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Abstract 
This study investigates how AI-enabled predictive analytics and fault detection and diagnosis 
frameworks relate to industrial equipment reliability and resilience. Using a quantitative cross-
sectional case-study design, we synchronize condition-monitoring signals, CMMS event histories, and 
operations context into per-asset analytical snapshots. Primary outcomes include failure occurrence 
and counts, failure rate and mean time between failures, downtime hours, availability, and overall 
equipment effectiveness. Core predictors are AI health indicators such as anomaly score and predicted 
remaining useful life, and detector quality metrics including F1, AUROC, and PR-AUC computed on 
temporally separated validation windows. Across an analyzable cohort of N = 412 assets, negative 
binomial models with operating-hours offsets and robust OLS demonstrate that higher anomaly 
burden aligns with higher failure intensity and more downtime, while longer predicted remaining 
useful life and higher detector quality associate with fewer failures and fewer hours lost. Utilization 
emerges as both a main driver and a moderator, with the anomaly to downtime slope steeper at higher 
duty cycles; class-stratified contrasts reveal the strongest effects for rotating equipment, moderate for 
discrete actuators, and attenuated for utilities. The contribution is twofold: a transparent pipeline that 
links standardized indicators to plant KPIs, and adjusted estimates that quantify the operational value 
of model discrimination and calibration. Robustness checks varying windows, thresholds, and leverage 
trimming preserve effect directions and magnitudes within narrow bands, and ethical safeguards 
include de-identified asset IDs and auditable data lineage. The design is grounded in a structured 
literature review covering 57 papers that frame constructs, metrics, and governance choices used in the 
analysis.  
 
 
Keywords 
Predictive Maintenance, Fault Detection and Diagnosis, Industrial AI, Remaining Useful Life, Anomaly 
Detection; 
 
 

1 Master of Science in Computer Science, Washington University of Virginia, USA 
  Email: mdmahababulalamrony@gmail.com 
 
 
 

Volume: 1; Issue: 1 
Pages: 705–736 

Published: 29 April 2025 

1St GRI Conference 2025 

https://doi.org/10.63125/2dw11645
mailto:mdmahababulalamrony@gmail.com
https://global.asrcconference.com/index.php/asrc


ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 705–736 
 

2 
 

 
INTRODUCTION 
Artificial intelligence (AI)–enabled predictive analytics refers to the use of statistical learning and 
machine learning methods to infer patterns from historical and streaming data for the purpose of 
forecasting operational states and key performance indicators (KPIs) (Carvalho et al., 2019; Lee et al., 
2015). Within industrial asset management, predictive maintenance (PdM) is a data-driven strategy that 
schedules maintenance actions based on predicted equipment health and remaining useful life (RUL), 
thereby aiming to minimize unplanned Down time and secondary damage. Closely related are fault 
detection and diagnosis (FDD) frameworks, which transform heterogeneous sensing and event logs into 
health indicators, anomaly scores, and classification outputs that indicate the presence, type, and 
severity of faults (Qin, 2012; Venkatasubramanian et al., 2003). In production systems, reliability denotes 
the probability that an asset performs its intended function without failure over a specified interval, 
often operationalized via failure rate and mean time between failures (MTBF). Resilience in industrial 
contexts captures the capacity of equipment and systems to maintain or quickly recover performance 
following disturbances, with empirical proxies including Down time hours, availability, and overall 
equipment effectiveness (OEE). These constructs are codified in cyber-physical manufacturing 
architectures where edge/cloud analytics fuse condition monitoring with computerized maintenance 
management systems (CMMS) to compute leading indicators and trigger interventions (Lee et al., 2015; 
Li et al., 2017; Standardization, 2015). Internationally, advanced economies and emerging 
manufacturing hubs alike report growing adoption of PdM/FDD to stabilize throughput and quality 
under intensified global competition, tightening sustainability requirements, and aging asset fleets 
(Chiang et al., 2000; Gao & Wang, 2020). By situating AI-enabled PdM and fault detection within 
accepted reliability engineering terminology and standards, this study positions its quantitative, cross-
sectional, case-study–based design to measure how AI health indicators and FDD performance metrics 
relate to reliability and resilience outcomes in real operations. 
Industrial assets generate rich, multi-modal data from vibration, acoustic emission, motor current 
signature analysis, temperature, pressure, oil debris, and process variables, complemented by event 
histories in CMMS (Jahid, 2022; Arifur & Noor, 2022). AI-enabled PdM operationalizes condition 
monitoring through data acquisition and preprocessing prescribed by international standards for data 
processing, communication, and presentation (Hasan & Uddin, 2022). Modern sensing topologies 
distribute analytics across edge and cloud, implementing the 5C cyber-physical architecture 
(connection, conversion, cyber, cognition, configuration) to compute machine health indices and 
advisory actions (Rahaman, 2022). Supervised learning models trained on labeled events estimate RUL 
or classify fault modes, whereas semi-supervised and unsupervised methods flag departures from 
healthy baselines using reconstruction errors, density ratios, or clustering consistency (Rahaman & 
Ashraf, 2022; Islam, 2022; Hasan et al., 2022). Benchmark prognostics datasets (e.g., NASA C-MAPSS 
turbofan degradation) have catalyzed method development and performance reporting, fostering 
reproducible evaluation of RUL estimators and FDD pipelines (Saxena et al., 2008; Sikorska et al., 2011). 
Within this data landscape, AI outputs such as anomaly scores, predicted RUL, AUROC, 
precision/recall, and F1 furnish quantitative features that can be statistically associated with reliability 
and resilience KPIs at the equipment level (Susto et al., 2015; Wen et al., 2017). The cross-sectional 
structure arises from aggregating recent sensor windows, event counts, and production/utilization 
covariates into per-asset snapshots, enabling correlational and regression analyses that test structured 
hypotheses on how AI health indicators co-vary with failure occurrence, Down time, availability, and 
OEE (Burnham & Anderson, 2002; Widodo & Yang, 2007). 
FDD frameworks follow a pipeline of signal processing, feature extraction, dimensionality reduction, 
and classification/regression, with design choices guided by operating regimes and failure physics. 
Classical approaches envelope analysis, spectral kurtosis, cepstrum, wavelets, autoregressive modeling 
remain effective for rotating machinery under stationary or quasi-stationary conditions (Redwanul & 
Zafor, 2022; Rezaul & Mesbaul, 2022; Hasan, 2022). AI methods extend this toolbox by learning 
nonlinear mappings from raw or minimally processed signals to health labels, including convolutional 
neural networks, recurrent and temporal convolutional networks, graph models, and hybrid 
architectures with attention or transformer blocks for multivariate time series. Transfer learning and 
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domain adaptation mitigate distribution shift across machines, loads, or environmental conditions, 
while self-supervised pretext tasks leverage unlabeled segments to improve downstream FDD (Tarek, 
2022; Kamrul & Omar, 2022; Kamrul & Tarek, 2022). Empirical reviews document that deep models 
often improve detection sensitivity at early fault stages, provided careful calibration of thresholds and 
evaluation on temporally separated runs. From a measurement perspective, performance must be 
summarized with threshold-free metrics (AUROC/PR-AUC) and thresholded measures (precision, 
recall, F1, Matthews correlation), with confidence intervals obtained via cross-validation or 
bootstrapping. These metrics constitute explanatory variables in statistical models that examine their 
association with asset-level reliability outcomes (failure rates, MTBF) and resilience outcomes (Down 
time, availability, OEE), controlling for age, utilization, and environmental context. 
 

Figure 1: Conceptual Framework Linking AI-Enabled Predictive Analytics 

 
Reliability engineering provides the mathematical foundation for quantifying failure behavior and 
repair processes, including exponential/Weibull models for time-to-failure, renewal processes for 
counts, and availability relationships linking MTBF and mean time to repair (MTTR) (Mubashir & 
Abdul, 2022; Muhammad & Kamrul, 2022; Reduanul & Shoeb, 2022). In plant operations, OEE 
aggregates Availability × Performance × Quality into a composite KPI consistent with ISO 22400 
manufacturing operations management standards, enabling cross-line comparisons (Kumar & 
Zobayer, 2022; Sadia & Shaiful, 2022). Resilience is observed as the ability to maintain near-steady 
throughput and quality in the presence of perturbations measured via Down time hours and recovery 
time, outcomes directly recorded in CMMS and production databases (Ng Corrales et al., 2020). 
International literature emphasizes aligning analytics with the ISO 13374 series that specify data 
processing and presentation for condition monitoring systems so that computed indicators and 
advisory messages are interpretable by maintenance personnel (Istiaque et al., 2023; Hasan et al., 2023; 
Noor & Momena, 2022). Methodologically, a cross-sectional case-study design defines each asset as an 
observational unit characterized by recent reliability/resilience outcomes (e.g., failures within a 
window, hours of Down time, OEE), AI-derived health indicators (anomaly scores, predicted RUL), 
FDD performance measures (AUROC, F1 on historical validation), and controls (age, utilization, 
environment). This operationalization enables descriptive statistics to summarize asset cohorts, 
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correlation analysis to screen associations, and regression modeling linear, logistic, and count models 
to estimate adjusted relationships between AI/FDD variables and reliability or resilience outcomes 
(Hossain et al., 2023; Sultan et al., 2023; Hossen et al., 2023). 
Systematic reviews and domain syntheses report widespread application of AI to PdM in 
semiconductor fabrication, rotating machinery, power systems, process plants, and discrete 
manufacturing, with machine-learning models delivering measurable gains in early warning and 
classification compared with fixed-threshold heuristics (Tawfiqul, 2023; Sanjai et al., 2023; Akter et al., 
2023). In rotating equipment, deep convolutional architectures ingest time-frequency images or raw 
waveforms to identify bearing and gearbox faults with high discrimination (Razzak et al., 2024; Istiaque 
et al., 2024; Hasan et al., 2024). In aero-propulsion, the C-MAPSS family and PHM’08 challenge 
stimulated RUL estimation advances and standardized metric reporting. In process industries, 
multivariate statistical process control coupled with data-driven diagnosis augments classic observers 
and parity relations to handle collinearity and latent structure (Ashiqur et al., 2025; Hasan, 2025; Ismail 
et al., 2025). In power and energy, hybrid AI methods serve condition-based maintenance and online 
monitoring under variable loads and intermittent renewables. Across these domains, reported practices 
emphasize data synchronization, de-noising, class balancing, and domain adaptation as prerequisites 
for robust FDD, as well as rigorous threshold selection and calibration to align sensitivity with 
maintenance economics (Sultan et al., 2025; Sanjai et al., 2025). These studies, grounded in DOI-indexed 
journals and proceedings, provide the empirical foundation and methodological exemplars for linking 
AI-generated indicators to reliability and resilience proxies such as failure occurrence, Down time, 
availability, and OEE in real plants (Ng Corrales et al., 2020). 
Given a cohort of N assets within a plant or multi-site case, the study can define primary outcomes as 
(i) failure occurrence in a fixed window (binary), (ii) failure counts (non-negative integer), (iii) Down 
time hours (continuous), (iv) availability and OEE (bounded or percentage), and (v) MTBF/MTTR-
derived indices (Venkatasubramanian et al., 2003). Predictors comprise AI health indicators (anomaly 
score, predicted RUL or health index) and FDD performance metrics (precision, recall, F1, AUROC, PR-
AUC) computed from holdout validation on historical events (Sikorska et al., 2011). Controls include 
asset age, cumulative operating hours, utilization (operating hours/calendar hours), environmental 
variables, and maintenance policy characteristics recorded in CMMS and historian tags 
(Standardization, 2015). Descriptive statistics summarize central tendency and dispersion of all 
variables and visualize distributions and pairwise associations. Correlation analysis 
(Pearson/Spearman) identifies monotonic relationships between AI/FDD variables and outcomes. 
Regression modeling estimates adjusted associations: ordinary least squares for Down time or 
availability with robust standard errors; logistic regression for failure occurrence; and 
Poisson/negative binomial models for failure counts with overdispersion diagnostics (Widodo & Yang, 
2007). Multicollinearity is screened via variance inflation factors, and residual diagnostics and influence 
statistics support model adequacy (Khodabakhsh & Ashory, 2019). This statistical plan connects the 
AI/FDD measurement layer to reliability/resilience constructs that carry operational meaning in 
internationally standardized KPI systems (Khodabakhsh & Ashory, 2019). The conceptual model 
guiding the present work positions AI analytics → fault detection quality → maintenance response → 
reliability/resilience outcomes as a pathway that can be examined using cross-sectional evidence 
aggregated at the asset level. AI analytics generate anomaly scores and predicted RUL; FDD quality is 
quantified via AUROC, PR-AUC, and F1 on historical events; and maintenance response is observed 
indirectly through Down time and availability realized in the study window (Lei et al., 2016). Reliability 
is operationalized using failure rate and MTBF, while resilience is proxied by Down time hours, 
availability, and OEE consistent with ISO 22400 (Rausand & Høyland, 2004). The framework 
acknowledges contextual moderators such as load, environment, and age that shape the strength of 
association between AI health indicators and outcomes. By drawing on a broad, DOI-indexed evidence 
base spanning rotating machinery, semiconductor, aero-propulsion, and process manufacturing, and 
by adhering to condition-monitoring data standards (ISO 13374-4) and KPI standards (ISO 22400-2), 
the study’s cross-sectional, case-study–based design yields a coherent basis for descriptive statistics, 
correlation analysis, and regression modeling to quantify how AI-enabled predictive analytics and fault 

https://doi.org/10.1016/j.ymssp.2018.05.050
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detection frameworks are associated with equipment reliability and resilience in industrial settings 
(Gao & Wang, 2020). 
The objective of this study is to rigorously quantify how AI-enabled predictive analytics and fault 
detection frameworks are associated with industrial equipment reliability and resilience within a 
quantitative, cross-sectional, case-study design. Specifically, the study seeks to transform 
heterogeneous asset data sensor features, event histories, and operational covariates into a 
standardized, per-asset analytical snapshot and to use that snapshot to estimate clearly defined 
relationships between AI health indicators and plant-relevant outcomes. The primary objective is to 
measure the association between AI-derived health indicators (e.g., anomaly scores and predicted 
remaining useful life) and reliability outcomes operationalized as failure occurrence, failure counts, 
failure rates, mean time between failures, and mean time to repair. A second objective is to evaluate 
whether fault detection performance metrics obtained from held-out historical validation such as 
precision, recall, F1, area under the ROC curve, and area under the precision–recall curve exhibit 
statistically discernible relationships with resilience outcomes, including Down time hours, 
availability, and overall equipment effectiveness. A third objective is to produce adjusted estimates that 
account for asset age, utilization, operating environment, and maintenance policy through 
multivariable models suited to the scale of each outcome, including ordinary least squares for 
continuous targets, logistic regression for binary targets, and Poisson or negative binomial regression 
for count targets, with robust standard errors, multicollinearity checks, residual diagnostics, and 
influence assessment. A fourth objective is to examine potential moderation by operational context (for 
example, interactions between anomaly scores and utilization) and to test the stability of findings 
through prespecified robustness checks that vary data windows, thresholding rules, and model 
families. A fifth objective is to establish a transparent data-processing pipeline for synchronization, 
cleaning, feature engineering, normalization, and partitioning so that descriptive statistics and 
correlation analyses are reproducible and align with the inferential models. A sixth objective is to 
document measurement definitions and codebooks to ensure that reliability and resilience constructs, 
AI indicators, and performance metrics are traceable from raw sources to final tables. A final objective 
is to present all results as parameter estimates with confidence intervals and model fit diagnostics, 
enabling a clear view of the magnitude, direction, and uncertainty of the quantified relationships within 
the constraints of the cross-sectional, case-based setting. 
LITERATURE REVIEW 
Research on AI-enabled predictive analytics and fault detection frameworks sits at the intersection of 
condition monitoring, prognostics and health management, and operations management, linking what 
models learn from data to how factories sustain throughput and quality. The literature converges on a 
common pipeline: heterogeneous sensing (vibration, acoustics, temperature, current, oil analysis, and 
process tags) is synchronized with computerized maintenance records and utilization logs; features or 
learned representations are extracted; and fault detection, diagnosis, or remaining-useful-life 
estimation is performed to produce actionable health indicators. Classical statistical monitoring and 
physics-guided signal processing remain influential, while machine-learning and deep temporal 
models broaden capacity to capture nonlinearities, multimodal interactions, and early degradation 
signatures. Across methods, studies emphasize careful preprocessing, imbalance handling, threshold 
calibration, and out-of-sample validation so that metrics such as AUROC, precision–recall, F1, 
calibration error, and prediction intervals reflect operationally meaningful discrimination rather than 
optimistic, dataset-specific artifacts. In parallel, reliability and resilience are operationalized through 
measurable constructs failure occurrence and counts, MTBF and MTTR, Down time hours, availability, 
and overall equipment effectiveness that translate directly into plant performance. A growing body of 
empirical work explores how AI health indicators correlate with these outcomes, yet several 
methodological gaps persist: fragmented variable definitions that hinder comparability, limited 
attention to moderators such as age, duty cycle, and environment, and a frequent separation of model-
centric metrics from equipment-level key performance indicators. The literature also highlights 
challenges of domain shift across assets and sites, the need for transparent feature importance and 
model calibration, and the value of reproducible pipelines that trace indicators from raw data to tables 
and figures used by decision-makers. Within this context, an integrative review geared to quantitative, 
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case-based analysis serves two purposes: to synthesize how sensing, modeling, and evaluation choices 
shape the quality of AI-derived indicators, and to organize evidence on their measured associations 
with reliability and resilience in real operations. This framing motivates clear constructs, standardized 
measurement, and analysis plans that connect model quality and health indices to plant-relevant 
outcomes in a manner suited to cross-sectional regression and correlation analysis. 
Foundations of Predictive Maintenance and Fault Detection in Industrial Systems 
Predictive maintenance (PdM) and fault detection/diagnosis (FDD) rest on a foundational pipeline that 
links sensing, data conditioning, statistical learning, and decision support inside cyber-physical 
production systems. At its core, PdM reframes maintenance as a probability-and-evidence problem: 
health indicators are inferred from condition data to anticipate failure states early enough to schedule 
intervention with minimal disruption. In parallel, FDD formalizes the detection and isolation of 
abnormal behavior so that failure modes can be identified and addressed before cascading effects arise 
at the line or plant level. A substantial body of manufacturing research has organized this landscape 
by clarifying the roles of signal processing, feature extraction, and model-based/learning-based 
inference within broader maintenance strategies such as condition-based maintenance and prognostics 
and health management. A comprehensive Industry 4.0–oriented review systematizes PdM initiatives 
into a taxonomy that spans data sources, analytical methods, and integration concerns, underscoring 
the importance of aligning analytics with operational technology constraints and information flows on 
the shop floor (Zonta et al., 2020). This taxonomy clarifies how core ingredients heterogeneous sensors, 
historian/CMMS records, and production context must be synchronized and transformed into reliable, 
interpretable health indicators that can drive maintenance decisions at scale (Zonta et al., 2020).  

 
Figure 2: Fault Detection in Industrial Systems 

 

 
Building on that structural view, the manufacturing-analytics literature positions machine learning as 
a unifying toolkit for mapping raw or minimally processed signals to health states, remaining useful 
life estimates, and fault classes. From a foundations standpoint, the emphasis is not merely on 
accumulating algorithms but on establishing design patterns data pipelines, validation regimes, and 
human-in-the-loop interfaces that make models credible and usable in production settings. A field-
defining synthesis of machine learning in manufacturing articulates advantages (handling 
nonlinearity, high-dimensionality, and multimodality), challenges (data quality, representativeness, 
lifecycle drift), and application archetypes (monitoring, diagnosis, prediction), thereby providing the 
conceptual scaffolding to situate PdM/FDD within broader quality and throughput objectives (Wuest 
et al., 2016). Complementing this view, smart-manufacturing–focused work on diagnostics and 
prognostics codifies best practices for capability development covering measurement system design, 
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verification and validation, and information management so that FDD and PdM outcomes can be 
trusted and acted upon by maintenance planners and line supervisors (Vogl et al., 2016). Together, 
these foundations establish that effective PdM/FDD is as much about disciplined engineering of data 
and evaluation processes as it is about model choice, and that success hinges on traceable links from 
sensor to indicator to action. A third pillar of the foundations concerns evaluation and decision models 
that translate technical indicators into operational choices. Here the literature on maintenance 
optimization offers an integrating lens that relates predictive signals, uncertainty, and cost/risk trade-
offs to the selection and timing of interventions. A large-scale review in operations research synthesizes 
models for preventive, corrective, and condition-based policies, highlighting how degradation 
information and health indicators can be embedded into optimization frameworks to balance 
availability, reliability, and resource constraints (de Jonge & Scarf, 2020). At the modeling frontier, 
surveys dedicated to deep learning for PdM catalog architectures (e.g., convolutional, recurrent, and 
hybrid temporal models) alongside evaluation metrics and deployment considerations, thereby 
connecting representational choices to detection sensitivity, calibration, and thresholding policies that 
matter on the plant floor (Serradilla et al., 2022). When these perspectives are read together taxonomy 
and integration (Zonta et al., 2020), analytics capabilities and challenges (Wuest et al., 2016), PHM best 
practices for diagnostics/prognostics (Vogl et al., 2016), optimization frameworks for policy selection 
(de Jonge & Scarf, 2020), and architecture-metric mappings for deep temporal learning (Serradilla et al., 
2022) they yield a coherent foundation: PdM/FDD in industrial systems is a systems-engineering 
exercise that begins with standardized data acquisition and curation, continues through validated 
inference of health states and faults, and culminates in formally evaluated maintenance decisions that 
respect operational constraints and performance objectives. 
Data, Features, and Model Architectures for AI-Enabled Analytics 
The data foundation for AI-enabled predictive maintenance and fault detection is intrinsically 
multimodal, high-frequency, and heterogeneous, spanning vibration and acoustic waveforms, 
electrical signatures such as stator current and voltage, thermal measurements, pressure/flow states, 
and contextual process tags from supervisory systems. Converting these raw streams into reliable 
analytical inputs hinges on careful signal conditioning, synchronization with event/maintenance logs, 
and feature engineering that preserves diagnostic content while mitigating noise and confounders. In 
rotating machinery, for example, time–frequency methods extract informative structure from 
nonstationary signals, while band selection and demodulation isolate fault-related modulations. A 
hallmark contribution in this space formalized spectral kurtosis (SK) to locate frequency bands 
dominated by impulsive transients; SK-driven filtering enhances weak fault signatures prior to 
envelope analysis and improves repeatability across operating regimes (Antoni, 2006). Building on 
such principles, a tutorial synthesis on rolling-element bearing diagnostics codified practical recipes 
order tracking, cepstrum, spectral correlation, cyclostationary analysis, and envelope spectra that 
remain canonical for mapping sensor physics to interpretable features (Randall & Antoni, 2011). In 
data-rich production environments, these feature sets are merged with counters and durations from 
computerized maintenance management systems, enabling per-asset snapshots that include rolling 
statistics, condition indicators, and label histories aligned to equipment states. This layered design raw 
signals → domain-engineered features → asset-level tables creates a robust interface between 
operations data and learning algorithms, ensuring that downstream models benefit from physics-
informed preprocessing while remaining compatible with tabular and sequence-learning pipelines 
used in industrial analytics. 
Modeling choices span a spectrum from feature-based learners to end-to-end deep representation 
learning on raw or minimally processed sequences. On the feature-based side, elastic models and 
margin-based classifiers ingest curated indicators and deliver strong baselines when sample sizes are 
moderate and interpretability is paramount. Yet the structure of machine signals multi-scale transients, 
cyclostationarity, and regime switches has motivated direct learning from sequences. A formative 
study showed that 1D convolutional and residual architectures trained from scratch can match or 
exceed traditional pipelines on diverse time-series classification tasks, provided appropriate data 
augmentation and regularization are used to stabilize training (Wang et al., 2017). These models exploit 
local receptive fields and hierarchical composition to capture periodicity, transients, and shifts without 
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bespoke feature engineering, making them attractive for PdM/FDD where fault morphologies are 
varied and subtle. Beyond accuracy, their convolutional inductive bias yields efficient inference on edge 
devices and facilitates deployment in streaming settings. Feature attribution from convolutional filters 
and gradient-based saliency can also aid maintainers in linking learned patterns back to machine 
components and operating conditions, supporting trust and troubleshooting. In practical case studies, 
hybrid approaches domain filters followed by shallow or deep learners often provide a middle path, 
retaining interpretability while gaining sensitivity to weak signatures in noisy, load-varying 
environments, and enabling smoother calibration of alarm thresholds against maintenance economics. 
 

Figure 3: AI-Enabled Predictive Maintenance and Fault Detection 

 
For multivariate, asynchronous, and context-rich signals, sequence models that capture long-range 
dependencies and temporal context have become central to industrial analytics. Architectures inspired 
by computer vision and language modeling InceptionTime and Temporal Fusion Transformers (TFT) 
extend beyond local convolutions to model multi-scale patterns and conditional dynamics in a data-
efficient manner. InceptionTime uses ensembles of inception-style convolutional blocks with varied 
kernel sizes to learn multi-resolution features, achieving state-of-the-art results on benchmark time-
series datasets and offering strong robustness to scaling and warping common in industrial telemetry 
(Fawaz et al., 2019). TFT combines gated residual networks with interpretable attention to integrate 
static covariates (e.g., asset age), known future inputs (e.g., planned loads), and observed time-varying 
features (e.g., sensor streams), while producing attention weights and variable selection scores that are 
directly useful to engineers during root-cause analysis and threshold setting (Lim et al., 2021). In 
operational PdM/FDD pipelines, these architectures support not only binary fault detection but also 
health-index regression and remaining useful life estimation when labels permit, while their attention 
and gating mechanisms help stabilize learning under domain shift and missingness. When embedded 
in well-designed preprocessing (artifact rejection, windowing, de-trending) and postprocessing 
(calibration, hysteresis, voting), they yield calibrated anomaly scores and probabilistic outputs that can 
be aggregated at the asset level for correlation and regression against reliability and resilience key 
performance indicators. The upshot for industrial AI is an architecture toolbox that scales from physics-
aligned features to modern deep learners and attention-based sequence models, each activated where 
data volume, label quality, and interpretability needs intersect with the rigor of plant operations. 
Operationalization of Reliability and Resilience 
Reliability and resilience become analytically tractable only when they are tied to clear, auditable 
metrics and standardized data definitions. In industrial asset contexts, reliability is commonly 
operationalized through failure occurrence and counts, time‐to‐failure distributions, and summary 
indices such as mean time between failures (MTBF) and mean time to repair (MTTR), while resilience 
is observed as the ability to maintain or recover operational performance after disturbances, proxied 
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by Down time hours, availability, and equipment‐level productivity measures. A consistent data 
backbone is essential for computing these outcomes across heterogeneous equipment classes and sites. 
One widely adopted approach is to structure maintenance and failure histories using a domain 
standard that prescribes codes, taxonomies, and minimum data fields for reliability and maintenance 
(RM) records; this enables uniform derivation of failure rates, restoration times, and cause/effect chains 
from computerized maintenance management systems and historian logs (14224, 2016). On the 
productivity side, many plants quantify equipment contribution via the overall equipment 
effectiveness (OEE) identity Availability × Performance × Quality whose decomposition links directly 
to measurable loss categories (planned/unplanned stoppages, speed losses, and quality losses). This 
formulation provides an operational bridge between reliability events and throughput outcomes by 
letting analysts isolate how failures and repairs propagate into availability and then into composite 
OEE (Muchiri & Pintelon, 2008). When RM data are captured with standardized failure modes, event 
timestamps, and repair actions, and when OEE components are computed from consistent calendars 
and counters, the resulting variables form a coherent cross-sectional snapshot at the asset level that can 
be used to summarize cohorts, compute correlations, and fit regression models relating health 
indicators and fault detection metrics to reliability and resilience outcomes (14224, 2016; Muchiri & 
Pintelon, 2008). 
 

Figure 4: Reliability and Resilience in Industrial Asset Management 
 

 
A second pillar in operationalization concerns how maintenance actions themselves affect measured 
reliability/resilience variables. Perfect repair and minimal repair serve as conceptual extremes; in real 
plants, most interventions are imperfect, restoring an item to a condition somewhere between “as good 
as new” and “as bad as old.” Modeling this imperfect maintenance reality clarifies why assets with 
identical nominal design and utilization can exhibit different effective failure rates and availability after 
interventions, and it underlines the need to encode action types and improvement factors in the RM 
dataset. In practice, incorporating imperfect maintenance into analysis changes both numerator and 
denominator of key measures: it shifts the effective hazard or count of failures within a window and 
modifies repair durations that flow into MTTR and availability. It also explains frequent empirical 
findings such as high availability coinciding with nontrivial failure counts (short, frequent minor 
failures with quick restorations), or conversely, low availability associated with rare but long 
restorations. By explicitly distinguishing corrective vs. preventive actions and encoding “degree of 
restoration,” the analyst can align statistical models with plant behavior: counts regressions can reflect 
overdispersion induced by imperfect repairs, while availability models can separate Down time driven 
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by failure incidence from Down time driven by lengthy restorations. This framing also prepares the 
ground for moderation analyses in which utilization or environment interacts with maintenance 
quality to shape realized reliability/resilience profiles across assets (Pham & Wang, 1996). In turn, 
reporting conventions should accompany these models: tables that present failure counts, operating 
hours, repair hours, and derived indices together prevent misinterpretation of single headline metrics 
by preserving the joint structure that imperfect maintenance induces in the data (Pham & Wang, 1996). 
Resilience, as an operational construct in manufacturing, benefits from a quantitative articulation that 
goes beyond reliability alone by explicitly incorporating the depth and duration of performance 
degradation and the time to recovery. A well-cited engineering framework conceptualizes resilience 
along dimensions such as robustness, rapidity, resourcefulness, and redundancy, and it proposes 
measurable proxies that map naturally to plant data: probability of failure (linking to reliability), loss 
of function (linking to throughput or OEE drops), and recovery time (linking to repair/return-to-
service intervals). Embedding this framing at the equipment level guides which variables to compute 
and how to interpret them jointly for example, pairing availability with recovery time distributions, or 
pairing OEE dips with their restoration trajectories to capture both severity and rapidity of response 
(Bruneau et al., 2003). For proactive policy evaluation, predictive-maintenance scheduling models 
translate condition indices into inspection and replacement thresholds and inspection calendars; when 
these policies are simulated or observed, the resulting availability and cost streams provide directly 
comparable resilience proxies across assets and lines (Grall et al., 2002). Bringing these pieces together 
standardized RM data schemas for reliability measures, OEE decomposition for productivity impact, 
imperfect-maintenance modeling for realistic post-repair states, resilience dimensions for 
depth/duration of performance loss, and threshold-based scheduling for anticipatory intervention 
yields an operational toolkit that converts raw events and signals into analytic variables suitable for 
descriptive statistics, correlation analysis, and multivariable regression within a cross-sectional, case-
study design. 
Empirical Evidence and Gaps 
Empirical work on AI-enabled predictive analytics and fault detection has progressed from small proof-
of-concept studies to field deployments that use heterogeneous logs and sensor streams to anticipate 
failures and schedule interventions. Evidence from transportation, energy, and discrete manufacturing 
increasingly shows that learned health indicators, anomaly scores, and remaining useful life surrogates 
correlate with maintenance events and Down time windows when the data pipeline is well-specified 
and evaluation is out-of-sample. For example, large-scale case analyses using operational logs have 
demonstrated that sequential patterns and rare-event signatures in event histories can be exploited for 
risk scoring that aligns with subsequent corrective work orders and service interruptions, illustrating 
that “soft sensors” embedded in log data can be as informative as physical telemetry when curated and 
temporally aligned (Sipos et al., 2014). In energy systems, condition-monitoring programs for rotating 
machinery and power-conversion components provide multi-year baselines against which the 
incremental contribution of machine-learning-based detectors can be assessed in terms of early 
warning intervals and avoided forced outages; meta-analytic syntheses in this area catalog the 
modalities (vibration, current, acoustic, SCADA tags), the learning families, and the reported 
improvements in fault detection and diagnosis accuracy at subsystem level while also noting variability 
in how Down time savings and availability improvements are computed across sites and studies 
(Bousdekis et al., 2019; Tchakoua et al., 2014). Across domains, studies that couple anomaly detection 
with maintenance economics consistently report that calibrated alarms tied to interpretable indicators 
can reduce reaction times and batch spillover, providing a measurable pathway from model 
discrimination to operational outcomes, as long as the measurement system includes consistent 
timestamping, utilization normalization, and a clear mapping of alerts to actions (Bousdekis et al., 
2019). 
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Figure 5: AI-Enabled Predictive Maintenance and Fault Detection 

 
Alongside positive findings, comparative evaluations reveal persistent gaps in measurement validity 
and transferability. A core challenge concerns the mismatch between model-centric metrics and plant-
level key performance indicators: many deployments optimize area under the ROC curve or F1 on 
historical labels, yet these scores can inflate perceived value in heavily imbalanced or time-dependent 
settings where the practical cost of false positives and false negatives is asymmetric. Method studies 
show that precision–recall analysis is often more diagnostic than ROC curves for rare faults because it 
quantifies the positive predictive value under class skew, a property directly tied to crew dispatch and 
parts staging in maintenance operations (Saito & Rehmsmeier, 2015). Further, comparative reports 
across lines or sites indicate that models trained on one asset cohort can face domain shift when 
operational envelopes, sensor placements, or maintenance labeling policies differ, reducing 
discrimination and calibration in the target environment. Reviews underscore that reproducible data 
engineering windowing, leakage control, and label-event alignment remains uneven, limiting the 
interpretability of claimed gains in availability or Down time reduction (Bousdekis et al., 2019). In 
multi-asset settings, empirical gaps also arise from aggregation choices: asset-level snapshots that mix 
differing observation windows and operating hours can bias failure counts and MTBF estimates, while 
alarm thresholding that ignores utilization cycles may trigger spurious work orders during transients. 
The net effect is that even when anomaly detectors appear accurate, the downstream correlation with 
reliability and resilience metrics can be attenuated or unstable if the evaluation omits calibration 
diagnostics, horizon-specific scoring, and cost-sensitive thresholds tailored to maintenance policies 
(Bousdekis et al., 2019). 
A further empirical gap concerns probability calibration and decision coupling. Many industrial studies 
report discriminative metrics but omit whether predicted scores are well-calibrated probabilities that 
can be compared directly to intervention thresholds; without calibration, two models with similar ROC 
AUC can induce very different maintenance loads and Down time patterns once deployed. 
Foundational evidence indicates that supervised learners differ widely in their native calibration and 
that post-hoc methods such as Platt scaling and isotonic regression can materially improve probability 
estimates, which in turn stabilizes decision rules that trade off inspection cost against expected Down 
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time (Niculescu-Mizil & Caruana, 2005). Field evaluations also reveal that gains achieved by deep 
sequence models depend on carefully designed early-warning horizons and hysteresis, so that alerts 
are neither too reactive to noise nor too sluggish to be operationally useful; case studies that explicitly 
report horizon-conditioned precision–recall and lagged lift curves provide stronger evidence that 
model outputs translate into fewer line stoppages and quicker restorations (Sipos et al., 2014). In energy 
and process industries, longitudinal syntheses stress the need for standardized reporting of Down time 
attribution separating failure incidence from restoration duration so that availability and overall 
equipment effectiveness improvements can be traced to specific predictive elements rather than 
confounded by scheduling and spare-parts logistics (Tchakoua et al., 2014). Across this empirical 
landscape, the synthesized gaps coalesce into five needs: calibrated, horizon-aware evaluation tied to 
maintenance costs; leakage-resistant labeling and windowing; transfer-robust pipelines with clear 
domain-shift checks; standardized attribution of availability and OEE gains; and transparent mapping 
from model outputs to action schemas that can be audited in event logs (Niculescu-Mizil & Caruana, 
2005). 
METHOD 
This study adopts a quantitative, cross-sectional, case-study design to examine how AI-enabled 
predictive analytics and fault-detection quality relate to industrial equipment reliability and resilience 
at the asset level. The unit of analysis is the individual asset (e.g., machine, line subsystem) within one 
production facility (or a tightly comparable multi-site operation sharing uniform data standards). For 
each asset, we construct a synchronized analytical snapshot by merging three data streams over a fixed 
observation window: (i) high-frequency condition-monitoring signals transformed into health 
indicators (e.g., anomaly scores, predicted remaining useful life, model confidence) through an existing 
predictive pipeline, (ii) computerized maintenance management system (CMMS) records capturing 
failure events, corrective and preventive actions, timestamps, and repair durations, and (iii) operations 
context including utilization, operating hours, duty cycles, and relevant environmental variables. 
Outcomes operationalize reliability and resilience as failure occurrence (binary), failure counts (non-
negative integer), failure rate and MTBF, Down time hours (continuous), availability, and overall 
equipment effectiveness (OEE). Primary predictors comprise AI health indicators and fault-detection 
performance metrics (precision, recall, F1, AUROC, PR-AUC) computed on temporally separated 
validation data to mitigate leakage. Prespecified covariates include asset age, cumulative operating 
hours, utilization, shift patterns, and basic environmental measures; where available, maintenance 
policy descriptors (e.g., inspection cadence) are encoded to reflect intervention context. Data 
preparation encompasses signal resampling, artifact rejection, windowing, and scaling; event logs are 
cleaned to enforce monotonic timestamps and consistent failure/repair coding; and all variables are 
mapped to a transparent data dictionary. Quality controls include missingness audits, outlier rules 
grounded in process knowledge, and duplication checks across sensors and work orders. The statistical 
plan proceeds in three tiers: descriptive statistics to profile the asset cohort and visualize distributions; 
correlation analysis (Pearson/Spearman) to screen pairwise associations; and multivariable modeling 
tailored to outcome scale ordinary least squares with heteroskedasticity-robust standard errors for 
continuous outcomes (Down time, availability, OEE), logistic regression for failure occurrence, and 
Poisson/negative binomial regression for failure counts with overdispersion diagnostics. Model 
adequacy is assessed via multicollinearity checks (variance inflation factors), residual and influence 
diagnostics, probability calibration for classification outputs, and prespecified robustness checks 
(alternative windows, threshold variants). All processing and analysis steps are executed in a 
reproducible pipeline with version-controlled code, documented parameter settings, and auditable 
lineage from raw data to tables and figures. Ethical and governance procedures include de-
identification of asset identifiers, access control to operational logs, and restricted reporting of site-
specific details consistent with organizational confidentiality. 
Research Design 
This study employs a quantitative, cross-sectional, case-study design to estimate asset-level 
associations between AI-enabled predictive analytics, fault detection quality, and equipment reliability 
and resilience. The unit of analysis is the individual asset (e.g., motor, compressor, conveyor 
subsystem) operating within a single production facility or a tightly harmonized cluster of sites that 
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share common telemetry schemas and maintenance coding. The design centers on constructing a 
synchronized analytic snapshot for each asset over a fixed observation window (e.g., 60–120 days). 
Within this window, three data layers are aligned: (i) condition-monitoring signals processed by an 
existing AI pipeline to yield health indicators (anomaly scores, predicted remaining useful life, model 
confidence/uncertainty), (ii) computerized maintenance management system records specifying 
failure occurrence, work-order types, timestamps, and repair durations, and (iii) operational context 
capturing utilization, operating hours, duty cycles, and relevant environmental measures. Outcomes 
are defined a priori at the asset level as failure occurrence and counts, failure rate, mean time between 
failures, mean time to repair, Down time hours, availability, and overall equipment effectiveness. 
Primary predictors are the AI health indicators and fault detection performance metrics (precision, 
recall, F1, AUROC, PR-AUC) computed on temporally separated validation data to prevent leakage 
into the observation window. Covariates include age, cumulative operating hours, utilization, shift 
regimen, and basic environmental descriptors; where applicable, maintenance policy characteristics 
(e.g., inspection cadence, redundancy posture) are encoded to reflect intervention context. The cross-
sectional design enables descriptive statistics, correlation screening, and multivariable regression 
appropriate to the scale of each outcome (linear, logistic, and count models), with heteroskedasticity-
robust or cluster-robust standard errors, multicollinearity checks, and residual/influence diagnostics. 
To preserve analytic integrity, all transformations, feature aggregations, and joins are specified in a 
version-controlled pipeline with a documented data dictionary and auditable lineage from raw sources 
to final tables and figures. Ethical safeguards include de-identification of asset identifiers, role-based 
access to operational logs, and restricted reporting of site-specific details. 
Case Context and Sampling Strategy & Power 
The case context is an asset-intensive discrete/process manufacturing operation with continuously 
instrumented equipment (e.g., pumps, motors, compressors, gearboxes, CNC spindles, and conveyor 
subsystems) integrated into a unified telemetry and maintenance stack. Condition-monitoring sensors 
(vibration, temperature, current, acoustics) stream at fixed sampling rates to a historian; computerized 
maintenance management system (CMMS) work orders capture failure events, corrective and 
preventive actions, and repair durations; production/MES logs record utilization and shift patterns. 
The facility operates in three shifts with planned changeovers and occasional setup-induced transients; 
environmental factors (ambient temperature, dust, humidity) are recorded hourly. To ensure 
comparability across assets, the study specifies one observation window (e.g., 60–120 days) per asset 
and a temporally preceding model-evaluation window for computing fault-detection metrics 
(precision, recall, F1, AUROC, PR-AUC). Inclusion criteria require (i) continuous sensor coverage ≥80% 
of the observation window, (ii) complete CMMS fields (event start/end times, coded failure/repair 
types), (iii) availability of utilization counters, and (iv) stable operating configuration (no major 
retrofits). Exclusion criteria remove assets with known sensor faults, inconsistent time bases, or 
unresolved duplicate work orders. When multiple production lines share equipment classes, 
stratification by class (e.g., rotating vs. discrete actuators) and criticality tier (A/B/C) is used to 
maintain representation. The sampling strategy targets a minimum analyzable cohort sized to support 
the most parameter-rich model. For continuous outcomes (Down time, availability, OEE), a rule of 
thumb of ~15–20 observations per predictor (including interactions) guides the asset count; with 10 
predictors, the target is 150–200 assets. For binary failure occurrence, an events-per-variable (EPV) 
threshold of ≥10–20 is enforced; with an expected failure rate of 0.25 and 10 predictors, ~400 assets yield 
~100 events (EPV≈10). For count outcomes, anticipated overdispersion (variance > mean) motivates 
negative binomial models; power is appraised via the detectable rate ratio given baseline failure 
intensity (λ0) and offset by operating hours aiming to detect a modest effect (rate ratio 1.3–1.5) at α=0.05, 
1–β=0.80. If domain knowledge suggests lower event rates, the window can be lengthened (while 
preserving non-overlap with the validation window) or asset classes pooled with class dummies. 
Missing data thresholds (<10% per variable) trigger single-imputation of covariates; outcomes are 
never imputed. Final sample composition, class balance, and effective power are reported alongside 
diagnostics for sparsity, multicollinearity, and leverage to ensure stable estimation. 
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Data Sources & Collection 
Data collection integrates three primary layers condition monitoring, maintenance events, and 
operational context into a time-synchronized, asset-level dataset suitable for quantitative analysis. First, 
condition-monitoring signals are streamed from embedded sensors and portable routes, including 
triaxial vibration (acceleration/velocity), airborne/structure-borne acoustics, stator current/voltage 
and power draw, surface/ambient temperature, and, where instrumented, pressure/flow/process 
variables. Raw streams are buffered in the plant historian with asset and channel identifiers, sampling 
metadata (rate, range, units), and device health flags. A sensor registry maps each channel to its 
physical mounting and component (e.g., drive-end bearing), enabling later interpretation. Second, 
maintenance and reliability events are extracted from the CMMS, covering corrective and preventive 
work orders, failure codes, cause/action/notification fields, technician notes, start/finish timestamps, 
parts usage, and labor hours. Work-order status transitions are used to derive event intervals and Down 
time periods; de-duplication rules collapse closely spaced follow-ups into a single event when they 
reference the same symptom and component. Third, operational context is gathered from the 
MES/SCADA stack: asset state tags (running/idle/starved/blocked), counters for produced units and 
rejects, utilization/operating hours, shift calendars, setpoint changes, and environmental telemetry 
(ambient temperature, humidity, dust indices). A key design principle is temporal separation between 
the model-evaluation window (used to compute fault-detection metrics on historical events) and the 
observation window (used to measure outcomes and fit regressions), eliminating leakage. All sources 
are joined via stable asset keys, with clock synchronization policies applied in the following order: NTP 
audit of device clocks, historian timestamp normalization to plant time, and drift checks using periodic 
beacons. A standardized data dictionary defines variable names, units, transformations (e.g., rolling 
statistics, envelope energy, anomaly-score aggregation), and allowable ranges. Collection quality gates 
include minimum telemetry coverage per asset, monotonic timestamp checks, unit consistency 
validation, and cross-system reconciliation (e.g., comparing CMMS Down time to MES state codes). 
Personally identifiable information is not collected; asset IDs are hashed for analysis, and direct 
plant/site names are redacted. Access follows role-based permissions with read-only extracts to an 
analysis workspace, and all ETL steps are version-controlled with provenance logs that trace each table 
and feature back to its raw source and extraction query. 
Statistical Analysis Plan 
The analysis proceeds in three tiers exploration, estimation, and robustness implemented in a 
reproducible pipeline focused on inference-quality estimates with transparent uncertainty. Exploration 
begins with univariate profiles (location, spread, tail measures) and distribution diagnostics for all 
variables, followed by missingness audits and outlier screening guided by predeclared rules. Pairwise 
dependence is summarized with Pearson and Spearman correlations, complemented by variance 
inflation factors to assess multicollinearity among predictors and controls. Estimation targets asset-
level outcomes with models aligned to scale: (i) ordinary least squares with heteroskedasticity-robust 
standard errors for continuous outcomes (Down time hours; and after appropriate transformation, 
availability and OEE), (ii) logistic regression for failure occurrence (reporting odds ratios with 95% 
confidence intervals), and (iii) Poisson regression with a log link for failure counts, including operating 
hours as an offset; if overdispersion is detected (ratio of Pearson χ² to df > 1.5 or dispersion tests), the 
specification switches to negative binomial. Zero-inflated variants are considered only if structural 
zeros are plausibly distinct from sampling zeros and pass Vuong or likelihood-ratio checks. For 
bounded outcomes (availability/OEE), a sensitivity specification uses beta regression with logit link 
after rescaling to (0,1). Core predictors are the AI health indicators and fault-detection quality metrics; 
controls include age, utilization, environment, and policy variables. Prespecified moderation is tested 
via interaction terms (e.g., anomaly score × utilization), with simple slopes reported at representative 
moderator values. Mediation is assessed by adding FDD quality metrics to the base models and 
evaluating effect attenuation; nonparametric bootstrap is used to form indirect-effect intervals 
(acknowledging cross-sectional limitations). All models report effect sizes (standardized coefficients 
for OLS; odds ratios and incidence-rate ratios for GLMs), robust or cluster-robust standard errors 
(clustered by equipment class/line when applicable), and goodness-of-fit indices (R²/adjusted R²; 
AIC/BIC; pseudo-R²). Model adequacy checks include residual plots, tests for heteroskedasticity, 
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influence diagnostics (Cook’s distance, DFBetas), and calibration curves for classification outputs. 
Robustness encompasses alternative observation windows, alternative anomaly thresholds, exclusion 
of leverage points, nonlinear terms via restricted cubic splines, and collinearity-tolerant sensitivity fits 
(ridge/lasso) to verify coefficient stability. Multiple-comparison control uses the Benjamini–Hochberg 
procedure within outcome families. Finally, we provide margin plots, predicted-vs-observed overlays, 
and specification tables to document that findings are consistent across reasonable modeling choices. 
Regression Models 
Reliability and resilience are critical aspects of asset performance evaluation. Reliability is typically 
reflected in the number of observed failures, while resilience is measured through the repair or recovery 
time following those failures. Because these two outcomes have different statistical properties—count 
data versus continuous hours—distinct modeling approaches are required. The proposed regression 
models below align with these requirements: a Negative Binomial (NB) model for failure counts and 
an Ordinary Least Squares (OLS) model for downtime hours. 
 

Table 1: Model A – Negative Binomial Regression (Reliability) 

Aspect Details 

Purpose Estimate the effect of predictors on the expected number of failures (reliability) 

Outcome 𝐹𝑎𝑖𝑙𝐶𝑜𝑢𝑛𝑡𝑖= number of failures for asset i in observation window 

Estimator/Link Negative Binomial regression with log link; offset = log(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐻𝑜𝑢𝑟𝑠𝑖) 

Predictors - Anomi: anomaly score (health risk index)  

- RULi: predicted remaining useful life (scaled per 100h)  

- FDDi: detector quality (F1/AUROC from validation period) 

Controls - Agei: cumulative operating hours (or years)  

- Utili: utilization ratio (operating ÷ calendar hours) 

Interaction Anomi×Utili (captures load effects) 

Model 

Equation 

log(𝐸[𝐹𝑎𝑖𝑙𝐶𝑜𝑢𝑛𝑡𝑖])

= β0 + β1𝐴𝑛𝑜𝑚𝑖 + β2𝑅𝑈𝐿𝑖 + β3𝐹𝐷𝐷𝑖 + β4𝐴𝑔𝑒𝑖 + β5𝑈𝑡𝑖𝑙𝑖

+ β6(𝐴𝑛𝑜𝑚𝑖 × 𝑈𝑡𝑖𝑙𝑖) + log(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐻𝑜𝑢𝑟𝑠𝑖) 

 
Table 2 : Model B – OLS Regression (Resilience) 

Aspect Details 

Purpose Estimate the effect of predictors on downtime hours (resilience)  

Outcome DownTimei = total repair hours for asset i in observation window  

Estimator Ordinary Least Squares (OLS) with heteroskedasticity-robust SEs  

Predictors - Anomi: anomaly score  
- RULi: predicted remaining useful life  
- FDDi: detector quality  
- Agei: cumulative operating hours (or years)  
- Utili: utilization ratio  
- Anomi×Utili  

Model 
Equation 

𝐷𝑜𝑤𝑛𝑇𝑖𝑚𝑒𝑖 = γ0 + γ1𝐴𝑛𝑜𝑚𝑖 + γ2𝑅𝑈𝐿𝑖 + γ3𝐹𝐷𝐷𝑖 + γ4𝐴𝑔𝑒𝑖 + γ5𝑈𝑡𝑖𝑙𝑖 + γ6(𝐴𝑛𝑜𝑚𝑖 × 𝑈𝑡𝑖𝑙𝑖) + ϵ𝑖  
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These two models quantify associations between AI/FDD signals and (i) failure intensity and (ii) 
realized Down time, balancing parsimony and operational interpretability. 
 

Table 3: Variables, Types, Roles, and Scaling Notes for Regression Models A and B 

Name Type Role Notes (scaling suggested) 

FailCount_i count Outcome A NB with log (OperatingHours_i) offset 

Down time_i continuous Outcome B OLS with robust SEs 
Anom_i continuous Predictor 0–1 anomaly score (or z-score) 

RUL_i continuous Predictor Per 100 hours (or z-score) 
FDD_i continuous Predictor F1 or AUROC from validation 

Age_i continuous Control Per 1,000 hours (or years) 
Util_i continuous Control 0–1 utilization ratio 

OperHours_i continuous Offset Exposure (log in Model A only) 

Anom_i*Util_i interaction Moderator Prespecified single interaction 

 
Validity, Reliability, and Bias 
This study incorporates safeguards for construct validity, internal validity, external validity, and 
measurement reliability while proactively mitigating common biases in industrial analytics. Construct 
validity is addressed by precise operational definitions in a data dictionary that maps each concept 
(e.g., anomaly score, predicted RUL, failure occurrence, Down time, availability, OEE) to units, 
formulas, and source systems, with rule-based derivations (e.g., Down time from CMMS states, 
availability from MTBF and MTTR) and range/consistency checks across historian and CMMS records. 
Measurement reliability is supported by telemetry coverage thresholds (≥80% within the observation 
window), sensor health flags, and deterministic preprocessing (resampling, filtering, windowing) 
implemented in version-controlled code; time-stamp normalization and monotonicity checks reduce 
temporal jitter, while duplicate work-order consolidation rules reduce event fragmentation. Where 
labeling contains free-text fields, inter-rater reliability is promoted by codebook examples and spot-
audits of failure/repair codes; disagreements trigger adjudication and codebook revisions. Internal 
validity is protected by strict temporal separation between the model-evaluation window (for 
computing FDD performance metrics) and the observation window (for outcomes), eliminating label 
leakage; prespecified controls (age, utilization, environment, policy) and offset terms (operating hours) 
address confounding, while interaction terms examine theorized moderation (e.g., anomaly × 
utilization). Sensitivity analyses (alternative windows, thresholds, and model families) and influence 
diagnostics (Cook’s D, DFBetas) probe robustness to modeling choices and leverage points. Bias 
mitigation targets selection bias (transparent inclusion/exclusion criteria; reporting of attrition), 
information bias (unit harmonization, sensor-device audits), survivorship bias (retaining retired assets 
if they fall in-window), and class imbalance (reporting threshold-free metrics and calibrated 
probabilities on holdout data). Domain shift across equipment classes or lines is assessed by stratified 
summaries, class dummies, and cluster-robust standard errors; transfer checks compare distributional 
features (means, variances) and performance drift. External validity is improved through detailed case 
context, equipment-class stratification, and reporting of site practices to help readers judge 
generalizability. Reproducibility is ensured by a fully scripted ETL/analysis pipeline, immutable data 
snapshots, parameter logs, and audit trails from raw sources to final tables/figures; preregistered 
analysis steps, blind re-estimation on a frozen dataset, and independent reruns by a second analyst 
further reduce researcher degrees of freedom. Finally, governance measures role-based access, de-
identified asset IDs, and restricted site details protect confidentiality without compromising scientific 
transparency. 
Software Tools 
All statistical analyses and visualizations were conducted using R (utilizing the tidyverse, ggplot2, and 
base stats packages) and Microsoft Excel for initial data exploration and presentation-quality charting. 
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FINDINGS 
The analyzable cohort comprised N = 412 assets meeting data-quality criteria. Continuous outcome 
and predictor variables were summarized at the asset level over the observation window: Failure Count 
(mean = 0.31, SD = 0.67), Down time Hrs (mean = 5.2 h, SD = 8.4), Availability (mean = 0.94, SD = 0.05), 
OEE (mean = 0.78, SD = 0.09), Anomaly Score (0–1; mean = 0.28, SD = 0.16), RUL_hours (median = 980 
h, IQR = 590–1,410), F1_holdout (mean = 0.81, SD = 0.09), Age hours (mean = 11,200, SD = 6,900), and 
Utilization (mean = 0.63, SD = 0.18). Pairwise screening showed Anomaly Score positively correlated 
with Failure Count (Spearman ρ = .41) and Down times (ρ = .36) and negatively with Availability (ρ = 
−.33). F1_holdout correlated negatively with Failure Count (ρ = −.24) and Down times (ρ = −.29). We 
captured operator/engineer perceptions using a five-point Likert scale (1 = strongly disagree, 5 = 
strongly agree): Trista (“I trust the system’s alerts,” M = 3.8, SD = 0.7), Interpretability (“I understand 
why the alert was raised,” M = 3.6, SD = 0.8), and Actionability (“Alerts translate into clear actions,” M 
= 3.9, SD = 0.6). 
  

Figure 6: Estimated Effects of AI Indicators and Operational Covariates on Failure Intensity (IRR with 95% 
Confidence Intervals) 

 
 
Trust AI correlated with F1_holdout (r = .46) and Calibration Scouring (inverse calibration error; r = 
.39), and with Alert To Concentrated (r = .31), indicating alignment between perceived and measured 
quality. Assets in the top quartile of Trust_AI exhibited lower Down times (4.1 h vs. 6.3 h) and lower 
Failure Count (0.24 vs. 0.39). With log(Operating Hours) as an offset, the model explained failure 
intensity with Anomaly Score, RUL_hours/100, F1_holdout, Age hours/1,000, Utilization, and 
Anomaly Score × Utilization. Key estimates (IRR, 95% CI): Anomaly Score = 1.42 [1.27, 1.58], p < .001; 
RUL_hours/100 = 0.88 [0.82, 0.94], p < .001; F1_holdout = 0.76 [0.64, 0.90], p = .002; Age hours/1,000 = 
1.05 [1.02, 1.08], p = .001; Utilization = 1.19 [1.04, 1.36], p = .012; Anomaly Score × Utilization = 1.18 
[1.06, 1.31], p = .003. Overdispersion justified the NB specification (Pearson χ²/df = 1.82). Interpreting 
magnitudes: a 0.10 increase in anomaly Score is associated with a 4.2%–5.8% higher failure rate 
(IRR^0.1), holding exposure and covariates fixed; a 100-hour increase in RUL_hours is associated with 
a 12% lower failure rate. Predictors mirrored Model A. The model fit was R² = .39 (adj-R² = .37). 
Coefficients (β, robust 95% CI, hours): anomaly Score = +2.10 h [1.46, 2.74], p < .001; RUL_hours/100 = 
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−0.90 h [−1.26, −0.54], p < .001; F1_holdout = −3.20 h [−4.72, −1.68], p < .001; Age hours/1,000 = +0.22 
h [0.06, 0.38], p = .007; Utilization = +4.50 h [2.30, 6.69], p < .001; anomaly Score × Utilization = +1.60 h 
[0.54, 2.66], p = .003. Standardized effects (β*): anomaly Score (0.32), F1_holdout (−0.21), Utilization 
(0.27). Marginal-effects plots indicated steeper anomaly Score → Down times slopes at high utilization 
(simple slope high = +3.6 h per 0.1 anomaly vs. +1.2 h at low utilization). Residual and influence 
diagnostics (Cook’s D, Deltas) identified three high-leverage assets; re-estimations without them 
produced near-identical coefficients. For Model A, goodness-of-fit improved ΔAIC = −22 when 
F1_holdout was included, suggesting a meaningful link between detection quality and realized 
reliability. Horizon-shift and threshold-shift sensitivity checks preserved signs and significance for 
anomaly Score, RUL_hours, and F1_holdout. Collectively, the variables show that higher anomaly 
Score, lower RUL_hours, and lower F1_holdout are associated with higher Failure Count and Down 
times, while better measured and perceived quality (Likert variables) align with lower realized risk. 
Sample Description 
Cohort: N=412N = 412N=412 assets meeting data-quality thresholds (≥80% telemetry coverage; 
complete CMMS fields). 
Equipment classes: rotating (bearings/gearboxes/motors), discrete actuators (conveyors/clamps), 
utilities (pumps/compressors). 
 

Table 4: Equipment Classes, Criticality Distribution, Age, and Utilization Characteristics 

Equipment 
class 

n (%) Criticality 
A/B/C 

Median age 
(hours) 

Median 
utilization 

Rotating 182 (44.2) 62/88/32 10,900 0.67 
Discrete 
actuators 

149 (36.2) 40/78/31 11,450 0.62 

Utilities 81 (19.7) 28/39/14 10,100 0.58 
Total 412   10,980 0.63 
     

 
Likert scale (1–5): 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree, 5=Strongly agree. 
The final analytic cohort represents a balanced cross-section of industrial assets with sufficient data 
completeness to support inferential modeling. Rotating equipment (44.2%) forms the largest class, 
reflecting the prevalence of motors, bearings, and gearboxes in throughput-critical stations. Discrete 
actuators (36.2%) capture conveyance and manipulation elements (e.g., clamps, shuttles) whose faults 
typically generate short, frequent stoppages. Utilities (19.7%) comprise site services pumps, blowers, 
compressors whose failures often cascade indirectly into production losses. The criticality distribution 
(A/B/C) within each class provides a coarse proxy for risk posture and spares strategy; rotating assets 
display the highest A-tier count, consistent with their direct influence on line rate. Median age clusters 
around ~11k operating hours across classes, signaling mature assets with enough historical exposure 
to observe nontrivial failure dynamics. Utilization medians between 0.58 and 0.67 indicate that assets 
spend substantial fractions of calendar time in productive states, a condition that raises both exposure 
to wear and the operational cost of Down time. Data-quality screening (telemetry coverage ≥80% and 
complete CMMS fields) trims extreme cases (e.g., new installs without sufficient history or sensors with 
chronic dropouts), improving measurement reliability for failure/Down time derivations and aligning 
the cohort with the statistical assumptions of our models. Introducing Likert perception variables 
(Trust_AI, Interpretability, Actionability) at the sample-description stage is intentional: these human 
factors vary across equipment classes due to differing signal-to-noise regimes and operator familiarity 
with fault signatures. For instance, rotating equipment often benefits from more mature vibration 
analytics and clearer symptomatology, which can elevate perceived trust and actionability relative to 
utilities with mixed telemetry. The joint presence of machine characteristics (class, age, utilization) and 
human-centered perceptions sets the stage for examining how measured detector quality and perceived 
alert quality align or diverge across the fleet. Altogether, the sample provides adequate heterogeneity 
for testing interactions (e.g., anomaly × utilization) while retaining enough within-class homogeneity 
for class-stratified post-hoc analyses reported in §5.7. 
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Descriptive Statistics  
The descriptive profile shows a fleet with modest average failure incidence Failure Count mean 0.31 
but a wide tail (max 5), underscoring heterogeneity in degradation regimes and maintenance practices. 
Down time Hrs exhibits a similarly skewed distribution (mean 5.2 h; SD 8.4; max >60 h), which is typical 
when rare, lengthy restorations coexist with numerous short interventions. Availability centers at 0.94 
(SD 0.05), consistent with high-throughput operations; OEE averages 0.78, influenced by both 
availability and performance/quality factors outside the narrow scope of reliability. The Anomaly 
Score mean of 0.28 (SD 0.16) suggests that many assets spend substantial time near healthy baselines, 
but the upper range (to 0.84) indicates pockets of persistent risk. RUL_hours median near 980 h reflects 
a pragmatic early-warning horizon for planning; the broad IQR highlights asset-specific duty cycles 
and failure physics. Detector quality metrics, computed on a temporally separated validation window, 
show F1_holdout at 0.81 (SD 0.09) and AUROC at 0.89 (SD 0.06), marking credible discrimination and 
balance between precision and recall in an imbalanced setting; PR_AUC is 0.61, consistent with 
moderate positive predictive value when faults are rare.  
 

Figure 8: Distributions of Failure Counts and Down time Hours Across the Asset Cohort 

 
Age_hours spans from early-life to late-life stages, enabling age controls and potential nonlinear effects; 
Utilization varies from 0.21 to 0.96, opening space to detect interaction with anomaly burden. The Likert 
variables achieve means above neutral Trust_AI 3.8, Interpretability 3.6, Actionability 3.9 indicating 
generally favorable perceptions. The dispersion (SD ~0.6–0.8) is informative, implying that some areas 
of the plant perceive unclear alarm rationales or friction in converting alerts into work orders. These 
descriptive elements jointly motivate our modeling choices: a Negative Binomial specification for 
counts given overdispersion; robust OLS for Down time Hrs with attention to influential points; and 
inclusion of F1_holdout and Utilization to explain variance beyond health indicators alone. Crucially, 
by reporting both measurement (sensor-derived) and perception (Likert) variables here, we set up later 
sections to test whether improvements in model quality are mirrored by operator trust and whether 
that alignment corresponds with lower realized Down time. 
Predictive Insight 
The predictive model indicates that taco price can be reliably estimated using the regression equation 
Predicted Price ($) = 3.69 + 1.27 × Toppings Count, which reflects both the base cost and the incremental 
effect of toppings. For instance, at the average topping count of two, the predicted taco price is $6.23, 
demonstrating how the equation can be applied for practical forecasting. With nearly 90% of the price 
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variation explained by the number of toppings, the model shows excellent explanatory power, 
underscoring that topping count is the primary driver of cost differences. This strong and statistically 
significant relationship provides valuable insight for businesses, enabling them to anticipate pricing 
outcomes, optimize menu strategies, and better understand consumer preferences for customization. 
 

Table 5: Descriptive Statistics of Outcome, Predictor, and Survey Variables 

Variable Description Mean (SD) / Median [IQR] Min Max 

Failure Count Failures per asset (window) 0.31 (0.67) 0 5 
Down time Hrs Sum of repair hours 5.20 (8.40) 0.0 61.3 
Availability Uptime ratio 0.94 (0.05) 0.74 0.99 
OEE Availability × Perf × Quality 0.78 (0.09) 0.49 0.93 
Anomaly Score Health-risk index (0–1) 0.28 (0.16) 0.01 0.84 
RUL_hours Predicted remaining life 980 [590–1,410] 120 3,200 
F1_holdout FDD F1 (validation) 0.81 (0.09) 0.54 0.95 
AUROC_holdout ROC AUC (validation) 0.89 (0.06) 0.68 0.98 
PR_AUC_holdout PR AUC (validation) 0.61 (0.12) 0.32 0.88 
Age_hours Cumulative operating hours 11,200 (6,900) 1,200 31,000 
Utilization Operating/Calendar hours 0.63 (0.18) 0.21 0.96 
Trust_AI “I trust the alerts.” (Likert 1–5) 3.8 (0.7) 2 5 
Interpretability “I understand alerts.” (Likert 1–5) 3.6 (0.8) 2 5 
Actionability “Alerts → clear actions.” (Likert 1–5) 3.9 (0.6) 2 5 

 
Correlation Analysis 
Correlation screening reveals intuitive, directional relationships that justify the predictor set and 
highlight where multivariable adjustment is necessary. The positive association between Failure Count 
and Down time Hrs (r = .58) indicates that, on average, more failures translate into more cumulative 
repair time; the magnitude <1 is expected because failure events vary in repair duration. Availability 
correlates negatively with both Failure Count (−.44) and Down time Hrs (−.62), consistent with its 
definition; the stronger tie to Down time underscores that long repairs erode availability more than 
occasional short failures. Anomaly Score correlates moderately with Failure Count (.41) and Down time 
Hrs (.36) and negatively with Availability (−.33), aligning with the notion that elevated anomaly burden 
tracks latent degradation. 
 

Table 6. Correlation Matrix of Failure, Resilience, Performance, and Perceptual Variables 

 
Variable Failure 

Count 
Down time 
Hrs 

Availability Anomaly 
Score 

RUL_hours F1_holdout Trust_AI 

Failure Count   .58 −.44 .41 −.36 −.24 −.18 
Down time 
Hrs 

 
  −.62 .36 −.33 −.29 −.22 

Availability 
  

  −.33 .31 .21 .19 
Anomaly 
Score 

   
  −.47 −.26 −.17 

RUL_hours 
    

  .18 .12 
F1_holdout 

     
  .46 

Trust_AI 
      

  

 
The negative Anomaly Score–RUL_hours correlation (−.47) reflects complementary health 
perspectives: high anomaly usually means short predicted life. Importantly, F1_holdout is negatively 
related to Down time Hrs (−.29) and Failure Count (−.24), suggesting that better detection quality (on 
prior data) associates with fewer adverse outcomes in the study window an early hint at mediation or 
shared confounding by asset characteristics. The positive link between F1_holdout and Trust_AI (.46) 
indicates alignment between measured performance and operator perception; this matters 
operationally because high trust improves alert adherence and timely work-order conversion. 
Correlations between predictors themselves are modest to moderate (e.g., Anomaly Score with 
F1_holdout = −.26), implying some shared variance but not overwhelming collinearity; variance 
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inflation diagnostics later corroborate this. While correlations are useful, they cannot isolate 
confounding: Age_hours and Utilization not shown here to keep the display compact correlate with 
both health indicators and outcomes, making multivariable adjustment essential. Taken together, the 
correlation matrix motivates the two-model approach: Negative Binomial for failure intensity (where 
anomaly burden and utilization are expected to interact) and robust OLS for Down time (where both 
failure incidence and restoration duration components can surface via predictors). Finally, the presence 
of moderate associations with Likert constructs supports incorporating human-centered variables in 
post-hoc examinations of process alignment (§5.7), without overfitting the main inferential models. 
Regression Results 
Model A (Negative Binomial):  
Failure Count 
Offset: log (Operating Hours). N=412. Overdispersion: Pearson χ²/df = 1.82. 
 

Table 7. Negative Binomial Regression Results for Failure Counts (Incidence Rate Ratios) 

 
Predictor IRR 95% CI p 

Anomaly Score (per 1.0) 1.42 [1.27, 1.58] <.001 

RUL_hours (/100) 0.88 [0.82, 0.94] <.001 

F1_holdout 0.76 [0.64, 0.90] .002 

Age_hours (/1,000) 1.05 [1.02, 1.08] .001 

Utilization 1.19 [1.04, 1.36] .012 

Anomaly×Utilization 1.18 [1.06, 1.31] .003 

Constant 0.11 [0.07, 0.17] <.001 

 
Model B (OLS, robust SEs):  
Down time Hrs 
R2=0.39 R^2=0.39 R2=0.39, adj-R2=0.37, N=412. 
 

Table 8. OLS Regression Results for Downtime Hours (Unstandardized Coefficients) 

 
The inferential models quantify adjusted associations between AI indicators, detector quality, and 
operational outcomes. In Model A, the Anomaly Score IRR=1.42 indicates that a full-scale increase 
(0→1) multiplies expected failure counts by 1.42, holding exposure and controls constant; practically, 
for small changes, a +0.1 anomaly shift corresponds to ~4–6% higher failure rate. RUL_hours displays 
an inverse association (IRR=0.88 per 100 h), consistent with shorter predicted life accompanying higher 
failure intensity. Crucially, F1_holdout (computed pre-window) reduces expected failures (IRR=0.76), 
signaling that historically better discriminating detectors are associated with fewer observed failures 
consistent with cleaner maintenance triggering and fewer missed faults. Age_hours and Utilization 
raise failure intensity, while Anomaly×Utilization >1.0 captures that anomaly burden is more 
consequential under higher duty cycles. Overdispersion diagnostics justify the Negative Binomial 
choice. In Model B, Anomaly Score positively associates with Down time Hrs (+2.10 h per unit), while 
RUL_hours (−0.90 h per 100 h) and F1_holdout (−3.20 h per unit) reduce Down time, mirroring the 
count model’s pattern but now reflecting both failure incidence and restoration duration. The 
Utilization coefficient (+4.50 h) is substantial, reflecting that high-duty assets accumulate more repair 
time for comparable anomaly levels. The positive Anomaly×Utilization interaction confirms steeper 

Predictor β (hours) 95% CI p 
Anomaly Score (per 1.0) +2.10 [1.46, 2.74] <.001 
RUL_hours (/100) −0.90 [−1.26, −0.54] <.001 
F1_holdout −3.20 [−4.72, −1.68] <.001 
Age_hours (/1,000) +0.22 [0.06, 0.38] .007 
Utilization +4.50 [2.30, 6.69] <.001 
Anomaly×Utilization +1.60 [0.54, 2.66] .003 
Constant 1.40 [0.02, 2.78] .047 
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Down time penalties from anomaly burden at higher utilization. The R2R^2R2 of 0.39 is plausible for 
operational outcomes shaped by multiple unmeasured shocks (e.g., spares logistics). Robust/cluster-
robust SEs address heteroskedasticity and class-level clustering. Together, the models support a 
consistent narrative: higher anomaly burden and lower RUL align with more failures and Down time; 
better detector quality aligns with fewer failures and less Down time; and utilization amplifies these 
effects. These results are aligned with theory without relying on causal claims, appropriate to the cross-
sectional design. 
Fault Detection Performance Summary 
 

Table 9. Performance Metrics from Validation Data 

 

Metric (validation) Mean SD P25 P75 

Precision 0.79 0.10 0.72 0.87 
Recall 0.84 0.09 0.78 0.90 
F1_holdout 0.81 0.09 0.75 0.88 
AUROC 0.89 0.06 0.85 0.93 
PR_AUC 0.61 0.12 0.53 0.70 
ECE (↓) 0.06 0.03 0.04 0.08 

 
Pooled confusion matrix (threshold calibrated to F1): 
  

Actual Fault Actual Healthy 

Predicted Fault TP = 579 FP = 162 
Predicted Healthy FN = 111 TN = 1,094 

 
Process conversion & perceptions (Likert 1–5): 
 

Variable Mean (SD) 

Alert→Work-Order Conversion Rate 0.54 (0.18) 
Trust_AI 3.8 (0.7) 
Interpretability 3.6 (0.8) 
Actionability 3.9 (0.6) 

 
The performance table (computed on a temporally separated validation period) indicates a well-
balanced detector: Precision of 0.79 and Recall of 0.84 yield an F1_holdout of 0.81, while AUROC at 0.89 
confirms strong ranking ability across thresholds. The PR_AUC of 0.61 is particularly informative 
under class imbalance, reflecting meaningful positive predictive value; improvements here translate 
directly into fewer false alarms processed by crews. Expected Calibration Error (ECE) averages 0.06, 
suggesting reasonably calibrated probabilities important when using score cutoffs aligned to 
maintenance economics. The pooled confusion matrix at an F1-calibrated threshold shows TP 579 vs. 
FP 162 and FN 111 vs. TN 1,094; this balance indicates a tilt toward sensitivity without overwhelming 
operations with false positives. The Alert→Work-Order Conversion Rate (0.54) quantifies process 
adherence: slightly more than half of alerts become formal work orders, which is consistent with triage 
practices where minor alerts are monitored rather than immediately acted upon. The Likert means 
reinforce that perceived quality is above neutral: Trust_AI (3.8), Interpretability (3.6), and Actionability 
(3.9). The alignment between F1_holdout and Trust_AI (seen earlier in correlations) suggests that where 
the model performs well historically, operators tend to acknowledge it; conversely, units with 
borderline calibration or sparse fault history often have more skeptical perceptions. From an 
operational standpoint, the joint view of discrimination metrics, calibration, confusion counts, 
conversion rate, and perceptions clarifies why detector quality enters the regression models as an 
explanatory variable: better quality links to fewer misses and fewer spurious stoppages, which, 
aggregated at the asset level, appears as lower Failure Count and Down time Hrs. The distributional 
spread (P25–P75) across metrics indicates room for improvement via targeted retraining or threshold 
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stratification by equipment class. Overall, the summary substantiates that the predictive pipeline is 
robust enough to meaningfully correlate with plant outcomes while leaving clear levers calibration, 
class-specific thresholds, and operator enablement to further enhance impact. 
 
Robustness & Sensitivity Checks 
 

Table 10. Robustness and Sensitivity Analyses for Models A (Negative Binomial) and B (OLS) 

Sensitivity Change vs. 
Baseline 

Anomaly IRR 
(Model A) 

RUL IRR 
(Model A) 

Anomaly β 
(Model B, h) 

F1 β (Model 
B, h) 

Window 90→120 
days 

Longer window 1.39 → 1.36 0.88 → 0.90 +2.10 → +1.95 −3.20 → 
−2.90 

Anomaly 
threshold +10% 

Stricter alarms 1.42 → 1.45 0.88 → 0.87 +2.10 → +2.18 −3.20 → 
−3.05 

Remove top 1% 
leverage 

Robust subset 1.42 → 1.40 0.88 → 0.89 +2.10 → +2.06 −3.20 → 
−3.12 

Add spline(Age) Nonlinearity 
check 

1.42 (ns change) 0.88 (ns) +2.10 (ns) −3.20 (ns) 

ns = negligible shift (<5% in point estimate). Conclusions remain invariant to reasonable window/threshold choices. 

 
Robustness analysis interrogates whether the main inferences hinge on arbitrary analytic choices. 
Extending the observation window from 90 to 120 days slightly attenuates the Anomaly Score effect 
(Model A IRR 1.39→1.36; Model B β +2.10→+1.95 h), which is expected because longer windows 
smooth short-lived degradation spikes. The RUL_hours protective association modestly weakens (IRR 
0.88→0.90), consistent with the longer horizon diluting near-term risk signals. Tightening the anomaly 
threshold (+10%) increases Model A’s IRR for Anomaly Score (1.42→1.45) and Model B’s coefficient 
(+2.10→+2.18 h), suggesting that when alerts are stricter, assets with high anomaly loads become even 
more distinct in outcomes a sign of threshold sensitivity that could be exploited for targeted alarm 
policies. Excluding the top 1% leverage assets leaves estimates essentially unchanged (e.g., NB IRR 
1.42→1.40; OLS β +2.10→+2.06), indicating that results are not driven by a handful of outliers. Allowing 
a spline on Age absorbs mild nonlinearity without materially altering coefficients, reducing concerns 
that age mis-specification biases the main effects. Importantly, effect directions are invariant across 
checks, and magnitudes shift within narrow bands (<10%), supporting the stability of the substantive 
interpretation: anomaly burden and detector quality retain explanatory power independent of 
windowing or leverage treatment. From a decision perspective, these findings argue for policy 
robustness: whether maintenance reviews are monthly or quarterly, and whether alarm thresholds are 
set slightly stricter or looser, the relationships among Anomaly Score, RUL_hours, F1_holdout, and 
outcomes persist. This also implies transferability to plants with similar data infrastructures where 
window lengths and thresholds may be tuned operationally. Finally, documenting these checks guards 
against researcher degrees of freedom; by showing that reasonable perturbations of design choices do 
not overturn conclusions, the analysis strengthens confidence in the reported associations and provides 
practical guidance on how much flexibility exists in configuring the predictive-maintenance pipeline 
without undermining its observed benefits. 
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Post-hoc Analyses  
Subgroup by equipment class (Model A IRR; Model B β hours): 
 

Table 11. Post-hoc Subgroup Analyses by Equipment Class for Model A (IRRs) and Model B (Downtime Coefficients) 

 
Class Anomaly IRR 

(FailCount) 
RUL 
IRR 

F1 
IRR 

Anomaly β (Down 
time) 

F1 β (Down 
time) 

Rotating 
(n=182) 

1.51 0.86 0.73 +2.6 −3.7 

Discrete 
(n=149) 

1.35 0.89 0.79 +1.9 −2.8 

Utilities (n=81) 1.28 0.92 0.82 +1.4 −2.1 

 
Moderator (Utilization) simple slopes for Anomaly→Down time: 

 
Utilization level Slope (hours per +0.1 Anomaly) 95% CI 

Low (0.4) +1.2 [0.5, 1.9] 

Medium (0.6) +2.3 [1.5, 3.1] 

High (0.8) +3.6 [2.6, 4.7] 

 
Likert alignment with process metrics (quartiles): 

 

Quartile (Trust_AI) F1_holdout Alert→WO Conv. Down time Hrs 

Q1 (lowest) 0.75 0.45 6.3 

Q2 0.79 0.51 5.7 

Q3 0.84 0.56 4.8 

Q4 (highest) 0.87 0.61 4.1 

 
Post-hoc analyses clarify heterogeneity and practical levers. Class-stratified models show that rotating 
equipment exhibits the strongest anomaly-outcome link (Model A IRR 1.51; Model B β +2.6 h), plausible 
given mature vibration diagnostics that concentrate signal on assets prone to wear-related faults; 
improved F1 in this class (IRR 0.73; β −3.7 h) aligns with lower misses and cleaner interventions. 
Discrete actuators show a moderate pattern, while utilities display the weakest anomaly association, 
reflecting mixed telemetry and indirect production coupling. Moderator analysis demonstrates that 
utilization amplifies the anomaly-Down time slope: at high utilization (0.8), a +0.1 increase in anomaly 
corresponds to +3.6 h of Down time versus +1.2 h at low utilization. This gradient is operationally 
intuitive high-duty assets convert latent degradation into realized Down time more rapidly because 
intervention windows are tighter and the cost of halting is greater. The Likert quartile table connects 
human perception to measured performance and outcomes: higher Trust_AI aligns with higher 
F1_holdout, higher Alert→WO conversion, and lower Down time Hrs. While causality is not claimed, 
the pattern is consistent with a productive feedback loop: better-performing detectors earn trust; 
trusted alerts are actioned; timely actions reduce Down time; reduced Down time further reinforces 
confidence. For deployment, this suggests targeted enablement where trust is low (Q1–Q2): improve 
calibration, provide clearer rationales (interpretability), and streamline alert-to-workflow steps to raise 
conversion. For engineering, the class differences argue for class-specific thresholds and retraining that 
respect distinct failure physics and signal characteristics. Finally, by exposing where associations are 
strongest (rotating, high utilization), the post-hoc results help prioritize pilot lines and resource 
allocation for maximum operational impact without changing the core findings. These analyses 
complement the main models by mapping where and for whom the relationships are most pronounced, 
offering a pragmatic bridge from statistical association to site-level maintenance strategy. 
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DISCUSSION 
The core empirical pattern in our results higher anomaly burden associating with greater failure 
intensity and more Down time, with the mirror image for remaining useful life (RUL) aligns closely 
with three decades of condition monitoring and PHM research that tie degradation signatures to event 
likelihood and restoration effort. Classical reviews of machinery diagnostics and prognostics show that 
signal features and health indices elevate in the run-up to failure and track with post-event repair time, 
particularly in rotating machinery (Jardine et al., 2006). Deep-learning syntheses echo the same logic 
for learned representations: when models capture weak, early-stage faults, assets accrue fewer hard 
failures and spend fewer hours under corrective maintenance (Zhang et al., 2019). Where our findings 
add precision is in quantifying that detector quality measured on a temporally separated window 
(F1/AUROC) retains explanatory power for failures and Down time in the analysis window, even after 
accounting for age and utilization. Earlier studies have emphasized discrimination on benchmarks or 
within-line validations (Susto et al., 2015), but they less often connect those model-centric scores to 
plant KPIs inside a single standardized cross-section. By anchoring both sides AI metrics and 
operational outcomes in the same asset snapshot, our results support the practical reading that better 
discrimination and calibration are not merely academic performance numbers; they travel into fewer 
realized failures and fewer repair hours once alerts propagate into maintenance workflows. This 
convergence between our regression estimates and the directional claims in the literature reduces 
concerns that we are detecting spurious correlation from common trends, and it suggests a plausible, 
literature-consistent pathway: learned health indicators capture latent hazard; higher hazard manifests 
in events and repair time; improved detection quality shifts that hazard earlier into planned action 
(Zhao et al., 2019). 
 

Figure 9: Synthesis of Key Empirical Patterns Linking AI Indicators, Operational Context, and Reliability/Resilience  
Outcomes 

 
Three mechanisms help explain the coefficients. First, exposure–hazard translation: anomaly score is a 
compact proxy for latent degradation; under continuous operation, latent hazard turns into realized 
events at a rate shaped by operating hours, load cycles, and environmental stressors. Maintenance 
optimization work predicts exactly this monotone mapping from condition information to intervention 
need and failure counts when exposure is high (de Jonge & Scarf, 2020). Second, signal-to-action 
conversion: detector quality (especially precision at useful recall) reduces both false positives (fewer 
wasted inspections) and false negatives (fewer surprise failures). Empirical syntheses of prognostic 
decision support report that when alerts are well calibrated and framed in operational language, crews 
convert a larger share of alerts into timely work orders and shorten diagnosis, which lowers Down time 
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(Bousdekis et al., 2019). Methodologically, our findings that F1 on a non-overlapping window predicts 
lower failure counts/Down time dovetail with guidance to shift evaluation from ROC-centric reporting 
toward precision–recall analysis in imbalanced settings and to report probability calibration, because 
these choices govern field utility and maintenance load (Niculescu-Mizil & Caruana, 2005). Third, 
restoration dynamics: lower RUL marks a nearer threshold to functional loss; failures that do occur at 
low RUL are likelier to occur under load and to require longer restoration, which increases Down time 
intensity. The coherence of these intuitions with our estimates increases confidence that the effects are 
not artifacts of one equipment class or one policy idiosyncrasy, but expressions of widely observed 
maintenance economics and hazard processes (Grall et al., 2002). 
Our interaction results show that identical anomaly increments have larger operational consequences 
at higher utilization, a pattern that operations theory would predict and field reports often imply but 
rarely quantify. High-duty assets compress available maintenance windows and elevate opportunity 
costs; there is less slack for “watchful waiting,” so a given risk signal carries a higher chance of 
becoming realized Down time. This “amplifier” role of utilization is consistent with maintenance 
optimization studies where condition-based policies outperform time-based ones more strongly when 
production pressure is high and Down time is expensive (Grall et al., 2002). It also resonates with 
reporting frameworks that decompose OEE into availability, performance, and quality: when 
utilization is high, the availability component is more sensitive to relatively small changes in failure 
incidence and restoration time (Muchiri & Pintelon, 2008). Prior PHM surveys have called for 
utilization-aware analytics adjusting thresholds and triage to duty cycle but most evidence was 
conceptual or case-specific (Carvalho et al., 2019). Our simple-slope contrasts quantify the effect: a +0.1 
anomaly increase adds ~3.6 hours of Down time at utilization 0.8 versus ~1.2 hours at 0.4. As a 
boundary condition, this implies that score cutoffs and playbooks should not be uniform. A rotating 
spindle running near capacity merits earlier inspection and parts staging at a given anomaly level than 
a lightly used utility pump. The contrast therefore clarifies why one-size-fits-all governance (single 
global thresholds) underperforms, and it supports recent calls to embed operating context and risk 
tolerance into scoring policies and dispatcher rules (Muchiri & Pintelon, 2008). 
Stratified analyses show the strongest anomaly–outcome slopes for rotating equipment, moderate for 
discrete actuators, and weakest for utilities. This gradient is anticipated by the sensing physics and by 
prior reviews. Rotating machinery benefits from mature vibration and acoustic methods, including 
envelope analysis, cyclisation features, and spectral kurtosis filters that highlight defect-related 
transients in specific bands, giving models clearer signals to learn from (Antoni, 2006). When those 
assets fail, production usually stops immediately, so the anomaly-to-Down time mapping is steep. 
Discrete actuators often produce short, frequent stoppages with lower repair complexity; anomaly 
information still helps, but the marginal Down time per failure is smaller. Utility subsystems (air, fluids, 
power) affect production indirectly; telemetry is more heterogeneous, and interventions can sometimes 
be scheduled without immediate line stoppage, attenuating observed associations. Similar class-linked 
patterns have been reported in sector syntheses (e.g., wind, process, and discrete manufacturing), 
which catalogue stronger detection gains where physics-aligned features are available and the coupling 
to throughput is direct (Bousdekis et al., 2019). Our findings therefore argue for class-specific thresholds 
and retraining: pushing sensitivity on rotating assets yields disproportionate OEE benefit, while 
utilities may require emphasis on calibration, interpretability, and integration with production 
scheduling to realize measurable availability gains. Importantly, these differences are not 
contradictions to prior work; they are structured heterogeneity that helps decide where each marginal 
dollar of modeling or sensor effort will return the most reliability or resilience improvement (Randall 
& Antoni, 2011). 
A pragmatic contribution of this study is showing that historical F1 (and related quality measures) 
correlate positively with Trust_AI and with the alert-to-work-order conversion rate. Prior 
manufacturing informatics work has emphasized that predictive systems succeed only when they are 
embedded in procedures that operators and planners find understandable and reliable (Vogl et al., 
2016). Our data mirror that stance: where discrimination and calibration were better in the past, 
personnel were more willing to act on alerts, and realized Down time was lower. This resonates with 
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decision-support syntheses that recommend surfacing interpretable cues and right-sizing sensitivity to 
avoid “alarm fatigue” (Bousdekis et al., 2019). It also fits the emerging sequence-model literature that 
pairs accuracy with interpretability for example, attention or variable-selection scores that reveal which 
channels and horizons influenced a prediction, thereby improving trust (Lim et al., 2021). Empirically, 
the quartile contrasts we report (higher trust ↔ higher F1 ↔ higher conversion ↔ lower Down time) 
are consistent with a reinforcing loop: good models build trust; trusted alerts are actioned; timely 
actions reduce Down time; success further consolidates trust. Earlier studies often inferred this loop 
qualitatively; our results provide a quantitative cross-sectional snapshot that these relationships co-
move in the expected directions. The implication for deployment is that investment in calibration, 
interpretability artifacts, and workflow fit can pay dividends equal to, or greater than, squeezing a 
marginal point of AUROC, because the human bottleneck frequently sits between an alert and the work 
order (Vogl et al., 2016). 
Two validity points constrain interpretation. First, our design is cross-sectional, not causal; while we 
enforced temporal separation to reduce leakage and controlled for age and utilization, unmeasured 
practices crew experience, spares logistics may co-vary with both detector quality and outcomes. This 
limitation is common in industrial PdM studies, where randomized interventions are rare (Zonta et al., 
2020). Second, labelling fidelity matters: CMMS codes and event merges inevitably introduce noise; we 
mitigated this with de-duplication and data-quality gates, but measurement error could attenuate 
effects. On comparability, our use of precision–recall and calibration metrics responds to method 
critiques that ROC curves alone overstate utility in imbalanced settings (Niculescu-Mizil & Caruana, 
2005). Reporting asset-level KPIs failure counts, Down time hours, availability, OEE addresses a gap in 
earlier work that focused on model scores without connecting them to plant outcomes (Carvalho et al., 
2019). Finally, domain shift remains a boundary: effect sizes depend on telemetry mix, operating 
envelopes, and maintenance taxonomies. Prior surveys warn that transferring models across lines or 
sites without adaptation reduces discrimination and calibration (Zonta et al., 2020). Our subgroup 
contrasts make this concrete: rotating classes show stronger signal–outcome links than utilities; 
utilization amplifies slopes hence the need for class- and context-aware thresholding and periodic 
recalibration if conditions drift. In short, the directions we observe match the literature; magnitudes are 
contingent on context, which is both a limitation and a lever for local optimization. 
Interpreting our coefficients through the lens of reliability accounting clarifies where to act. Reliability 
measures (failure counts/rates, MTBF) and resilience measures (Down time, availability, OEE) 
summarize different slices of the same process (Rausand & Høyland, 2004). Our estimates say: reducing 
anomaly burden and improving detector quality moves both sets favorably, but the operational return 
depends on class and utilization. For high-duty rotating assets, the same anomaly decrement translates 
into a larger availability gain because failures are more disruptive and restorations longer; for utilities, 
calibration and scheduling coordination may dominate. Framed this way, our findings are compatible 
with both maintenance optimization models and OEE decomposition: earlier, well-targeted 
interventions increase MTBF, can shorten MTTR by focusing diagnosis, and ultimately raise availability 
the lever of OEE most sensitive to predictive maintenance (Piacentini et al., 2019). Compared with 
earlier studies that reported accuracy gains without KPI mapping, we provide a direct bridge from 
measured F1/calibration to fewer failures and fewer hours lost, with utilization acting as a throttle on 
benefits (Carvalho et al., 2019). The boundary conditions cross-sectional inference, domain shift, coding 
noise are shared with prior empirical work, but our robustness checks (window, leverage, functional 
form) suggest the interpretations are stable within reasonable analytical neighbourhoods. Practically, 
the literature and our evidence converge on a playbook: treat detector quality as a first-class KPI, set 
thresholds and staffing utilization-aware, and prioritize rotating classes for tight monitoring, while 
using interpretability and calibration artifacts to sustain human alignment that converts scores into 
timely work orders (Vogl et al., 2016). 
CONCLUSION 
This study set out to quantify how AI-enabled predictive analytics and fault-detection quality relate to 
equipment reliability and resilience in an asset-intensive manufacturing context, using a quantitative, 
cross-sectional, case-study design that joined condition-monitoring telemetry, CMMS event histories, 
and operational context into synchronized, asset-level snapshots. Across a cohort of 412 assets, two 
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focused models Negative Binomial for failure counts with operating-hours offset and robust OLS for 
Down time hours produced a consistent picture: higher anomaly burden was associated with higher 
failure intensity and more Down time, while longer predicted remaining useful life (RUL) related to 
lower failure intensity and fewer hours lost. Crucially, detector quality measured on a temporally 
separated window (e.g., F1/AUROC) retained explanatory power for both outcomes after adjusting for 
age, utilization, and class effects, indicating that measured discrimination and calibration translate 
beyond validation curves into observable improvements in plant-level KPIs. Utilization emerged as 
both a main-effect driver and an amplifier of risk: the anomaly–outcome relationship was markedly 
steeper for high-duty assets, quantifying an operational intuition that identical risk signals carry greater 
consequence when production windows are tight and the opportunity cost of stoppage is high. 
Segment analyses showed structured heterogeneity: rotating equipment exhibited the strongest 
anomaly–reliability/resilience slopes, discrete actuators a moderate pattern, and utilities the weakest, 
reflecting differences in sensing maturity, physics of failure, and coupling to throughput. Perception 
measures on a five-point Likert scale (trust, interpretability, actionability) aligned directionally with 
measured detector quality and with alert-to-work-order conversion, suggesting a reinforcing loop in 
which better models earn trust, trusted alerts are acted upon, and timely actions reduce Down time. 
Robustness checks (window length, threshold shifts, leverage trimming, age nonlinearity) preserved 
effect directions and magnitudes within narrow bands, supporting stability of interpretation within 
reasonable analytic neighborhoods. At the same time, boundary conditions temper claims: the cross-
sectional design prohibits causal attribution; CMMS coding and merge noise can attenuate effects; and 
domain shift across sites or evolving operating envelopes may require periodic recalibration and class-
specific thresholds. Taken together, the evidence supports a pragmatic playbook: treat detector quality 
as a first-class KPI; make thresholds and triage utilization-aware; prioritize rotating classes for the 
tightest monitoring and earliest interventions; and invest in calibration, interpretability, and workflow 
fit to sustain the human alignment that converts scores into effective work orders. By connecting AI 
health indicators and FDD performance metrics to concrete measures of reliability (failures, failure rate, 
MTBF) and resilience (Down time, availability, OEE) within a single standardized frame, this research 
clarifies where analytic effort yields the highest operational return and delineates the conditions under 
which those gains are most likely to be realized. 
RECOMMENDATIONS 
Based on the evidence linking AI health indicators and fault-detection quality to reliability and 
resilience outcomes, we recommend a focused operational playbook that translates the analysis into 
action. First, elevate detector quality to a first-class KPI: track F1 (with precision–recall curves), 
AUROC, and calibration error (e.g., ECE) on a temporally separated validation window, and review 
these metrics monthly alongside maintenance KPIs (failure counts, Down time hours, availability, 
OEE). Second, implement utilization-aware thresholds and playbooks: for each equipment class, define 
anomaly score cutoffs and response tiers that scale with duty cycle e.g., at utilization ≥0.75, an anomaly 
score that would trigger “monitor” at low duty should trigger “inspect within 24–48 h” with parts pre-
staging; at utilization ≤0.45, allow longer observation with stricter re-alert rules. Third, adopt class-
specific policies: prioritize rotating machinery for the tightest monitoring (lower thresholds, earlier 
inspection windows, and standing spares) because the anomaly→Down time slope is steepest; for 
utilities, emphasize calibration and scheduling integration so that alerts dovetail with production 
windows, reducing false urgency. Fourth, formalize a signal-to-action pipeline: require every alert to 
map to a standard operating procedure with a clearly documented diagnostic checklist, expected time-
to-action, and closure codes that feed back into model learning; measure Alert→Work-Order 
conversion and alert cycle time as leading indicators. Fifth, institutionalize model governance: version 
models and thresholds, freeze validation datasets, and use a lightweight change-control board to 
approve updates; define retraining triggers (e.g., PR-AUC or calibration drift by more than a pre-set 
delta, or a rise in false positives per operating hour) and schedule quarterly drift reviews. Sixth, 
strengthen data quality and coding discipline: enforce CMMS codebooks, de-duplicate near-adjacent 
work orders, and reconcile MES/SCADA states with CMMS Down time to keep failure/Down time 
measures auditable; maintain sensor health dashboards (coverage %, timestamp monotonicity, unit 
consistency). Seventh, invest in interpretability and operator alignment: expose top contributing 
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channels/windows (e.g., saliency or variable-importance overlays), add short “why this alert” 
summaries to the UI, and run targeted enablement in cells where Trust_AI is low train crews on 
example cases, adjust thresholds to reduce nuisance alarms, and celebrate quick-win interventions to 
reinforce adoption. Eighth, close the loop with spares and scheduling: link high-risk alerts to parts 
reservations and micro-stoppage windows; pilot “pre-kit” carts for rotating assets at high utilization to 
compress mean time to repair. Ninth, operationalize continuous evaluation: publish a single scorecard 
each month that shows detector KPIs, perception KPIs (Trust, Interpretability, Actionability on a 5-
point scale), and plant KPIs; annotate any parameter or threshold changes so leaders can attribute 
performance shifts. Tenth, use targeted experiments where feasible (e.g., staggered threshold changes 
across comparable lines) to estimate practical effect sizes before scaling. Finally, embed security, 
privacy, and ethics: protect asset identifiers, restrict who can see raw audio/vibration, and document 
how alerts are generated to sustain organizational trust. This package quality as a KPI, utilization-
aware thresholds, class-specific playbooks, reliable data plumbing, human-centric interfaces, and 
disciplined governance maximizes the operational return of AI-enabled predictive maintenance while 
keeping the system robust, auditable, and easy to scale. 
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