., & Durupt, A. (2022). Organizing the fragmented landscape of
multidisciplinary product development: a mapping of approaches, processes, methods and fools from the
scientific literature. Research in Engineering Design, 33(3), 307-349.

Gunduz, M. Z., & Das, R. (2020). Cyber-security on smart grid: Threats and potential solutions. Computer
networks, 169, 107094.

Hamid, N. A. W. A., & Singh, B. (2024). High-performance computing based operating systems, software
dependencies and loT integration. In High Performance Computing in Biomimetics: Modeling, Architecture
and Applications (pp. 175-204). Springer.

Herndndez-Rivas, A., Morales-Rocha, V., & S&nchez-Solis, J. P. (2024). Towards autonomous cybersecurity:
A comparative analysis of agnostic and hybrid Al approaches for advanced persistent threat detection.
In Innovative Applications of Artificial Neural Networks to Data Analytics and Signal Processing (pp. 181-
219). Springer.

Hoffmann, R., Napidrkowski, J., Protasowicki, T., & Stanik, J. (2020). Risk based approach in scope of
cybersecurity threats and requirements. Procedia Manufacturing, 44, 655-662.

Hu, F., Qiu, X., Jing, G., Tang, J., & Zhu, Y. (2023). Digital twin-based decision making paradigm of raise
boring method. Journal of Intelligent Manufacturing, 34(5), 2387-2405.

Huang, S.-C., Pareek, A., Seyyedi, S., Banerjee, I., & Lungren, M. P. (2020). Fusion of medical imaging and
electronic health records using deep learning: a systematic review and implementation guidelines. NPJ
digital medicine, 3(1), 136.

Hurel, L. M., & Lobato, L. C. (2018). Unpacking cyber norms: private companies as norm entrepreneurs.
Journal of Cyber Policy, 3(1), 61-76.

ljari, K., & Paternina-Arboleda, C. D. (2024). Sustainable Pavement Management: Harnessing Advanced
Machine Learning for Enhanced Road Maintenance. Applied Sciences, 14(15), 6640.

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A. (2019). Deep learning for time series
classification: a review. Data mining and knowledge discovery, 33(4), 917-963.

699



[52].

[53].

[54].

[55].

[56].

[57].
[58].
[59].
[60].

[61].

[62].

[63].
[64].
[65].
[66].
[67].

[68].

[69].
[70].
[71].
[72].

[73].

[74].
[75].
[76].
[771.

[78].

ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 675-704

Istiaque, M., Dipon Das, R., Hasan, A., Samia, A., & Sayer Bin, S. (2023). A Cross-Sector Quantitative Study on
The Applications Of Social Media Analytics In Enhancing Organizational Performance. American Journal
of Scholarly Research and Innovation, 2(02), 274-302. https://doi.org/10.63125/d8ree044

Istiaque, M., Dipon Das, R., Hasan, A., Samia, A., & Sayer Bin, S. (2024). Quantifying The Impact Of Network
Science And Social Network Analysis In Business Contexts: A Meta-Analysis Of Applications In Consumer
Behavior, Connectivity. International Journal of Scientific Interdisciplinary Research, 5(2), 58-89.
https://doi.org/10.63125/vgkwe?38

Jahid, M. K. A. S. R. (2022). Empirical Analysis of The Economic Impact Of Private Economic Zones On
Regional GDP Growth: A Data-Driven Case Study Of Sirajganj Economic Zone. American Journal of
Scholarly Research and Innovation, 1(02), 01-29. https://doi.org/10.63125/je9w1c40

Jarjoui, S., & Murimi, R. (2021). A framework for enterprise cybersecurity risk management. In Advances in
cybersecurity management (pp. 139-161). Springer.

Javed, H., E-Sappagh, S., & Abuhmed, T. (2024). Robustness in deep learning models for medical
diagnostics: security and adversarial challenges towards robust Al applications. Artificial intelligence
review, 58(1), 12.

Jiao, J., Zhao, M., Lin, J., & Liang, K. (2020). A comprehensive review on convolutional neural network in
machine fault diagnosis. Neurocomputing, 417, 36-63.

Kalinin, M., Krundysheyv, V., & Zegzhda, P. (2021). Cybersecurity risk assessment in smart city infrastructures.
Machines, 9(4), 78.

Kamilaris, A., & Prenafeta-Boldy, F. X. (2018). Deep learning in agriculture: A survey. Computers and
electronics in agriculture, 147, 70-90.

Kang, W., & Chung, J. (2018). Power-and time-aware deep learning inference for mobile embedded
devices. IEEE Access, 7, 3778-3789.

Karaman, A., Karaboga, D., Pacal, I., Akay, B., Basturk, A., Nalbantoglu, U., Coskun, S., & Sahin, O. (2023).
Hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm
for high performance real-time automatic colorectal cancer (CRC) polyp detection. Applied Intelligence,
53(12), 15603-15620.

Karras, K., Pallis, E., Mastorakis, G., Nikoloudakis, Y., Batalla, J. M., Mavromoustakis, C. X., & Markakis, E.
(2020). A hardware acceleration platform for Al-based inference at the edge. Circuits, Systems, and Signal
Processing, 39(2), 1059-1070.

Katzr, Z., & Elovici, Y. (2018). Quantifying the resilience of machine learning classifiers used for cyber security.
Expert Systems with Applications, 92, 419-429.

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep
convolutional neural networks. Artificial intelligence review, 53(8), 5455-5516.

Khan, S., & Yairi, T. (2018). A review on the application of deep learning in system health management.
Mechanical systems and signal processing, 107, 241-265.

Kianpour, M., Kowalski, S. J., & @verby, H. (2021). Systematically understanding cybersecurity economics: A
survey. Sustainability, 13(24), 13677.

Kianpour, M., & Raza, S. (2024). More than malware: unmasking the hidden risk of cybersecurity regulations.
International Cybersecurity Law Review, 5(1), 169-212.

Kim, T.-h., Srinivasulu, A., Chinthaginjala, R., Dhakshayani, J., Zhao, X., & Obaidur Rab, S. (2025). Enhancing
cybersecurity through script development using machine and deep learning for advanced threat
mitigation. Scientific Reports, 15(1), 8297.

Kosmowski, K. T., Piesik, E., Piesik, J., & Sliwiiski, M. (2022). Integrated functional safety and cybersecurity
evaluation in a framework for business continuity management. Energies, 15(10), 3610.

Kosseff, J. (2018). Developing collaborative and cohesive cybersecurity legal principles. 2018 10th
International Conference on Cyber Conflict (CyCon),

Krichen, M. (2023). Convolutional neural networks: A survey. Computers, 12(8), 151.

Ksibi, S., Jaidi, F., & Bouhoula, A. (2023). A comprehensive study of security and cyber-security risk
management within e-Health systems: Synthesis, analysis and a novel quantified approach. Mobile
Networks and Applications, 28(1), 107-127.

Kure, H. ., Islam, S., & Mouratidis, H. (2022). An integrated cyber security risk management framework and
risk predication for the critical infrastructure protection. Neural Computing and Applications, 34(18), 15241-
15271.

Kure, H. 1., Islam, S., & Razzaque, M. A. (2018). An integrated cyber security risk management approach for
a cyber-physical system. Applied Sciences, 8(6), 898.

Langley, D. J., Van Doorn, J., Ng, |. C., Stiedlitz, S., Lazovik, A., & Boonstra, A. (2021). The Internet of
Everything: Smart things and their impact on business models. Journal of Business Research, 122, 853-863.
Law, R., Li, G., Fong, D. K. C., & Han, X. (2019). Tourism demand forecasting: A deep learning approach.
Annals of tourism research, 75, 410-423.

Lee, I. (2021). Cybersecurity: Risk management framework and investment cost analysis. Business Horizons,
64(5), 659-671.

Li, L., He, W., Xu, L., Ash, I., Anwar, M., & Yuan, X. (2019). Investigating the impact of cybersecurity policy
awareness on employees’ cybersecurity behavior. International Journal of Information Management, 45,
13-24.

700


https://doi.org/10.63125/d8ree044
https://doi.org/10.63125/vgkwe938
https://doi.org/10.63125/je9w1c40

[79].
[80].

[81].

[82].

[83].

[84].

[85].

[86].

[87].

88].

[89].

[90].

[91].

[92].

[23].

[94].

[95].

[96].

[97].

[98].

[99].

[100].

ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 675-704

Linkov, 1., & Kott, A. (2019). Fundamental concepts of cyber resilience: Introduction and overview. In Cyber
resilience of systems and networks (pp. 1-25). Springer.

Liu, R., Shi, J., Chen, X., & Lu, C. (2024). Network anomaly detection and security defense technology based
on machine learning: A review. Computers and Electrical Engineering, 119, 109581.

Masip-Bruin, X., Marin-Tordera, E., Ruiz, J., Jukan, A., Trakadas, P., Cernivec, A, Lioy, A., Lépez, D., Santos,
H., & Gonos, A. (2021). Cybersecurity in ICT supply chains: key challenges and a relevant architecture.
Sensors, 21(18), 6057.

McCarthy, A., Ghadafi, E., Andriotis, P., & Legg, P. (2022). Functionality-preserving adversarial machine
learning for robust classification in cybersecurity and infrusion detection domains: A survey. Journal of
Cybersecurity and Privacy, 2(1), 154-190.

Md Arifur, R., & Sheratun Noor, J. (2022). A Systematic Literature Review of User-Cenfric Design In Digital
Business Systems: Enhancing Accessibility, Adoption, And Organizational Impact. Review of Applied
Science and Technology, 1(04), 01-25. https://doi.org/10.63125/ndjkpm77

Md Ashiqur, R., Md Hasan, Z., & Afrin Binta, H. (2025). A meta-analysis of ERP and CRM integration fools in
business process optimization. ASRC Procedia: Global Perspectives in Science and Scholarship, 1(01), 278-
312. https://doi.org/10.63125/yah70173

Md Hasan, Z. (2025). Al-Driven business analytics for financial forecasting: a systematic review of decision
support models in  SMES. Review of Applied Science and Technology, 4(02), 86-117.
https://doi.org/10.63125/gjrpv442

Md Hasan, Z., Mohammad, M., & Md Nur Hasan, M. (2024). Business Intelligence Systems In Finance And
Accounting: A Review Of Real-Time Dashboarding Using Power Bl & Tableau. American Journal of Scholarly
Research and Innovation, 3(02), 52-79. hitps://doi.org/10.63125/fy4w7w04

Md Hasan, Z., & Moin Uddin, M. (2022). Evaluating Agile Business Analysis in Post-Covid Recovery A
Comparative Study On Financial Resilience. American Journal of Advanced Technology and Engineering
Solutions, 2(03), 01-28. https://doi.org/10.63125/6nee1m28

Md Hasan, Z., Sheratun Noor, J., & Md. Zafor, I. (2023). Strategic role of business analysts in digital
fransformation tools, roles, and enterprise outcomes. American Journal of Scholarly Research and
Innovation, 2(02), 246-273. https://doi.org/10.63125/rc45z918

Md Ismail, H., Md Mahfuj, H., Mohammad Aman Ullah, S., & Shofiul Azam, T. (2025). IMPLEMENTING
ADVANCED TECHNOLOGIES FOR ENHANCED CONSTRUCTION SITE SAFETY. American Journal of Advanced
Technology and Engineering Solutions, 1(02), 01-31. https://doi.org/10.63125/3v8rpr04

Md Ismail Hossain, M. A. B., amp, & Mousumi Akter, S. (2023). Water Quality Modelling and Assessment Of
The Buriganga River Using Qual2k. Global Mainstream Journal of Innovation, Engineering & Emerging
Technology, 2(03), 01-11. https://doi.org/10.62304/jieet.v2i03.64

Md Mahamudur Rahaman, S. (2022). Electrical And Mechanical Troubleshooting in Medical And
Diagnostic Device Manufacturing: A Systematic Review Of Industry Safety And Performance Protocols.
American Journal of Scholarly Research and Innovation, 1(01), 295-318. https://doi.org/10.63125/d68y35%90
Md Mahamudur Rahaman, S., & Rezwanul Ashraf, R. (2022). Integration of PLC And Smart Diagnostics in
Predictive Maintenance of CT Tube Manufacturing Systems. International Journal of Scientific
Interdisciplinary Research, 1(01), 62-96. https://doi.org/10.63125/gspb0f75

Md Nazrul Islam, K. (2022). A Systematic Review of Legal Technology Adoption In Contract Management,
Data Governance, And Compliance Monitoring. American Journal of Interdisciplinary Studies, 3(01), 01-30.
https://doi.org/10.63125/caangg0é

Md Nur Hasan, M., Md Musfiqur, R., & Debashish, G. (2022). Strategic Decision-Making in Digital Retail Supply
Chains: Harnessing Al-Driven Business Intelligence From Customer Data. Review of Applied Science and
Technology, 1(03), 01-31. https://doi.org/10.63125/6a7rpyé2

Md Redwanul, I., & Md. Zafor, I. (2022). Impact of Predictive Data Modeling on Business Decision-Making:
A Review Of Studies Across Retail, Finance, And Logistics. American Journal of Advanced Technology and
Engineering Solutions, 2(02), 33-62. https://doi.org/10.63125/8nfbkt70

Md Rezaul, K., & Md Mesbaul, H. (2022). Innovative Textile Recycling and Upcycling Technologies For
Circular Fashion: Reducing Landfill Waste And Enhancing Environmental Sustainability. American Journal
of Interdisciplinary Studies, 3(03), 01-35. https://doi.org/10.63125/kkmerg16

Md Sultan, M., Proches Nolasco, M., & Md. Torikul, I. (2023). Multi-Material Additive Manufacturing For
Integrated Electromechanical Systems. American Journal of Interdisciplinary Studies, 4(04), 52-79.
https://doi.org/10.63125/y2ybrx17

Md Sultan, M., Proches Nolasco, M., & Vicent Opiyo, N. (2025). A Comprehensive Analysis Of Non-Planar
Toolpath Optimization In Multi-Axis 3D Printing: Evaluating The Efficiency Of Curved Layer Slicing Strategies.
Review of Applied Science and Technology, 4(02), 274-308. https://doi.org/10.63125/5fdxa722

Md Takbir Hossen, S., Ishtiaque, A., & Md Atiqur, R. (2023). Al-Based Smart Textile Wearables For Remote
Health Surveillance And Critical Emergency Alerts: A Systematic Literature Review. American Journal of
Scholarly Research and Innovation, 2(02), 1-29. https://doi.org/10.63125/ceqapd08

Md Tawfiqul, I. (2023). A Quantitative Assessment Of Secure Neural Network Architectures For Fault
Detection In Industrial Control Systems. Review of Applied Science and Technology, 2(04), 01-24.
https://doi.org/10.63125/3m7gbs%7

701


https://doi.org/10.63125/ndjkpm77
https://doi.org/10.63125/yah70173
https://doi.org/10.63125/gjrpv442
https://doi.org/10.63125/fy4w7w04
https://doi.org/10.63125/6nee1m28
https://doi.org/10.63125/rc45z918
https://doi.org/10.63125/3v8rpr04
https://doi.org/10.62304/jieet.v2i03.64
https://doi.org/10.63125/d68y3590
https://doi.org/10.63125/gspb0f75
https://doi.org/10.63125/caangg06
https://doi.org/10.63125/6a7rpy62
https://doi.org/10.63125/8hfbkt70
https://doi.org/10.63125/kkmerg16
https://doi.org/10.63125/y2ybrx17
https://doi.org/10.63125/5fdxa722
https://doi.org/10.63125/ceqapd08
https://doi.org/10.63125/3m7gbs97

[101].

[102].

[103].

[104].

[105].
[106].
[107].
[108].
[109].

[110].

[111].

[112].

[113].
[114].
[115].
[116].

[117].

[118].
[119].

[120].

[121].

[122].

[123].

[124].

[125].

[126].

ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 675-704

Md. Sakib Hasan, H. (2022). Quantitative Risk Assessment of Rail Infrastructure Projects Using Monte Carlo
Simulation And Fuzzy Logic. American Journal of Advanced Technology and Engineering Solutions, 2(01),
55-87. https://doi.org/10.63125/h24Nn6z92

Md. Tarek, H. (2022). Graph Neural Network Models For Detecting Fraudulent Insurance Claims In
Healthcare Systems. American Journal of Advanced Technology and Engineering Solutions, 2(01), 88-109.
https://doi.org/10.63125/r5vsmv21

Md.Kamrul, K., & Md Omair, F. (2022). Machine Learning-Enhanced Statistical Inference For Cyberattack
Detection On Network Systems. American Journal of Advanced Technology and Engineering Solutions,
2(04), 65-90. https://doi.org/10.63125/sw7jzx60

Md.Kamrul, K., & Md. Tarek, H. (2022). A Poisson Regression Approach to Modeling Traffic Accident
Frequency in Urban Areas. American Journal of Interdisciplinary Studies, 3(04), 117-156.
https://doi.org/10.63125/wgh7pd07

Melaku, H. M. (2023). Context-based and adaptive cybersecurity risk management framework. Risks, 11(6),
101.

Meyers, J., Fabian, B., & Brown, N. (2021). De novo molecular design and generative models. Drug discovery
today, 26(11), 2707-2715.

Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., & Long, J. (2018). A survey of clustering with deep learning: From
the perspective of network architecture. IEEE Access, 6, 39501-39514.

Mishra, A., Alzoubi, Y. 1., Gill, A. Q., & Anwar, M. J. (2022). Cybersecurity enterprises policies: A comparative
study. Sensors, 22(2), 538.

Moéller, D. P. (2023a). Cybersecurity in digital tfransformation. In Guide to cybersecurity in digital
fransformation: Trends, methods, technologies, applications and best practices (pp. 1-70). Springer.
Mdller, D. P. (2023b). Ransomware attacks and scenarios: Cost factors and loss of reputation. In Guide to
cybersecurity in digital transformation: Trends, methods, Technologies, Applications and best practices (pp.
273-303). Springer.

Mshragi, M., & Petri, I. (2025). Fast machine learning for building management systems. Artificial intelligence
review, 58(7), 211.

Mubashir, 1., & Abdul, R. (2022). Cost-Benefit Analysis in Pre-Consfruction Planning: The Assessment Of
Economic Impact In Government Infrastructure Projects. American Journal of Advanced Technology and
Engineering Solutions, 2(04), ?1-122. https://doi.org/10.63125/kjwd5e33

Munoz-La Rivera, F., Mora-Serrano, J., Valero, |, & Onate, E. (2021). Methodological-technological
framework for construction 4.0. Archives of computational methods in engineering, 28(2), 689-711.
Nankya, M., Chataut, R., & Akl, R. (2023). Securing industrial control systems: Components, cyber threats,
and machine learning-driven defense strategies. Sensors, 23(21), 8840.

Nash, W., Drummond, T., & Birbilis, N. (2018). Areview of deep learning in the study of materials degradation.
npj Materials Degradation, 2(1), 37.

Ngo, D., Park, H.-C., & Kang, B. (2025). Edge Intelligence: A Review of Deep Neural Network Inference in
Resource-Limited Environments. Elecfronics, 14(12), 2495.

Omar Muhammad, F., & Md.Kamrul, K. (2022). Blockchain-Enabled Bl For HR And Payroll Systems: Securing
Sensitive Workforce Data. American Journal of Scholarly Research and Innovation, 1(02), 30-58.
https://doi.org/10.63125/et4bhy15

Polimeier, S., Bongiovanni, I., & Slapnicar, S. (2023). Designing a financial quantification model for cyber risk:
A case study in a bank. Safety science, 159, 106022.

Pupentsova, S., & Livinfsova, M. (2021). The enterprises risk management in the context of digital
fransformation. International Scientific Siberian Transport Forum,

Radanliev, P. (2024). The rise and fall of cryptocurrencies: defining the economic and social values of
blockchain technologies, assessing the opportunities, and defining the financial and cybersecurity risks of
the Metaverse. Financial Innovation, 10(1), 1.

Radanliev, P., De Roure, D. C., Nicolescu, R., Huth, M., Montalvo, R. M., Cannady, S., & Burnap, P. (2018).
Future developments in cyber risk assessment for the internet of things. Computers in industry, 102, 14-22.
Rajawat, A. S., Goyal, S., Verma, C., & Singh, J. (2024). Advancing network security paradigms integrating
quantum computing models for enhanced protections. In Applied Data Science and Smart Systems (pp.
517-528). CRC Press.

Rea-Guaman, A. M., Mejia, J., San Feliu, T., & Calvo-Manzano, J. A. (2020). AVARCIBER: a framework for
assessing cybersecurity risks. Cluster Computing, 23(3), 1827-1843.

Reduanul, H., & Mohammad Shoeb, A. (2022). Advancing Al in Marketing Through Cross Border Integration
Ethical Considerations And Policy Implications. American Journal of Scholarly Research and Innovation,
1(01), 351-379. https://doi.org/10.63125/d1xg3784

Rejeb, A., Rejeb, K., Zrelli, I., Kayikci, Y., & Hassoun, A. (2024). The research landscape of industry 5.0: a
scientific mapping based on bibliomefric and topic modeling techniques. Flexible Services and
Manufacturing Journal, 1-48.

Rodriguez-Conde, |., Campos, C., & Fdez-Riverola, F. (2023). Horizontally distributed inference of deep
neural networks for Al-enabled IoT. Sensors, 23(4), 1911.

702


https://doi.org/10.63125/h24n6z92
https://doi.org/10.63125/r5vsmv21
https://doi.org/10.63125/sw7jzx60
https://doi.org/10.63125/wqh7pd07
https://doi.org/10.63125/kjwd5e33
https://doi.org/10.63125/et4bhy15
https://doi.org/10.63125/d1xg3784

[127].

[128].

[129].
[130].
[131].

[132].

[133].

[134].

[135].

[136].

[137].

[138].
[139].

[140].

[141].

[142].
[143].

[144].

[145].
[146].
[147].
[148].
[149].
[150].

[151].

[152].

[153].

ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 675-704

Sabuj Kumar, S., & Zobayer, E. (2022). Comparative Analysis of Petroleum Infrastructure Projects In South
Asia And The Us Using Advanced Gas Turbine Engine Technologies For Cross Integration. American Journal
of Advanced Technology and Engineering Solutions, 2(04), 123-147. https://doi.org/10.63125/wr93s247
Sadia, T., & Shaiful, M. (2022). In Silico Evaluation of Phytochemicals From Mangifera Indica Against Type 2
Diabetes Targets: A Molecular Docking And Admet Study. American Journal of Interdisciplinary Studies,
3(04), 21-116. https://doi.org/10.63125/anaféb94

Safitra, M. F., Lubis, M., & Fakhrurroja, H. (2023). Counterattacking cyber threats: A framework for the future
of cybersecurity. Sustainability, 15(18), 13369.

Saleem, M. H., Potgieter, J., & Arif, K. M. (2021). Automation in agriculture by machine and deep learning
techniques: A review of recent developments. Precision Agriculture, 22(6), 2053-2091.

Sanchez-Garcia, I. D., Mejia, J., & San Feliu Gilabert, T. (2022). Cybersecurity risk assessment: a systematic
mapping review, proposal, and validation. Applied Sciences, 13(1), 395.

Sanjai, V., Sanath Kumar, C., Maniruzzaman, B., & Farhana Zaman, R. (2023). Integrating Artificial
Intelligence in Strategic Business Decision-Making: A Systematic Review Of Predictive Models. International
Journal of Scientific Interdisciplinary Research, 4(1), 01-26. https://doi.org/10.63125/s5skge 53

Sanjai, V., Sanath Kumar, C., Sadia, Z., & Rony, S. (2025). Al And Quantum Computing For Carbon-Neutral
Supply Chains: A Systematic Review Of Innovations. American Journal of Interdisciplinary Studies, 6(1), 40-
75. https://doi.org/10.63125/nrdx7d32

Sarker, I. H., Janicke, H., Maglaras, L., & Camtepe, S. (2023). Data-driven intelligence can revolutfionize
today’s cybersecurity world: A position paper. Internafional Conference on Advanced Research in
Technologies, Information, Innovation and Sustainability,

Schobel, S., Schmitt, A., Benner, D., Sagr, M., Janson, A., & Leimeister, J. M. (2024). Charting the evolution
and future of conversational agents: A research agenda along five waves and new frontiers. Information
Systems Frontiers, 26(2), 729-754.

Schreiber, C., Abbad-Andaloussi, A., & Weber, B. (2023). On the cognitive effects of abstraction and
fragmentation in modularized process models. International Conference on Business Process
Management,

Sepasgozar, S. M. (2021). Differentiating digital twin from digital shadow: Elucidating a paradigm shift fo
expedite a smart, sustainable built environment. Buildings, 11(4), 151.

Serpanos, D., & Wolf, M. (2018). Internet-of-Things (IoT) Systems. Architectures, Algorithms, Methodologies.
Shaikh, F. A., & Siponen, M. (2023). Information security risk assessments following cybersecurity breaches:
The mediating role of fop management attention to cybersecurity. Computers & Security, 124, 102974.
Shandilya, S. K., Datta, A., Kartik, Y., & Nagar, A. (2024). Navigating the regulatory landscape. In Digital
Resilience: Navigating Disruption and Safeguarding Data Privacy (pp. 127-240). Springer.

Sheratun Noor, J., & Momena, A. (2022). Assessment Of Data-Driven Vendor Performance Evaluation in
Retail Supply Chains: Analyzing Metrics, Scorecards, And Confract Management Tools. American Journal
of Interdisciplinary Studies, 3(02), 36-61. https://doi.org/10.63125/0s7t1y20

Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7,
53040-53065.

Singh, S. P., Wang, L., Gupta, S., Goli, H., Padmanabhan, P., & Gulyds, B. (2020). 3D deep learning on
medical images: a review. Sensors, 20(18), 5097.

Sivanathan, A., Gharakheili, H. H., & Sivaraman, V. (2020). Managing loT cyber-security using
programmable telemetry and machine learning. IEEE Transactions on Network and Service Management,
17(1), 60-74.

Sreenu, G., & Durai, S. (2019). Intelligent video surveillance: a review through deep learning techniques for
crowd analysis. Journal of big Data, 6(1), 1-27.

Srinivas, J., Das, A. K., & Kumar, N. (2019). Government regulations in cyber security: Framework, standards
and recommendations. Future generation computer systems, 92, 178-188.

Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., Keane, J., & Nenadic, G. (2019).
Machine learning methods for wind turbine condition monitoring: A review. Renewable energy, 133, 620-
635.

Strupczewski, G. (2021). Defining cyber risk. Safety science, 135, 105143.

Suganyadevi, S., Seethalakshmi, V., & Balasamy, K. (2022). A review on deep learning in medical image
analysis. International Journal of Multimedia Information Retrieval, 11(1), 19-38.

Taherdoost, H. (2022). Understanding cybersecurity frameworks and information security standards—a
review and comprehensive overview. Electronics, 11(14), 2181.

Tahmina Akfer, R., Debashish, G., Md Soyeb, R., & Abdullah Al, M. (2023). A Systematic Review of Al-
Enhanced Decision Support Tools in Information Systems: Strategic Applications In Service-Oriented
Enterprises And Enterprise Planning. Review of Applied Science and Technology, 2(01), 26-52.
https://doi.org/10.63125/73djw422

Tarig, U., Anmed, I., Bashir, A. K., & Shaukat, K. (2023). A critical cybersecurity analysis and future research
directions for the internet of things: A comprehensive review. Sensors, 23(8), 4117.

Taye, M. M. (2023a). Theoretical understanding of convolutional neural network: Concepts, architectures,
applications, future directions. Computation, 11(3), 52.

703


https://doi.org/10.63125/wr93s247
https://doi.org/10.63125/anaf6b94
https://doi.org/10.63125/s5skge53
https://doi.org/10.63125/nrdx7d32
https://doi.org/10.63125/0s7t1y90
https://doi.org/10.63125/73djw422

[154].

[155].

[156].
[157].
[158].
[159].
[160].

[161].

[162].
[163].
[164].
[165].
[166].
[167].

[168].

[169].

ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 675-704

Taye, M. M. (2023b). Understanding of machine learning with deep learning: architectures, workflow,
applications and future directions. Computers, 12(5), 91.

Thayyib, P., Mamilla, R., Khan, M., Fatima, H., Asim, M., Anwar, |., Shamsudheen, M., & Khan, M. A. (2023).
State-of-the-art of artificial inteligence and big data analytics reviews in five different domains: a
bibliometric summary. Sustainability, 15(5), 4026.

Tzavara, V., & Vassiliadis, S. (2024). Tracing the evolution of cyber resilience: a historical and conceptual
review. International Journal of Information Security, 23(3), 1695-1719.

Uddin, M. H., Ali, M. H., & Hassan, M. K. (2020). Cybersecurity hazards and financial system vulnerability: a
synthesis of literature. Risk Management, 22(4), 239-309.

Villalén-Fonseca, R. (2022). The nature of security: A conceptual framework for integral-comprehensive
modeling of IT security and cybersecurity. Computers & Security, 120, 102805.

Wang. M., Yang, N., Gunasinghe, D. H., & Weng, N. (2023). On the robustness of ML-based network intrusion
detection systems: An adversarial and distribution shift perspective. Computers, 12(10), 209.

Wang, Y., Han, Y., Wang, C., Song, S., Tian, Q., & Huang, G. (2024). Computation-efficient deep learning
for computer vision: A survey. Cybernetics and intelligence.

Wang, Z., Zhang, H.-W., Dai, Y.-Q., Cui, K., Wang, H., Chee, P. W., & Wang, R.-F. (2025). Resource-Efficient
Cotton Network: A Lightweight Deep Learning Framework for Cotton Disease and Pest Classification. Plants,
14(13), 2082.

Wylde, V., Rawindaran, N., Lawrence, J., Balasubramanian, R., Prakash, E., Jayal, A., Khan, I., Hewage, C.,
& Platts, J. (2022). Cybersecurity, data privacy and blockchain: Areview. SN computer science, 3(2), 127.
Yadav, A., & Vishwakarma, D. K. (2020). Sentiment analysis using deep learning architectures: a review.
Artificial intelligence review, 53(6), 4335-4385.

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and
application in radiology. Insights into imaging, 9(4). 611-629.

Yao, G., Lei, T., & Zhong, J. (2019). A review of convolutional-neural-network-based action recognition.
Pattern Recognition Letters, 118, 14-22.

Zhang, L., Chen, Z., Laili, Y., Ren, L., Deen, M. J., Cai, W., Zhang, Y., Zeng, Y., & Gu, P. (2025). MBSE 2.0: Toward
more integrated, comprehensive, and intelligent MBSE. Systems, 13(7), 584.

Zhang, W., Li, H., Li, Y., Liu, H., Chen, Y., & Ding, X. (2021). Application of deep learning algorithms in
geotechnical engineering: a short critical review. Artificial intelligence review, 54(8), 5633-5673.

Zheng, Z., Wan, Y., Zhang, Y., Xiang, S., Peng, D., & Zhang, B. (2021). CLNet: Cross-layer convolutional neural
network for change detection in optical remote sensing imagery. ISPRS Journal of Photogrammetry and
Remote Sensing, 175, 247-267.

Zhou, D.-X. (2020). Universality of deep convolutional neural networks. Applied and computational
harmonic analysis, 48(2), 787-794.

704



