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Abstract

This study investigates how Al-enabled predictive analytics and fault detection and diagnosis
frameworks relate to industrial equipment reliability and resilience. Using a quantitative cross-
sectional case-study design, we synchronize condition-monitoring signals, CMMS event histories, and
operations context into per-asset analytical snapshots. Primary outcomes include failure occurrence
and counts, failure rate and mean time between failures, downtime hours, availability, and overall
equipment effectiveness. Core predictors are Al health indicators such as anomaly score and predicted
remaining useful life, and detector quality metrics including F1, AUROC, and PR-AUC computed on
temporally separated validation windows. Across an analyzable cohort of N = 412 assets, negative
binomial models with operating-hours offsets and robust OLS demonstrate that higher anomaly
burden aligns with higher failure intensity and more downtime, while longer predicted remaining
useful life and higher detector quality associate with fewer failures and fewer hours lost. Utilization
emerges as both a main driver and a moderator, with the anomaly to downtime slope steeper at higher
duty cycles; class-stratified contrasts reveal the strongest effects for rotating equipment, moderate for
discrete actuators, and attenuated for utilities. The contribution is twofold: a transparent pipeline that
links standardized indicators to plant KPIs, and adjusted estimates that quantify the operational value
of model discrimination and calibration. Robustness checks varying windows, thresholds, and leverage
trimming preserve effect directions and magnitudes within narrow bands, and ethical safeguards
include de-identified asset IDs and auditable data lineage. The design is grounded in a structured
literature review covering 57 papers that frame constructs, metrics, and governance choices used in the
analysis.
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INTRODUCTION
Artificial intelligence (Al)-enabled predictive analytics refers to the use of statistical learning and
machine learning methods to infer patterns from historical and streaming data for the purpose of
forecasting operational states and key performance indicators (KPIs) (Carvalho et al., 2019; Lee et al.,
2015). Within industrial asset management, predictive maintenance (PdM) is a data-driven strategy that
schedules maintenance actions based on predicted equipment health and remaining useful life (RUL),
thereby aiming to minimize unplanned Down time and secondary damage. Closely related are fault
detection and diagnosis (FDD) frameworks, which transform heterogeneous sensing and event logs into
health indicators, anomaly scores, and classification outputs that indicate the presence, type, and
severity of faults (Qin, 2012; Venkatasubramanian et al., 2003). In production systems, reliability denotes
the probability that an asset performs its intended function without failure over a specified interval,
often operationalized via failure rate and mean time between failures (MTBF). Resilience in industrial
contexts captures the capacity of equipment and systems to maintain or quickly recover performance
following disturbances, with empirical proxies including Down time hours, availability, and overall
equipment effectiveness (OEE). These constructs are codified in cyber-physical manufacturing
architectures where edge/cloud analytics fuse condition monitoring with computerized maintenance
management systems (CMMS) to compute leading indicators and trigger interventions (Lee et al., 2015;
Li et al, 2017; Standardization, 2015). Internationally, advanced economies and emerging
manufacturing hubs alike report growing adoption of PAM/FDD to stabilize throughput and quality
under intensified global competition, tightening sustainability requirements, and aging asset fleets
(Chiang et al., 2000; Gao & Wang, 2020). By situating Al-enabled PdM and fault detection within
accepted reliability engineering terminology and standards, this study positions its quantitative, cross-
sectional, case-study-based design to measure how Al health indicators and FDD performance metrics
relate to reliability and resilience outcomes in real operations.
Industrial assets generate rich, multi-modal data from vibration, acoustic emission, motor current
signature analysis, temperature, pressure, oil debris, and process variables, complemented by event
histories in CMMS (Jahid, 2022; Arifur & Noor, 2022). Al-enabled PdAM operationalizes condition
monitoring through data acquisition and preprocessing prescribed by international standards for data
processing, communication, and presentation (Hasan & Uddin, 2022). Modern sensing topologies
distribute analytics across edge and cloud, implementing the 5C cyber-physical architecture
(connection, conversion, cyber, cognition, configuration) to compute machine health indices and
advisory actions (Rahaman, 2022). Supervised learning models trained on labeled events estimate RUL
or classify fault modes, whereas semi-supervised and unsupervised methods flag departures from
healthy baselines using reconstruction errors, density ratios, or clustering consistency (Rahaman &
Ashraf, 2022; Islam, 2022; Hasan et al., 2022). Benchmark prognostics datasets (e.g., NASA C-MAPSS
turbofan degradation) have catalyzed method development and performance reporting, fostering
reproducible evaluation of RUL estimators and FDD pipelines (Saxena et al., 2008; Sikorska et al., 2011).
Within this data landscape, Al outputs such as anomaly scores, predicted RUL, AUROC,
precision/recall, and F1 furnish quantitative features that can be statistically associated with reliability
and resilience KPIs at the equipment level (Susto et al., 2015; Wen et al., 2017). The cross-sectional
structure arises from aggregating recent sensor windows, event counts, and production/utilization
covariates into per-asset snapshots, enabling correlational and regression analyses that test structured
hypotheses on how Al health indicators co-vary with failure occurrence, Down time, availability, and
OEE (Burnham & Anderson, 2002; Widodo & Yang, 2007).
FDD frameworks follow a pipeline of signal processing, feature extraction, dimensionality reduction,
and classification/regression, with design choices guided by operating regimes and failure physics.
Classical approaches envelope analysis, spectral kurtosis, cepstrum, wavelets, autoregressive modeling
remain effective for rotating machinery under stationary or quasi-stationary conditions (Redwanul &
Zafor, 2022; Rezaul & Mesbaul, 2022; Hasan, 2022). Al methods extend this toolbox by learning
nonlinear mappings from raw or minimally processed signals to health labels, including convolutional
neural networks, recurrent and temporal convolutional networks, graph models, and hybrid
architectures with attention or transformer blocks for multivariate time series. Transfer learning and
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domain adaptation mitigate distribution shift across machines, loads, or environmental conditions,
while self-supervised pretext tasks leverage unlabeled segments to improve downstream FDD (Tarek,
2022; Kamrul & Omar, 2022; Kamrul & Tarek, 2022). Empirical reviews document that deep models
often improve detection sensitivity at early fault stages, provided careful calibration of thresholds and
evaluation on temporally separated runs. From a measurement perspective, performance must be
summarized with threshold-free metrics (AUROC/PR-AUC) and thresholded measures (precision,
recall, F1, Matthews correlation), with confidence intervals obtained via cross-validation or
bootstrapping. These metrics constitute explanatory variables in statistical models that examine their
association with asset-level reliability outcomes (failure rates, MTBF) and resilience outcomes (Down
time, availability, OEE), controlling for age, utilization, and environmental context.

Figure 1: Conceptual Framework Linking AI-Enabled Predictive Analytics
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Reliability engineering provides the mathematical foundation for quantifying failure behavior and
repair processes, including exponential/Weibull models for time-to-failure, renewal processes for
counts, and availability relationships linking MTBF and mean time to repair (MTTR) (Mubashir &
Abdul, 2022; Muhammad & Kamrul, 2022; Reduanul & Shoeb, 2022). In plant operations, OEE
aggregates Availability x Performance x Quality into a composite KPI consistent with ISO 22400
manufacturing operations management standards, enabling cross-line comparisons (Kumar &
Zobayer, 2022; Sadia & Shaiful, 2022). Resilience is observed as the ability to maintain near-steady
throughput and quality in the presence of perturbations measured via Down time hours and recovery
time, outcomes directly recorded in CMMS and production databases (Ng Corrales et al., 2020).
International literature emphasizes aligning analytics with the ISO 13374 series that specify data
processing and presentation for condition monitoring systems so that computed indicators and
advisory messages are interpretable by maintenance personnel (Istiaque et al., 2023; Hasan et al., 2023;
Noor & Momena, 2022). Methodologically, a cross-sectional case-study design defines each asset as an
observational unit characterized by recent reliability/resilience outcomes (e.g., failures within a
window, hours of Down time, OEE), Al-derived health indicators (anomaly scores, predicted RUL),
FDD performance measures (AUROC, F1 on historical validation), and controls (age, utilization,
environment). This operationalization enables descriptive statistics to summarize asset cohorts,
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correlation analysis to screen associations, and regression modeling linear, logistic, and count models
to estimate adjusted relationships between AI/FDD variables and reliability or resilience outcomes
(Hossain et al., 2023; Sultan et al., 2023; Hossen et al., 2023).

Systematic reviews and domain syntheses report widespread application of Al to PdM in
semiconductor fabrication, rotating machinery, power systems, process plants, and discrete
manufacturing, with machine-learning models delivering measurable gains in early warning and
classification compared with fixed-threshold heuristics (Tawfiqul, 2023; Sanjai et al., 2023; Akter et al.,
2023). In rotating equipment, deep convolutional architectures ingest time-frequency images or raw
waveforms to identify bearing and gearbox faults with high discrimination (Razzak et al., 2024; Istiaque
et al,, 2024; Hasan et al., 2024). In aero-propulsion, the C-MAPSS family and PHM'08 challenge
stimulated RUL estimation advances and standardized metric reporting. In process industries,
multivariate statistical process control coupled with data-driven diagnosis augments classic observers
and parity relations to handle collinearity and latent structure (Ashiqur et al., 2025; Hasan, 2025; Ismail
et al., 2025). In power and energy, hybrid Al methods serve condition-based maintenance and online
monitoring under variable loads and intermittent renewables. Across these domains, reported practices
emphasize data synchronization, de-noising, class balancing, and domain adaptation as prerequisites
for robust FDD, as well as rigorous threshold selection and calibration to align sensitivity with
maintenance economics (Sultan et al., 2025; Sanjai et al., 2025). These studies, grounded in DOI-indexed
journals and proceedings, provide the empirical foundation and methodological exemplars for linking
Al-generated indicators to reliability and resilience proxies such as failure occurrence, Down time,
availability, and OEE in real plants (Ng Corrales et al., 2020).

Given a cohort of N assets within a plant or multi-site case, the study can define primary outcomes as
(i) failure occurrence in a fixed window (binary), (ii) failure counts (non-negative integer), (iii) Down
time hours (continuous), (iv) availability and OEE (bounded or percentage), and (v) MTBF/MTTR-
derived indices (Venkatasubramanian et al., 2003). Predictors comprise Al health indicators (anomaly
score, predicted RUL or health index) and FDD performance metrics (precision, recall, F1, AUROC, PR-
AUC) computed from holdout validation on historical events (Sikorska et al., 2011). Controls include
asset age, cumulative operating hours, utilization (operating hours/calendar hours), environmental
variables, and maintenance policy characteristics recorded in CMMS and historian tags
(Standardization, 2015). Descriptive statistics summarize central tendency and dispersion of all
variables and visualize distributions and pairwise associations. Correlation analysis
(Pearson/Spearman) identifies monotonic relationships between AI/FDD variables and outcomes.
Regression modeling estimates adjusted associations: ordinary least squares for Down time or
availability with robust standard errors; logistic regression for failure occurrence; and
Poisson/negative binomial models for failure counts with overdispersion diagnostics (Widodo & Yang,
2007). Multicollinearity is screened via variance inflation factors, and residual diagnostics and influence
statistics support model adequacy (Khodabakhsh & Ashory, 2019). This statistical plan connects the
AI/FDD measurement layer to reliability/resilience constructs that carry operational meaning in
internationally standardized KPI systems (Khodabakhsh & Ashory, 2019). The conceptual model
guiding the present work positions Al analytics — fault detection quality — maintenance response —
reliability /resilience outcomes as a pathway that can be examined using cross-sectional evidence
aggregated at the asset level. Al analytics generate anomaly scores and predicted RUL; FDD quality is
quantified via AUROC, PR-AUC, and F1 on historical events; and maintenance response is observed
indirectly through Down time and availability realized in the study window (Lei et al., 2016). Reliability
is operationalized using failure rate and MTBF, while resilience is proxied by Down time hours,
availability, and OEE consistent with ISO 22400 (Rausand & Heyland, 2004). The framework
acknowledges contextual moderators such as load, environment, and age that shape the strength of
association between Al health indicators and outcomes. By drawing on a broad, DOI-indexed evidence
base spanning rotating machinery, semiconductor, aero-propulsion, and process manufacturing, and
by adhering to condition-monitoring data standards (ISO 13374-4) and KPI standards (ISO 22400-2),
the study’s cross-sectional, case-study-based design yields a coherent basis for descriptive statistics,
correlation analysis, and regression modeling to quantify how Al-enabled predictive analytics and fault
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detection frameworks are associated with equipment reliability and resilience in industrial settings
(Gao & Wang, 2020).
The objective of this study is to rigorously quantify how Al-enabled predictive analytics and fault
detection frameworks are associated with industrial equipment reliability and resilience within a
quantitative, cross-sectional, case-study design. Specifically, the study seeks to transform
heterogeneous asset data sensor features, event histories, and operational covariates into a
standardized, per-asset analytical snapshot and to use that snapshot to estimate clearly defined
relationships between Al health indicators and plant-relevant outcomes. The primary objective is to
measure the association between Al-derived health indicators (e.g., anomaly scores and predicted
remaining useful life) and reliability outcomes operationalized as failure occurrence, failure counts,
failure rates, mean time between failures, and mean time to repair. A second objective is to evaluate
whether fault detection performance metrics obtained from held-out historical validation such as
precision, recall, F1, area under the ROC curve, and area under the precision-recall curve exhibit
statistically discernible relationships with resilience outcomes, including Down time hours,
availability, and overall equipment effectiveness. A third objective is to produce adjusted estimates that
account for asset age, utilization, operating environment, and maintenance policy through
multivariable models suited to the scale of each outcome, including ordinary least squares for
continuous targets, logistic regression for binary targets, and Poisson or negative binomial regression
for count targets, with robust standard errors, multicollinearity checks, residual diagnostics, and
influence assessment. A fourth objective is to examine potential moderation by operational context (for
example, interactions between anomaly scores and utilization) and to test the stability of findings
through prespecified robustness checks that vary data windows, thresholding rules, and model
families. A fifth objective is to establish a transparent data-processing pipeline for synchronization,
cleaning, feature engineering, normalization, and partitioning so that descriptive statistics and
correlation analyses are reproducible and align with the inferential models. A sixth objective is to
document measurement definitions and codebooks to ensure that reliability and resilience constructs,
Al indicators, and performance metrics are traceable from raw sources to final tables. A final objective
is to present all results as parameter estimates with confidence intervals and model fit diagnostics,
enabling a clear view of the magnitude, direction, and uncertainty of the quantified relationships within
the constraints of the cross-sectional, case-based setting.
LITERATURE REVIEW
Research on Al-enabled predictive analytics and fault detection frameworks sits at the intersection of
condition monitoring, prognostics and health management, and operations management, linking what
models learn from data to how factories sustain throughput and quality. The literature converges on a
common pipeline: heterogeneous sensing (vibration, acoustics, temperature, current, oil analysis, and
process tags) is synchronized with computerized maintenance records and utilization logs; features or
learned representations are extracted; and fault detection, diagnosis, or remaining-useful-life
estimation is performed to produce actionable health indicators. Classical statistical monitoring and
physics-guided signal processing remain influential, while machine-learning and deep temporal
models broaden capacity to capture nonlinearities, multimodal interactions, and early degradation
signatures. Across methods, studies emphasize careful preprocessing, imbalance handling, threshold
calibration, and out-of-sample validation so that metrics such as AUROC, precision-recall, F1,
calibration error, and prediction intervals reflect operationally meaningful discrimination rather than
optimistic, dataset-specific artifacts. In parallel, reliability and resilience are operationalized through
measurable constructs failure occurrence and counts, MTBF and MTTR, Down time hours, availability,
and overall equipment effectiveness that translate directly into plant performance. A growing body of
empirical work explores how AI health indicators correlate with these outcomes, yet several
methodological gaps persist: fragmented variable definitions that hinder comparability, limited
attention to moderators such as age, duty cycle, and environment, and a frequent separation of model-
centric metrics from equipment-level key performance indicators. The literature also highlights
challenges of domain shift across assets and sites, the need for transparent feature importance and
model calibration, and the value of reproducible pipelines that trace indicators from raw data to tables
and figures used by decision-makers. Within this context, an integrative review geared to quantitative,
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case-based analysis serves two purposes: to synthesize how sensing, modeling, and evaluation choices
shape the quality of Al-derived indicators, and to organize evidence on their measured associations
with reliability and resilience in real operations. This framing motivates clear constructs, standardized
measurement, and analysis plans that connect model quality and health indices to plant-relevant
outcomes in a manner suited to cross-sectional regression and correlation analysis.

Foundations of Predictive Maintenance and Fault Detection in Industrial Systems

Predictive maintenance (PdM) and fault detection/diagnosis (FDD) rest on a foundational pipeline that
links sensing, data conditioning, statistical learning, and decision support inside cyber-physical
production systems. At its core, PdM reframes maintenance as a probability-and-evidence problem:
health indicators are inferred from condition data to anticipate failure states early enough to schedule
intervention with minimal disruption. In parallel, FDD formalizes the detection and isolation of
abnormal behavior so that failure modes can be identified and addressed before cascading effects arise
at the line or plant level. A substantial body of manufacturing research has organized this landscape
by clarifying the roles of signal processing, feature extraction, and model-based/learning-based
inference within broader maintenance strategies such as condition-based maintenance and prognostics
and health management. A comprehensive Industry 4.0-oriented review systematizes PdM initiatives
into a taxonomy that spans data sources, analytical methods, and integration concerns, underscoring
the importance of aligning analytics with operational technology constraints and information flows on
the shop floor (Zonta et al., 2020). This taxonomy clarifies how core ingredients heterogeneous sensors,
historian/ CMMS records, and production context must be synchronized and transformed into reliable,
interpretable health indicators that can drive maintenance decisions at scale (Zonta et al., 2020).

Figure 2: Fault Detection in Industrial Systems

SENSING

Heterogeneous sensors.
historian/CMMS records,

production context
v
-

DATA CONDI- DECISION
TIONING SUPPORT
Synchronization Evaluation and
and transformation optimization of
of data maintenance actions

STATISTICAL
LEARNING
Signal processing,
feature extraction,

model-based/learning-
based inference

Building on that structural view, the manufacturing-analytics literature positions machine learning as
a unifying toolkit for mapping raw or minimally processed signals to health states, remaining useful
life estimates, and fault classes. From a foundations standpoint, the emphasis is not merely on
accumulating algorithms but on establishing design patterns data pipelines, validation regimes, and
human-in-the-loop interfaces that make models credible and usable in production settings. A field-
defining synthesis of machine learning in manufacturing articulates advantages (handling
nonlinearity, high-dimensionality, and multimodality), challenges (data quality, representativeness,
lifecycle drift), and application archetypes (monitoring, diagnosis, prediction), thereby providing the
conceptual scaffolding to situate PAM/FDD within broader quality and throughput objectives (Wuest
et al.,, 2016). Complementing this view, smart-manufacturing-focused work on diagnostics and
prognostics codifies best practices for capability development covering measurement system design,
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verification and validation, and information management so that FDD and PdM outcomes can be
trusted and acted upon by maintenance planners and line supervisors (Vogl et al., 2016). Together,
these foundations establish that effective PdAM/FDD is as much about disciplined engineering of data
and evaluation processes as it is about model choice, and that success hinges on traceable links from
sensor to indicator to action. A third pillar of the foundations concerns evaluation and decision models
that translate technical indicators into operational choices. Here the literature on maintenance
optimization offers an integrating lens that relates predictive signals, uncertainty, and cost/risk trade-
offs to the selection and timing of interventions. A large-scale review in operations research synthesizes
models for preventive, corrective, and condition-based policies, highlighting how degradation
information and health indicators can be embedded into optimization frameworks to balance
availability, reliability, and resource constraints (de Jonge & Scarf, 2020). At the modeling frontier,
surveys dedicated to deep learning for PAM catalog architectures (e.g., convolutional, recurrent, and
hybrid temporal models) alongside evaluation metrics and deployment considerations, thereby
connecting representational choices to detection sensitivity, calibration, and thresholding policies that
matter on the plant floor (Serradilla et al., 2022). When these perspectives are read together taxonomy
and integration (Zonta et al., 2020), analytics capabilities and challenges (Wuest et al., 2016), PHM best
practices for diagnostics/prognostics (Vogl et al., 2016), optimization frameworks for policy selection
(de Jonge & Scarf, 2020), and architecture-metric mappings for deep temporal learning (Serradilla et al.,
2022) they yield a coherent foundation: PAM/FDD in industrial systems is a systems-engineering
exercise that begins with standardized data acquisition and curation, continues through validated
inference of health states and faults, and culminates in formally evaluated maintenance decisions that
respect operational constraints and performance objectives.
Data, Features, and Model Architectures for AI-Enabled Analytics
The data foundation for Al-enabled predictive maintenance and fault detection is intrinsically
multimodal, high-frequency, and heterogeneous, spanning vibration and acoustic waveforms,
electrical signatures such as stator current and voltage, thermal measurements, pressure/flow states,
and contextual process tags from supervisory systems. Converting these raw streams into reliable
analytical inputs hinges on careful signal conditioning, synchronization with event/ maintenance logs,
and feature engineering that preserves diagnostic content while mitigating noise and confounders. In
rotating machinery, for example, time-frequency methods extract informative structure from
nonstationary signals, while band selection and demodulation isolate fault-related modulations. A
hallmark contribution in this space formalized spectral kurtosis (SK) to locate frequency bands
dominated by impulsive transients; SK-driven filtering enhances weak fault signatures prior to
envelope analysis and improves repeatability across operating regimes (Antoni, 2006). Building on
such principles, a tutorial synthesis on rolling-element bearing diagnostics codified practical recipes
order tracking, cepstrum, spectral correlation, cyclostationary analysis, and envelope spectra that
remain canonical for mapping sensor physics to interpretable features (Randall & Antoni, 2011). In
data-rich production environments, these feature sets are merged with counters and durations from
computerized maintenance management systems, enabling per-asset snapshots that include rolling
statistics, condition indicators, and label histories aligned to equipment states. This layered design raw
signals — domain-engineered features — asset-level tables creates a robust interface between
operations data and learning algorithms, ensuring that downstream models benefit from physics-
informed preprocessing while remaining compatible with tabular and sequence-learning pipelines
used in industrial analytics.
Modeling choices span a spectrum from feature-based learners to end-to-end deep representation
learning on raw or minimally processed sequences. On the feature-based side, elastic models and
margin-based classifiers ingest curated indicators and deliver strong baselines when sample sizes are
moderate and interpretability is paramount. Yet the structure of machine signals multi-scale transients,
cyclostationarity, and regime switches has motivated direct learning from sequences. A formative
study showed that 1D convolutional and residual architectures trained from scratch can match or
exceed traditional pipelines on diverse time-series classification tasks, provided appropriate data
augmentation and regularization are used to stabilize training (Wang et al., 2017). These models exploit
local receptive fields and hierarchical composition to capture periodicity, transients, and shifts without
7
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bespoke feature engineering, making them attractive for PdAM/FDD where fault morphologies are
varied and subtle. Beyond accuracy, their convolutional inductive bias yields efficient inference on edge
devices and facilitates deployment in streaming settings. Feature attribution from convolutional filters
and gradient-based saliency can also aid maintainers in linking learned patterns back to machine
components and operating conditions, supporting trust and troubleshooting. In practical case studies,
hybrid approaches domain filters followed by shallow or deep learners often provide a middle path,
retaining interpretability while gaining sensitivity to weak signatures in noisy, load-varying
environments, and enabling smoother calibration of alarm thresholds against maintenance economics.

Figure 3: AI-Enabled Predictive Maintenance and Fault Detection
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For multivariate, asynchronous, and context-rich signals, sequence models that capture long-range
dependencies and temporal context have become central to industrial analytics. Architectures inspired
by computer vision and language modeling InceptionTime and Temporal Fusion Transformers (TFT)
extend beyond local convolutions to model multi-scale patterns and conditional dynamics in a data-
efficient manner. InceptionTime uses ensembles of inception-style convolutional blocks with varied
kernel sizes to learn multi-resolution features, achieving state-of-the-art results on benchmark time-
series datasets and offering strong robustness to scaling and warping common in industrial telemetry
(Fawaz et al., 2019). TFT combines gated residual networks with interpretable attention to integrate
static covariates (e.g., asset age), known future inputs (e.g., planned loads), and observed time-varying
features (e.g., sensor streams), while producing attention weights and variable selection scores that are
directly useful to engineers during root-cause analysis and threshold setting (Lim et al., 2021). In
operational PdAM/FDD pipelines, these architectures support not only binary fault detection but also
health-index regression and remaining useful life estimation when labels permit, while their attention
and gating mechanisms help stabilize learning under domain shift and missingness. When embedded
in well-designed preprocessing (artifact rejection, windowing, de-trending) and postprocessing
(calibration, hysteresis, voting), they yield calibrated anomaly scores and probabilistic outputs that can
be aggregated at the asset level for correlation and regression against reliability and resilience key
performance indicators. The upshot for industrial Al is an architecture toolbox that scales from physics-
aligned features to modern deep learners and attention-based sequence models, each activated where
data volume, label quality, and interpretability needs intersect with the rigor of plant operations.
Operationalization of Reliability and Resilience

Reliability and resilience become analytically tractable only when they are tied to clear, auditable
metrics and standardized data definitions. In industrial asset contexts, reliability is commonly
operationalized through failure occurrence and counts, time-to-failure distributions, and summary
indices such as mean time between failures (MTBF) and mean time to repair (MTTR), while resilience
is observed as the ability to maintain or recover operational performance after disturbances, proxied

8



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 705-736

by Down time hours, availability, and equipment-level productivity measures. A consistent data
backbone is essential for computing these outcomes across heterogeneous equipment classes and sites.
One widely adopted approach is to structure maintenance and failure histories using a domain
standard that prescribes codes, taxonomies, and minimum data fields for reliability and maintenance
(RM) records; this enables uniform derivation of failure rates, restoration times, and cause/ effect chains
from computerized maintenance management systems and historian logs (14224, 2016). On the
productivity side, many plants quantify equipment contribution via the overall equipment
effectiveness (OEE) identity Availability x Performance x Quality whose decomposition links directly
to measurable loss categories (planned/unplanned stoppages, speed losses, and quality losses). This
formulation provides an operational bridge between reliability events and throughput outcomes by
letting analysts isolate how failures and repairs propagate into availability and then into composite
OEE (Muchiri & Pintelon, 2008). When RM data are captured with standardized failure modes, event
timestamps, and repair actions, and when OEE components are computed from consistent calendars
and counters, the resulting variables form a coherent cross-sectional snapshot at the asset level that can
be used to summarize cohorts, compute correlations, and fit regression models relating health
indicators and fault detection metrics to reliability and resilience outcomes (14224, 2016; Muchiri &
Pintelon, 2008).

Figure 4: Reliability and Resilience in Industrial Asset Management
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A second pillar in operationalization concerns how maintenance actions themselves affect measured
reliability /resilience variables. Perfect repair and minimal repair serve as conceptual extremes; in real
plants, most interventions are imperfect, restoring an item to a condition somewhere between “as good
as new” and “as bad as old.” Modeling this imperfect maintenance reality clarifies why assets with
identical nominal design and utilization can exhibit different effective failure rates and availability after
interventions, and it underlines the need to encode action types and improvement factors in the RM
dataset. In practice, incorporating imperfect maintenance into analysis changes both numerator and
denominator of key measures: it shifts the effective hazard or count of failures within a window and
modifies repair durations that flow into MTTR and availability. It also explains frequent empirical
findings such as high availability coinciding with nontrivial failure counts (short, frequent minor
failures with quick restorations), or conversely, low availability associated with rare but long
restorations. By explicitly distinguishing corrective vs. preventive actions and encoding “degree of
restoration,” the analyst can align statistical models with plant behavior: counts regressions can reflect
overdispersion induced by imperfect repairs, while availability models can separate Down time driven
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by failure incidence from Down time driven by lengthy restorations. This framing also prepares the
ground for moderation analyses in which utilization or environment interacts with maintenance
quality to shape realized reliability/resilience profiles across assets (Pham & Wang, 1996). In turn,
reporting conventions should accompany these models: tables that present failure counts, operating
hours, repair hours, and derived indices together prevent misinterpretation of single headline metrics
by preserving the joint structure that imperfect maintenance induces in the data (Pham & Wang, 1996).
Resilience, as an operational construct in manufacturing, benefits from a quantitative articulation that
goes beyond reliability alone by explicitly incorporating the depth and duration of performance
degradation and the time to recovery. A well-cited engineering framework conceptualizes resilience
along dimensions such as robustness, rapidity, resourcefulness, and redundancy, and it proposes
measurable proxies that map naturally to plant data: probability of failure (linking to reliability), loss
of function (linking to throughput or OEE drops), and recovery time (linking to repair/return-to-
service intervals). Embedding this framing at the equipment level guides which variables to compute
and how to interpret them jointly for example, pairing availability with recovery time distributions, or
pairing OEE dips with their restoration trajectories to capture both severity and rapidity of response
(Bruneau et al., 2003). For proactive policy evaluation, predictive-maintenance scheduling models
translate condition indices into inspection and replacement thresholds and inspection calendars; when
these policies are simulated or observed, the resulting availability and cost streams provide directly
comparable resilience proxies across assets and lines (Grall et al., 2002). Bringing these pieces together
standardized RM data schemas for reliability measures, OEE decomposition for productivity impact,
imperfect-maintenance modeling for realistic post-repair states, resilience dimensions for
depth/duration of performance loss, and threshold-based scheduling for anticipatory intervention
yields an operational toolkit that converts raw events and signals into analytic variables suitable for
descriptive statistics, correlation analysis, and multivariable regression within a cross-sectional, case-
study design.

Empirical Evidence and Gaps

Empirical work on Al-enabled predictive analytics and fault detection has progressed from small proof-
of-concept studies to field deployments that use heterogeneous logs and sensor streams to anticipate
failures and schedule interventions. Evidence from transportation, energy, and discrete manufacturing
increasingly shows that learned health indicators, anomaly scores, and remaining useful life surrogates
correlate with maintenance events and Down time windows when the data pipeline is well-specified
and evaluation is out-of-sample. For example, large-scale case analyses using operational logs have
demonstrated that sequential patterns and rare-event signatures in event histories can be exploited for
risk scoring that aligns with subsequent corrective work orders and service interruptions, illustrating
that “soft sensors” embedded in log data can be as informative as physical telemetry when curated and
temporally aligned (Sipos et al., 2014). In energy systems, condition-monitoring programs for rotating
machinery and power-conversion components provide multi-year baselines against which the
incremental contribution of machine-learning-based detectors can be assessed in terms of early
warning intervals and avoided forced outages; meta-analytic syntheses in this area catalog the
modalities (vibration, current, acoustic,c, SCADA tags), the learning families, and the reported
improvements in fault detection and diagnosis accuracy at subsystem level while also noting variability
in how Down time savings and availability improvements are computed across sites and studies
(Bousdekis et al., 2019; Tchakoua et al., 2014). Across domains, studies that couple anomaly detection
with maintenance economics consistently report that calibrated alarms tied to interpretable indicators
can reduce reaction times and batch spillover, providing a measurable pathway from model
discrimination to operational outcomes, as long as the measurement system includes consistent
timestamping, utilization normalization, and a clear mapping of alerts to actions (Bousdekis et al.,
2019).
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Figure 5: AI-Enabled Predictive Maintenance and Fault Detection
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Alongside positive findings, comparative evaluations reveal persistent gaps in measurement validity
and transferability. A core challenge concerns the mismatch between model-centric metrics and plant-
level key performance indicators: many deployments optimize area under the ROC curve or F1 on
historical labels, yet these scores can inflate perceived value in heavily imbalanced or time-dependent
settings where the practical cost of false positives and false negatives is asymmetric. Method studies
show that precision-recall analysis is often more diagnostic than ROC curves for rare faults because it
quantifies the positive predictive value under class skew, a property directly tied to crew dispatch and
parts staging in maintenance operations (Saito & Rehmsmeier, 2015). Further, comparative reports
across lines or sites indicate that models trained on one asset cohort can face domain shift when
operational envelopes, sensor placements, or maintenance labeling policies differ, reducing
discrimination and calibration in the target environment. Reviews underscore that reproducible data
engineering windowing, leakage control, and label-event alignment remains uneven, limiting the
interpretability of claimed gains in availability or Down time reduction (Bousdekis et al., 2019). In
multi-asset settings, empirical gaps also arise from aggregation choices: asset-level snapshots that mix
differing observation windows and operating hours can bias failure counts and MTBF estimates, while
alarm thresholding that ignores utilization cycles may trigger spurious work orders during transients.
The net effect is that even when anomaly detectors appear accurate, the downstream correlation with
reliability and resilience metrics can be attenuated or unstable if the evaluation omits calibration
diagnostics, horizon-specific scoring, and cost-sensitive thresholds tailored to maintenance policies
(Bousdekis et al., 2019).

A further empirical gap concerns probability calibration and decision coupling. Many industrial studies
report discriminative metrics but omit whether predicted scores are well-calibrated probabilities that
can be compared directly to intervention thresholds; without calibration, two models with similar ROC
AUC can induce very different maintenance loads and Down time patterns once deployed.
Foundational evidence indicates that supervised learners differ widely in their native calibration and
that post-hoc methods such as Platt scaling and isotonic regression can materially improve probability
estimates, which in turn stabilizes decision rules that trade off inspection cost against expected Down
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time (Niculescu-Mizil & Caruana, 2005). Field evaluations also reveal that gains achieved by deep
sequence models depend on carefully designed early-warning horizons and hysteresis, so that alerts
are neither too reactive to noise nor too sluggish to be operationally useful; case studies that explicitly
report horizon-conditioned precision-recall and lagged lift curves provide stronger evidence that
model outputs translate into fewer line stoppages and quicker restorations (Sipos et al., 2014). In energy
and process industries, longitudinal syntheses stress the need for standardized reporting of Down time
attribution separating failure incidence from restoration duration so that availability and overall
equipment effectiveness improvements can be traced to specific predictive elements rather than
confounded by scheduling and spare-parts logistics (Tchakoua et al., 2014). Across this empirical
landscape, the synthesized gaps coalesce into five needs: calibrated, horizon-aware evaluation tied to
maintenance costs; leakage-resistant labeling and windowing; transfer-robust pipelines with clear
domain-shift checks; standardized attribution of availability and OEE gains; and transparent mapping
from model outputs to action schemas that can be audited in event logs (Niculescu-Mizil & Caruana,
2005).

METHOD

This study adopts a quantitative, cross-sectional, case-study design to examine how Al-enabled
predictive analytics and fault-detection quality relate to industrial equipment reliability and resilience
at the asset level. The unit of analysis is the individual asset (e.g., machine, line subsystem) within one
production facility (or a tightly comparable multi-site operation sharing uniform data standards). For
each asset, we construct a synchronized analytical snapshot by merging three data streams over a fixed
observation window: (i) high-frequency condition-monitoring signals transformed into health
indicators (e.g., anomaly scores, predicted remaining useful life, model confidence) through an existing
predictive pipeline, (ii) computerized maintenance management system (CMMS) records capturing
failure events, corrective and preventive actions, timestamps, and repair durations, and (iii) operations
context including utilization, operating hours, duty cycles, and relevant environmental variables.
Outcomes operationalize reliability and resilience as failure occurrence (binary), failure counts (non-
negative integer), failure rate and MTBF, Down time hours (continuous), availability, and overall
equipment effectiveness (OEE). Primary predictors comprise Al health indicators and fault-detection
performance metrics (precision, recall, F1, AUROC, PR-AUC) computed on temporally separated
validation data to mitigate leakage. Prespecified covariates include asset age, cumulative operating
hours, utilization, shift patterns, and basic environmental measures; where available, maintenance
policy descriptors (e.g., inspection cadence) are encoded to reflect intervention context. Data
preparation encompasses signal resampling, artifact rejection, windowing, and scaling; event logs are
cleaned to enforce monotonic timestamps and consistent failure/repair coding; and all variables are
mapped to a transparent data dictionary. Quality controls include missingness audits, outlier rules
grounded in process knowledge, and duplication checks across sensors and work orders. The statistical
plan proceeds in three tiers: descriptive statistics to profile the asset cohort and visualize distributions;
correlation analysis (Pearson/Spearman) to screen pairwise associations; and multivariable modeling
tailored to outcome scale ordinary least squares with heteroskedasticity-robust standard errors for
continuous outcomes (Down time, availability, OEE), logistic regression for failure occurrence, and
Poisson/negative binomial regression for failure counts with overdispersion diagnostics. Model
adequacy is assessed via multicollinearity checks (variance inflation factors), residual and influence
diagnostics, probability calibration for classification outputs, and prespecified robustness checks
(alternative windows, threshold variants). All processing and analysis steps are executed in a
reproducible pipeline with version-controlled code, documented parameter settings, and auditable
lineage from raw data to tables and figures. Ethical and governance procedures include de-
identification of asset identifiers, access control to operational logs, and restricted reporting of site-
specific details consistent with organizational confidentiality.

Research Design

This study employs a quantitative, cross-sectional, case-study design to estimate asset-level
associations between Al-enabled predictive analytics, fault detection quality, and equipment reliability
and resilience. The unit of analysis is the individual asset (e.g., motor, compressor, conveyor
subsystem) operating within a single production facility or a tightly harmonized cluster of sites that
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share common telemetry schemas and maintenance coding. The design centers on constructing a
synchronized analytic snapshot for each asset over a fixed observation window (e.g., 60-120 days).
Within this window, three data layers are aligned: (i) condition-monitoring signals processed by an
existing Al pipeline to yield health indicators (anomaly scores, predicted remaining useful life, model
confidence/uncertainty), (ii) computerized maintenance management system records specifying
failure occurrence, work-order types, timestamps, and repair durations, and (iii) operational context
capturing utilization, operating hours, duty cycles, and relevant environmental measures. Outcomes
are defined a priori at the asset level as failure occurrence and counts, failure rate, mean time between
failures, mean time to repair, Down time hours, availability, and overall equipment effectiveness.
Primary predictors are the Al health indicators and fault detection performance metrics (precision,
recall, F1, AUROC, PR-AUC) computed on temporally separated validation data to prevent leakage
into the observation window. Covariates include age, cumulative operating hours, utilization, shift
regimen, and basic environmental descriptors; where applicable, maintenance policy characteristics
(e.g., inspection cadence, redundancy posture) are encoded to reflect intervention context. The cross-
sectional design enables descriptive statistics, correlation screening, and multivariable regression
appropriate to the scale of each outcome (linear, logistic, and count models), with heteroskedasticity-
robust or cluster-robust standard errors, multicollinearity checks, and residual/influence diagnostics.
To preserve analytic integrity, all transformations, feature aggregations, and joins are specified in a
version-controlled pipeline with a documented data dictionary and auditable lineage from raw sources
to final tables and figures. Ethical safeguards include de-identification of asset identifiers, role-based
access to operational logs, and restricted reporting of site-specific details.

Case Context and Sampling Strategy & Power

The case context is an asset-intensive discrete/process manufacturing operation with continuously
instrumented equipment (e.g., pumps, motors, compressors, gearboxes, CNC spindles, and conveyor
subsystems) integrated into a unified telemetry and maintenance stack. Condition-monitoring sensors
(vibration, temperature, current, acoustics) stream at fixed sampling rates to a historian; computerized
maintenance management system (CMMS) work orders capture failure events, corrective and
preventive actions, and repair durations; production/MES logs record utilization and shift patterns.
The facility operates in three shifts with planned changeovers and occasional setup-induced transients;
environmental factors (ambient temperature, dust, humidity) are recorded hourly. To ensure
comparability across assets, the study specifies one observation window (e.g., 60-120 days) per asset
and a temporally preceding model-evaluation window for computing fault-detection metrics
(precision, recall, F1, AUROC, PR-AUC). Inclusion criteria require (i) continuous sensor coverage >80%
of the observation window, (ii) complete CMMS fields (event start/end times, coded failure/repair
types), (iii) availability of utilization counters, and (iv) stable operating configuration (no major
retrofits). Exclusion criteria remove assets with known sensor faults, inconsistent time bases, or
unresolved duplicate work orders. When multiple production lines share equipment classes,
stratification by class (e.g., rotating vs. discrete actuators) and criticality tier (A/B/C) is used to
maintain representation. The sampling strategy targets a minimum analyzable cohort sized to support
the most parameter-rich model. For continuous outcomes (Down time, availability, OEE), a rule of
thumb of ~15-20 observations per predictor (including interactions) guides the asset count; with 10
predictors, the target is 150-200 assets. For binary failure occurrence, an events-per-variable (EPV)
threshold of 210-20 is enforced; with an expected failure rate of 0.25 and 10 predictors, ~400 assets yield
~100 events (EPV~10). For count outcomes, anticipated overdispersion (variance > mean) motivates
negative binomial models; power is appraised via the detectable rate ratio given baseline failure
intensity (A0) and offset by operating hours aiming to detect a modest effect (rate ratio 1.3-1.5) at a=0.05,
1-$=0.80. If domain knowledge suggests lower event rates, the window can be lengthened (while
preserving non-overlap with the validation window) or asset classes pooled with class dummies.
Missing data thresholds (<10% per variable) trigger single-imputation of covariates; outcomes are
never imputed. Final sample composition, class balance, and effective power are reported alongside
diagnostics for sparsity, multicollinearity, and leverage to ensure stable estimation.
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Data Sources & Collection

Data collection integrates three primary layers condition monitoring, maintenance events, and
operational context into a time-synchronized, asset-level dataset suitable for quantitative analysis. First,
condition-monitoring signals are streamed from embedded sensors and portable routes, including
triaxial vibration (acceleration/velocity), airborne/structure-borne acoustics, stator current/voltage
and power draw, surface/ambient temperature, and, where instrumented, pressure/flow/process
variables. Raw streams are buffered in the plant historian with asset and channel identifiers, sampling
metadata (rate, range, units), and device health flags. A sensor registry maps each channel to its
physical mounting and component (e.g., drive-end bearing), enabling later interpretation. Second,
maintenance and reliability events are extracted from the CMMS, covering corrective and preventive
work orders, failure codes, cause/action/notification fields, technician notes, start/finish timestamps,
parts usage, and labor hours. Work-order status transitions are used to derive event intervals and Down
time periods; de-duplication rules collapse closely spaced follow-ups into a single event when they
reference the same symptom and component. Third, operational context is gathered from the
MES/SCADA stack: asset state tags (running/idle/starved/blocked), counters for produced units and
rejects, utilization/operating hours, shift calendars, setpoint changes, and environmental telemetry
(ambient temperature, humidity, dust indices). A key design principle is temporal separation between
the model-evaluation window (used to compute fault-detection metrics on historical events) and the
observation window (used to measure outcomes and fit regressions), eliminating leakage. All sources
are joined via stable asset keys, with clock synchronization policies applied in the following order: NTP
audit of device clocks, historian timestamp normalization to plant time, and drift checks using periodic
beacons. A standardized data dictionary defines variable names, units, transformations (e.g., rolling
statistics, envelope energy, anomaly-score aggregation), and allowable ranges. Collection quality gates
include minimum telemetry coverage per asset, monotonic timestamp checks, unit consistency
validation, and cross-system reconciliation (e.g., comparing CMMS Down time to MES state codes).
Personally identifiable information is not collected; asset IDs are hashed for analysis, and direct
plant/site names are redacted. Access follows role-based permissions with read-only extracts to an
analysis workspace, and all ETL steps are version-controlled with provenance logs that trace each table
and feature back to its raw source and extraction query.

Statistical Analysis Plan

The analysis proceeds in three tiers exploration, estimation, and robustness implemented in a
reproducible pipeline focused on inference-quality estimates with transparent uncertainty. Exploration
begins with univariate profiles (location, spread, tail measures) and distribution diagnostics for all
variables, followed by missingness audits and outlier screening guided by predeclared rules. Pairwise
dependence is summarized with Pearson and Spearman correlations, complemented by variance
inflation factors to assess multicollinearity among predictors and controls. Estimation targets asset-
level outcomes with models aligned to scale: (i) ordinary least squares with heteroskedasticity-robust
standard errors for continuous outcomes (Down time hours; and after appropriate transformation,
availability and OEE), (ii) logistic regression for failure occurrence (reporting odds ratios with 95%
confidence intervals), and (iii) Poisson regression with a log link for failure counts, including operating
hours as an offset; if overdispersion is detected (ratio of Pearson x? to df > 1.5 or dispersion tests), the
specification switches to negative binomial. Zero-inflated variants are considered only if structural
zeros are plausibly distinct from sampling zeros and pass Vuong or likelihood-ratio checks. For
bounded outcomes (availability/ OEE), a sensitivity specification uses beta regression with logit link
after rescaling to (0,1). Core predictors are the Al health indicators and fault-detection quality metrics;
controls include age, utilization, environment, and policy variables. Prespecified moderation is tested
via interaction terms (e.g., anomaly score x utilization), with simple slopes reported at representative
moderator values. Mediation is assessed by adding FDD quality metrics to the base models and
evaluating effect attenuation; nonparametric bootstrap is used to form indirect-effect intervals
(acknowledging cross-sectional limitations). All models report effect sizes (standardized coefficients
for OLS; odds ratios and incidence-rate ratios for GLMs), robust or cluster-robust standard errors
(clustered by equipment class/line when applicable), and goodness-of-fit indices (R?/adjusted R?
AIC/BIC; pseudo-R?). Model adequacy checks include residual plots, tests for heteroskedasticity,
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influence diagnostics (Cook’s distance, DFBetas), and calibration curves for classification outputs.
Robustness encompasses alternative observation windows, alternative anomaly thresholds, exclusion
of leverage points, nonlinear terms via restricted cubic splines, and collinearity-tolerant sensitivity fits
(ridge/lasso) to verify coefficient stability. Multiple-comparison control uses the Benjamini-Hochberg
procedure within outcome families. Finally, we provide margin plots, predicted-vs-observed overlays,
and specification tables to document that findings are consistent across reasonable modeling choices.
Regression Models

Reliability and resilience are critical aspects of asset performance evaluation. Reliability is typically
reflected in the number of observed failures, while resilience is measured through the repair or recovery
time following those failures. Because these two outcomes have different statistical properties —count
data versus continuous hours — distinct modeling approaches are required. The proposed regression
models below align with these requirements: a Negative Binomial (NB) model for failure counts and
an Ordinary Least Squares (OLS) model for downtime hours.

Table 1: Model A - Negative Binomial Regression (Reliability)

Aspect Details
Purpose Estimate the effect of predictors on the expected number of failures (reliability)
Outcome FailCount;= number of failures for asset i in observation window

Estimator/Link  Negative Binomial regression with log link; offset = log(OperatingHours;)
Predictors - Anom;: anomaly score (health risk index)

- RUL;: predicted remaining useful life (scaled per 100h)

- FDD;: detector quality (F1/AUROC from validation period)
Controls - Agei: cumulative operating hours (or years)

- Util;: utilization ratio (operating + calendar hours)

Interaction Anom;xUtil; (captures load effects)
Model log(E[FailCount;])
Equation = BO + BlAnomi + BZRULL + B3FDDl + B4Agei + BSUtlll

+ B¢(Anom; x Util;) + log(OperatingHours;)

Table 2 : Model B - OLS Regression (Resilience)

Aspect Details
Purpose Estimate the effect of predictors on downtime hours (resilience)
Outcome DownTime; = total repair hours for asset i in observation window
Estimator Ordinary Least Squares (OLS) with heteroskedasticity-robust SEs
Predictors - Anom;: anomaly score

- RUL;: predicted remaining useful life

- FDDi: detector quality

- Agei: cumulative operating hours (or years)

- Util;: utilization ratio

- Anom;xUltil;
Model DownTime; = yy + y,Anom; + y,RUL; + y3FDD; + y,Age; + ysUtil; + yos(Anom; x Util;) + €;
Equation
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These two models quantify associations between AI/FDD signals and (i) failure intensity and (ii)
realized Down time, balancing parsimony and operational interpretability.

Table 3: Variables, Types, Roles, and Scaling Notes for Regression Models A and B

Name Type Role Notes (scaling suggested)
FailCount_i count Outcome A NB with log (OperatingHours_i) offset
Down time_i continuous Outcome B OLS with robust SEs

Anom_i continuous Predictor 0-1 anomaly score (or z-score)

RUL_i continuous Predictor Per 100 hours (or z-score)

FDD_i continuous Predictor F1 or AUROC from validation

Age_i continuous Control Per 1,000 hours (or years)

Util_i continuous Control 0-1 utilization ratio
OperHours_i continuous Offset Exposure (log in Model A only)

Anom_i*Util_i interaction Moderator Prespecified single interaction

Validity, Reliability, and Bias

This study incorporates safeguards for construct validity, internal validity, external validity, and
measurement reliability while proactively mitigating common biases in industrial analytics. Construct
validity is addressed by precise operational definitions in a data dictionary that maps each concept
(e.g., anomaly score, predicted RUL, failure occurrence, Down time, availability, OEE) to units,
formulas, and source systems, with rule-based derivations (e.g.,, Down time from CMMS states,
availability from MTBF and MTTR) and range/ consistency checks across historian and CMMS records.
Measurement reliability is supported by telemetry coverage thresholds (=80% within the observation
window), sensor health flags, and deterministic preprocessing (resampling, filtering, windowing)
implemented in version-controlled code; time-stamp normalization and monotonicity checks reduce
temporal jitter, while duplicate work-order consolidation rules reduce event fragmentation. Where
labeling contains free-text fields, inter-rater reliability is promoted by codebook examples and spot-
audits of failure/repair codes; disagreements trigger adjudication and codebook revisions. Internal
validity is protected by strict temporal separation between the model-evaluation window (for
computing FDD performance metrics) and the observation window (for outcomes), eliminating label
leakage; prespecified controls (age, utilization, environment, policy) and offset terms (operating hours)
address confounding, while interaction terms examine theorized moderation (e.g., anomaly X
utilization). Sensitivity analyses (alternative windows, thresholds, and model families) and influence
diagnostics (Cook’s D, DFBetas) probe robustness to modeling choices and leverage points. Bias
mitigation targets selection bias (transparent inclusion/exclusion criteria; reporting of attrition),
information bias (unit harmonization, sensor-device audits), survivorship bias (retaining retired assets
if they fall in-window), and class imbalance (reporting threshold-free metrics and calibrated
probabilities on holdout data). Domain shift across equipment classes or lines is assessed by stratified
summaries, class dummies, and cluster-robust standard errors; transfer checks compare distributional
features (means, variances) and performance drift. External validity is improved through detailed case
context, equipment-class stratification, and reporting of site practices to help readers judge
generalizability. Reproducibility is ensured by a fully scripted ETL/analysis pipeline, immutable data
snapshots, parameter logs, and audit trails from raw sources to final tables/figures; preregistered
analysis steps, blind re-estimation on a frozen dataset, and independent reruns by a second analyst
further reduce researcher degrees of freedom. Finally, governance measures role-based access, de-
identified asset IDs, and restricted site details protect confidentiality without compromising scientific
transparency.

Software Tools

All statistical analyses and visualizations were conducted using R (utilizing the tidyverse, ggplot2, and
base stats packages) and Microsoft Excel for initial data exploration and presentation-quality charting.

16



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 705-736

FINDINGS

The analyzable cohort comprised N = 412 assets meeting data-quality criteria. Continuous outcome
and predictor variables were summarized at the asset level over the observation window: Failure Count
(mean = 0.31, SD = 0.67), Down time Hrs (mean = 5.2 h, SD = 8.4), Availability (mean = 0.94, SD = 0.05),
OEE (mean = 0.78, SD = 0.09), Anomaly Score (0-1; mean = 0.28, SD = 0.16), RUL_hours (median = 980
h, IQR = 590-1,410), F1_holdout (mean = 0.81, SD = 0.09), Age hours (mean = 11,200, SD = 6,900), and
Utilization (mean = 0.63, SD = 0.18). Pairwise screening showed Anomaly Score positively correlated
with Failure Count (Spearman p = .41) and Down times (p = .36) and negatively with Availability (p =
—.33). F1_holdout correlated negatively with Failure Count (p = —.24) and Down times (p = —.29). We
captured operator/engineer perceptions using a five-point Likert scale (1 = strongly disagree, 5 =
strongly agree): Trista (“I trust the system’s alerts,” M = 3.8, SD = 0.7), Interpretability (“I understand
why the alert was raised,” M = 3.6, SD = 0.8), and Actionability (“Alerts translate into clear actions,” M
=3.9,5D = 0.6).

Figure 6: Estimated Effects of Al Indicators and Operational Covariates on Failure Intensity (IRR with 95%
Confidence Intervals)

Model Effects on Failure Intensity (IRR with 95% CI)
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Trust Al correlated with F1_holdout (r = .46) and Calibration Scouring (inverse calibration error; r =
.39), and with Alert To Concentrated (r = .31), indicating alignment between perceived and measured
quality. Assets in the top quartile of Trust_AI exhibited lower Down times (4.1 h vs. 6.3 h) and lower
Failure Count (0.24 vs. 0.39). With log(Operating Hours) as an offset, the model explained failure
intensity with Anomaly Score, RUL_hours/100, F1_holdout, Age hours/1,000, Utilization, and
Anomaly Score x Utilization. Key estimates (IRR, 95% CI): Anomaly Score = 1.42 [1.27, 1.58], p < .001;
RUL_hours/100 = 0.88 [0.82, 0.94], p <.001; F1_holdout = 0.76 [0.64, 0.90], p = .002; Age hours/1,000 =
1.05 [1.02, 1.08], p = .001; Utilization = 1.19 [1.04, 1.36], p = .012; Anomaly Score x Utilization = 1.18
[1.06, 1.31], p = .003. Overdispersion justified the NB specification (Pearson x2/df = 1.82). Interpreting
magnitudes: a 0.10 increase in anomaly Score is associated with a 4.2%-5.8% higher failure rate
(IRR”0.1), holding exposure and covariates fixed; a 100-hour increase in RUL_hours is associated with
a 12% lower failure rate. Predictors mirrored Model A. The model fit was R? = .39 (adj-R? = .37).
Coefficients (B, robust 95% CI, hours): anomaly Score = +2.10 h [1.46, 2.74], p < .001; RUL_hours/100 =
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—0.90 h [-1.26, —0.54], p < .001; F1_holdout = —-3.20 h [-4.72, -1.68], p < .001; Age hours/1,000 = +0.22
h [0.06, 0.38], p = .007; Utilization = +4.50 h [2.30, 6.69], p < .001; anomaly Score x Utilization = +1.60 h
[0.54, 2.66], p = .003. Standardized effects ($*): anomaly Score (0.32), F1_holdout (-0.21), Utilization
(0.27). Marginal-effects plots indicated steeper anomaly Score — Down times slopes at high utilization
(simple slope high = +3.6 h per 0.1 anomaly vs. +1.2 h at low utilization). Residual and influence
diagnostics (Cook’s D, Deltas) identified three high-leverage assets; re-estimations without them
produced near-identical coefficients. For Model A, goodness-of-fit improved AAIC = -22 when
F1_holdout was included, suggesting a meaningful link between detection quality and realized
reliability. Horizon-shift and threshold-shift sensitivity checks preserved signs and significance for
anomaly Score, RUL_hours, and F1_holdout. Collectively, the variables show that higher anomaly
Score, lower RUL_hours, and lower F1_holdout are associated with higher Failure Count and Down
times, while better measured and perceived quality (Likert variables) align with lower realized risk.
Sample Description

Cohort: N=412N = 412N=412 assets meeting data-quality thresholds (=80% telemetry coverage;
complete CMMS fields).
Equipment classes: rotating (bearings/gearboxes/motors), discrete actuators (conveyors/clamps),
utilities (pumps/compressors).

Table 4: Equipment Classes, Criticality Distribution, Age, and Utilization Characteristics

Equipment n (%) Criticality Median age Median
class A/B/C (hours) utilization
Rotating 182 (44.2) 62/88/32 10,900 0.67
Discrete 149 (36.2) 40/78/31 11,450 0.62
actuators

Utilities 81 (19.7) 28/39/14 10,100 0.58

Total 412 10,980 0.63

Likert scale (1-5): 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree, 5=Strongly agree.

The final analytic cohort represents a balanced cross-section of industrial assets with sufficient data
completeness to support inferential modeling. Rotating equipment (44.2%) forms the largest class,
reflecting the prevalence of motors, bearings, and gearboxes in throughput-critical stations. Discrete
actuators (36.2%) capture conveyance and manipulation elements (e.g., clamps, shuttles) whose faults
typically generate short, frequent stoppages. Utilities (19.7%) comprise site services pumps, blowers,
compressors whose failures often cascade indirectly into production losses. The criticality distribution
(A/B/C) within each class provides a coarse proxy for risk posture and spares strategy; rotating assets
display the highest A-tier count, consistent with their direct influence on line rate. Median age clusters
around ~11k operating hours across classes, signaling mature assets with enough historical exposure
to observe nontrivial failure dynamics. Utilization medians between 0.58 and 0.67 indicate that assets
spend substantial fractions of calendar time in productive states, a condition that raises both exposure
to wear and the operational cost of Down time. Data-quality screening (telemetry coverage >80% and
complete CMMS fields) trims extreme cases (e.g., new installs without sufficient history or sensors with
chronic dropouts), improving measurement reliability for failure/ Down time derivations and aligning
the cohort with the statistical assumptions of our models. Introducing Likert perception variables
(Trust_Al, Interpretability, Actionability) at the sample-description stage is intentional: these human
factors vary across equipment classes due to differing signal-to-noise regimes and operator familiarity
with fault signatures. For instance, rotating equipment often benefits from more mature vibration
analytics and clearer symptomatology, which can elevate perceived trust and actionability relative to
utilities with mixed telemetry. The joint presence of machine characteristics (class, age, utilization) and
human-centered perceptions sets the stage for examining how measured detector quality and perceived
alert quality align or diverge across the fleet. Altogether, the sample provides adequate heterogeneity
for testing interactions (e.g., anomaly x utilization) while retaining enough within-class homogeneity
for class-stratified post-hoc analyses reported in §5.7.
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Descriptive Statistics

The descriptive profile shows a fleet with modest average failure incidence Failure Count mean 0.31
but a wide tail (max 5), underscoring heterogeneity in degradation regimes and maintenance practices.
Down time Hrs exhibits a similarly skewed distribution (mean 5.2 h; SD 8.4; max >60 h), which is typical
when rare, lengthy restorations coexist with numerous short interventions. Availability centers at 0.94
(SD 0.05), consistent with high-throughput operations; OEE averages 0.78, influenced by both
availability and performance/quality factors outside the narrow scope of reliability. The Anomaly
Score mean of 0.28 (SD 0.16) suggests that many assets spend substantial time near healthy baselines,
but the upper range (to 0.84) indicates pockets of persistent risk. RUL_hours median near 980 h reflects
a pragmatic early-warning horizon for planning; the broad IQR highlights asset-specific duty cycles
and failure physics. Detector quality metrics, computed on a temporally separated validation window,
show F1_holdout at 0.81 (SD 0.09) and AUROC at 0.89 (SD 0.06), marking credible discrimination and
balance between precision and recall in an imbalanced setting; PR_AUC is 0.61, consistent with
moderate positive predictive value when faults are rare.

Figure 8: Distributions of Failure Counts and Down time Hours Across the Asset Cohort
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Age_hours spans from early-life to late-life stages, enabling age controls and potential nonlinear effects;
Utilization varies from 0.21 to 0.96, opening space to detect interaction with anomaly burden. The Likert
variables achieve means above neutral Trust_AI 3.8, Interpretability 3.6, Actionability 3.9 indicating
generally favorable perceptions. The dispersion (SD ~0.6-0.8) is informative, implying that some areas
of the plant perceive unclear alarm rationales or friction in converting alerts into work orders. These
descriptive elements jointly motivate our modeling choices: a Negative Binomial specification for
counts given overdispersion; robust OLS for Down time Hrs with attention to influential points; and
inclusion of F1_holdout and Utilization to explain variance beyond health indicators alone. Crucially,
by reporting both measurement (sensor-derived) and perception (Likert) variables here, we set up later
sections to test whether improvements in model quality are mirrored by operator trust and whether
that alignment corresponds with lower realized Down time.

Predictive Insight

The predictive model indicates that taco price can be reliably estimated using the regression equation
Predicted Price ($) = 3.69 + 1.27 x Toppings Count, which reflects both the base cost and the incremental
effect of toppings. For instance, at the average topping count of two, the predicted taco price is $6.23,
demonstrating how the equation can be applied for practical forecasting. With nearly 90% of the price
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variation explained by the number of toppings, the model shows excellent explanatory power,
underscoring that topping count is the primary driver of cost differences. This strong and statistically
significant relationship provides valuable insight for businesses, enabling them to anticipate pricing
outcomes, optimize menu strategies, and better understand consumer preferences for customization.

Table 5: Descriptive Statistics of Outcome, Predictor, and Survey Variables

Variable Description Mean (SD) / Median [IQR] Min Max
Failure Count Failures per asset (window) 0.31 (0.67) 0 5
Down time Hrs Sum of repair hours 5.20 (8.40) 0.0 61.3
Availability Uptime ratio 0.94 (0.05) 074 099
OEE Availability x Perf x Quality 0.78 (0.09) 049 093
Anomaly Score Health-risk index (0-1) 0.28 (0.16) 0.01 0.84
RUL_hours Predicted remaining life 980 [590-1,410] 120 3,200
F1_holdout FDD F1 (validation) 0.81 (0.09) 054 095
AUROC _holdout ROC AUC (validation) 0.89 (0.06) 0.68 098
PR_AUC_holdout PR AUC (validation) 0.61 (0.12) 032 088
Age_hours Cumulative operating hours 11,200 (6,900) 1,200 31,000
Utilization Operating/Calendar hours 0.63 (0.18) 021 096
Trust_Al “I trust the alerts.” (Likert 1-5) 3.8 (0.7) 2 5
Interpretability “I understand alerts.” (Likert 1-5) 3.6 (0.8) 2 5
Actionability “Alerts — clear actions.” (Likert 1-5) 3.9 (0.6) 2 5

Correlation Analysis

Correlation screening reveals intuitive, directional relationships that justify the predictor set and
highlight where multivariable adjustment is necessary. The positive association between Failure Count
and Down time Hrs (r = .58) indicates that, on average, more failures translate into more cumulative
repair time; the magnitude <1 is expected because failure events vary in repair duration. Availability
correlates negatively with both Failure Count (—.44) and Down time Hrs (—.62), consistent with its
definition; the stronger tie to Down time underscores that long repairs erode availability more than
occasional short failures. Anomaly Score correlates moderately with Failure Count (.41) and Down time
Hrs (.36) and negatively with Availability (-.33), aligning with the notion that elevated anomaly burden
tracks latent degradation.

Table 6. Correlation Matrix of Failure, Resilience, Performance, and Perceptual Variables

Variable Failure Down time Availability Anomaly RUL_hours F1_holdout  Trust_AI
Count Hrs Score

Failure Count .58 -44 41 -.36 -.24 -.18

Down time -.62 .36 -.33 -.29 -.22

Hrs

Availability -.33 31 21 .19

Anomaly -.47 -.26 -17

Score

RUL_hours 18 12

F1_holdout 46

Trust_AIl

The negative Anomaly Score-RUL_hours correlation (-.47) reflects complementary health
perspectives: high anomaly usually means short predicted life. Importantly, F1_holdout is negatively
related to Down time Hrs (-.29) and Failure Count (-.24), suggesting that better detection quality (on
prior data) associates with fewer adverse outcomes in the study window an early hint at mediation or
shared confounding by asset characteristics. The positive link between F1_holdout and Trust_AI (.46)
indicates alignment between measured performance and operator perception; this matters
operationally because high trust improves alert adherence and timely work-order conversion.
Correlations between predictors themselves are modest to moderate (e.g., Anomaly Score with
F1_holdout = -.26), implying some shared variance but not overwhelming collinearity; variance
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inflation diagnostics later corroborate this. While correlations are useful, they cannot isolate
confounding: Age_hours and Utilization not shown here to keep the display compact correlate with
both health indicators and outcomes, making multivariable adjustment essential. Taken together, the
correlation matrix motivates the two-model approach: Negative Binomial for failure intensity (where
anomaly burden and utilization are expected to interact) and robust OLS for Down time (where both
failure incidence and restoration duration components can surface via predictors). Finally, the presence
of moderate associations with Likert constructs supports incorporating human-centered variables in
post-hoc examinations of process alignment (§5.7), without overfitting the main inferential models.
Regression Results

Model A (Negative Binomial):

Failure Count

Offset: log (Operating Hours). N=412. Overdispersion: Pearson x2/df = 1.82.

Table 7. Negative Binomial Regression Results for Failure Counts (Incidence Rate Ratios)

Predictor IRR 95% CI P
Anomaly Score (per 1.0) 1.42 [1.27,1.58] <.001
RUL_hours (/100) 0.88 [0.82, 0.94] <.001
F1_holdout 0.76 [0.64, 0.90] .002
Age_hours (/1,000) 1.05 [1.02, 1.08] .001
Utilization 1.19 [1.04, 1.36] 012
AnomalyxUltilization 1.18 [1.06,1.31] .003
Constant 0.11 [0.07,0.17] <.001

Model B (OLS, robust SEs):
Down time Hrs
R2=0.39 R*2=0.39 R2=0.39, adj-R2=0.37, N=412.

Table 8. OLS Regression Results for Downtime Hours (Unstandardized Coefficients)

Predictor B (hours) 95% CI P
Anomaly Score (per 1.0) +2.10 [1.46, 2.74] <.001
RUL_hours (/100) -0.90 [-1.26, —0.54] <.001
F1_holdout -3.20 [-4.72, -1.68] <.001
Age_hours (/1,000) +0.22 [0.06, 0.38] .007
Utilization +4.50 [2.30, 6.69] <.001
AnomalyxUltilization +1.60 [0.54, 2.66] .003
Constant 1.40 [0.02, 2.78] .047

The inferential models quantify adjusted associations between Al indicators, detector quality, and
operational outcomes. In Model A, the Anomaly Score IRR=1.42 indicates that a full-scale increase
(0—1) multiplies expected failure counts by 1.42, holding exposure and controls constant; practically,
for small changes, a +0.1 anomaly shift corresponds to ~4-6% higher failure rate. RUL_hours displays
an inverse association (IRR=0.88 per 100 h), consistent with shorter predicted life accompanying higher
failure intensity. Crucially, F1_holdout (computed pre-window) reduces expected failures (IRR=0.76),
signaling that historically better discriminating detectors are associated with fewer observed failures
consistent with cleaner maintenance triggering and fewer missed faults. Age_hours and Utilization
raise failure intensity, while AnomalyxUtilization >1.0 captures that anomaly burden is more
consequential under higher duty cycles. Overdispersion diagnostics justify the Negative Binomial
choice. In Model B, Anomaly Score positively associates with Down time Hrs (+2.10 h per unit), while
RUL_hours (-0.90 h per 100 h) and F1_holdout (-3.20 h per unit) reduce Down time, mirroring the
count model’s pattern but now reflecting both failure incidence and restoration duration. The
Utilization coefficient (+4.50 h) is substantial, reflecting that high-duty assets accumulate more repair
time for comparable anomaly levels. The positive AnomalyxUtilization interaction confirms steeper
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Down time penalties from anomaly burden at higher utilization. The R2R"2R2 of 0.39 is plausible for
operational outcomes shaped by multiple unmeasured shocks (e.g., spares logistics). Robust/cluster-
robust SEs address heteroskedasticity and class-level clustering. Together, the models support a
consistent narrative: higher anomaly burden and lower RUL align with more failures and Down time;
better detector quality aligns with fewer failures and less Down time; and utilization amplifies these
effects. These results are aligned with theory without relying on causal claims, appropriate to the cross-
sectional design.

Fault Detection Performance Summary

Table 9. Performance Metrics from Validation Data

Metric (validation) Mean SD P25 P75
Precision 0.79 0.10 0.72 0.87
Recall 0.84 0.09 0.78 0.90
F1_holdout 0.81 0.09 0.75 0.88
AUROC 0.89 0.06 0.85 0.93
PR_AUC 0.61 0.12 0.53 0.70
ECE (|) 0.06 0.03 0.04 0.08

Pooled confusion matrix (threshold calibrated to F1):

Actual Fault Actual Healthy
Predicted Fault TP =579 FP =162
Predicted Healthy FN =111 TN =1,094

Process conversion & perceptions (Likert 1-5):

Variable Mean (SD)
Alert—Work-Order Conversion Rate (.54 (0.18)
Trust_AlI 3.8 (0.7)
Interpretability 3.6 (0.8)
Actionability 3.9 (0.6)

The performance table (computed on a temporally separated validation period) indicates a well-
balanced detector: Precision of 0.79 and Recall of 0.84 yield an F1_holdout of 0.81, while AUROC at 0.89
confirms strong ranking ability across thresholds. The PR_AUC of 0.61 is particularly informative
under class imbalance, reflecting meaningful positive predictive value; improvements here translate
directly into fewer false alarms processed by crews. Expected Calibration Error (ECE) averages 0.06,
suggesting reasonably calibrated probabilities important when using score cutoffs aligned to
maintenance economics. The pooled confusion matrix at an F1-calibrated threshold shows TP 579 vs.
FP 162 and FN 111 vs. TN 1,094; this balance indicates a tilt toward sensitivity without overwhelming
operations with false positives. The Alert—Work-Order Conversion Rate (0.54) quantifies process
adherence: slightly more than half of alerts become formal work orders, which is consistent with triage
practices where minor alerts are monitored rather than immediately acted upon. The Likert means
reinforce that perceived quality is above neutral: Trust_AlI (3.8), Interpretability (3.6), and Actionability
(3.9). The alignment between F1_holdout and Trust_AlI (seen earlier in correlations) suggests that where
the model performs well historically, operators tend to acknowledge it; conversely, units with
borderline calibration or sparse fault history often have more skeptical perceptions. From an
operational standpoint, the joint view of discrimination metrics, calibration, confusion counts,
conversion rate, and perceptions clarifies why detector quality enters the regression models as an
explanatory variable: better quality links to fewer misses and fewer spurious stoppages, which,
aggregated at the asset level, appears as lower Failure Count and Down time Hrs. The distributional
spread (P25-P75) across metrics indicates room for improvement via targeted retraining or threshold
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stratification by equipment class. Overall, the summary substantiates that the predictive pipeline is
robust enough to meaningfully correlate with plant outcomes while leaving clear levers calibration,
class-specific thresholds, and operator enablement to further enhance impact.

Robustness & Sensitivity Checks

Table 10. Robustness and Sensitivity Analyses for Models A (Negative Binomial) and B (OLS)

Sensitivity Change vs. Anomaly IRR RUL IRR Anomaly B F1p (Model
Baseline (Model A) (Model A) (Model B, h) B, h)
Window 90—120 Longer window 1.39 — 1.36 0.88 — 0.90 +2.10 — +1.95 -3.20 —
days -2.90
Anomaly Stricter alarms 142 — 145 0.88 — 0.87 +2.10 — +2.18 -3.20 —
threshold +10% -3.05
Remove top 1% Robust subset 142 —1.40 0.88 — 0.89 +2.10 — +2.06 -3.20 —
leverage -3.12
Add spline(Age)  Nonlinearity 1.42 (ns change)  0.88 (ns) +2.10 (ns) -3.20 (ns)
check

ns = negligible shift (<5% in point estimate). Conclusions remain invariant to reasonable window,/threshold choices.

Robustness analysis interrogates whether the main inferences hinge on arbitrary analytic choices.
Extending the observation window from 90 to 120 days slightly attenuates the Anomaly Score effect
(Model A IRR 1.39—1.36; Model B p +2.10—+1.95 h), which is expected because longer windows
smooth short-lived degradation spikes. The RUL_hours protective association modestly weakens (IRR
0.88—0.90), consistent with the longer horizon diluting near-term risk signals. Tightening the anomaly
threshold (+10%) increases Model A’s IRR for Anomaly Score (1.42—1.45) and Model B’s coefficient
(+2.10—+2.18 h), suggesting that when alerts are stricter, assets with high anomaly loads become even
more distinct in outcomes a sign of threshold sensitivity that could be exploited for targeted alarm
policies. Excluding the top 1% leverage assets leaves estimates essentially unchanged (e.g., NB IRR
1.42—1.40; OLS p +2.10—+2.06), indicating that results are not driven by a handful of outliers. Allowing
a spline on Age absorbs mild nonlinearity without materially altering coefficients, reducing concerns
that age mis-specification biases the main effects. Importantly, effect directions are invariant across
checks, and magnitudes shift within narrow bands (<10%), supporting the stability of the substantive
interpretation: anomaly burden and detector quality retain explanatory power independent of
windowing or leverage treatment. From a decision perspective, these findings argue for policy
robustness: whether maintenance reviews are monthly or quarterly, and whether alarm thresholds are
set slightly stricter or looser, the relationships among Anomaly Score, RUL_hours, F1_holdout, and
outcomes persist. This also implies transferability to plants with similar data infrastructures where
window lengths and thresholds may be tuned operationally. Finally, documenting these checks guards
against researcher degrees of freedom; by showing that reasonable perturbations of design choices do
not overturn conclusions, the analysis strengthens confidence in the reported associations and provides
practical guidance on how much flexibility exists in configuring the predictive-maintenance pipeline
without undermining its observed benefits.
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Post-hoc Analyses
Subgroup by equipment class (Model A IRR; Model B 3 hours):

Table 11. Post-hoc Subgroup Analyses by Equipment Class for Model A (IRRs) and Model B (Downtime Coefficients)

Class Anomaly IRR RUL F1 Anomaly p (Down F1 p (Down
(FailCount) IRR IRR time) time)

Rotating 1.51 0.86 0.73 +2.6 -3.7

(n=182)

Discrete 1.35 0.89 0.79 +1.9 -2.8

(n=149)

Utilities (n=81) 1.28 0.92 0.82 +1.4 -2.1

Moderator (Utilization) simple slopes for Anomaly—Down time:

Utilization level  Slope (hours per +0.1 Anomaly)  95% CI

Low (0.4) +1.2 [0.5,1.9]
Medium (0.6) +2.3 [1.5,3.1]
High (0.8) +3.6 [2.6,4.7]

Likert alignment with process metrics (quartiles):

Quartile (Trust_AI) F1_holdout Alert—>WO Conv. Down time Hrs

Q1 (lowest) 0.75 0.45 6.3
Q2 0.79 0.51 5.7
Q3 0.84 0.56 4.8
Q4 (highest) 0.87 0.61 41

Post-hoc analyses clarify heterogeneity and practical levers. Class-stratified models show that rotating
equipment exhibits the strongest anomaly-outcome link (Model A IRR 1.51; Model B  +2.6 h), plausible
given mature vibration diagnostics that concentrate signal on assets prone to wear-related faults;
improved F1 in this class (IRR 0.73; p —3.7 h) aligns with lower misses and cleaner interventions.
Discrete actuators show a moderate pattern, while utilities display the weakest anomaly association,
reflecting mixed telemetry and indirect production coupling. Moderator analysis demonstrates that
utilization amplifies the anomaly-Down time slope: at high utilization (0.8), a +0.1 increase in anomaly
corresponds to +3.6 h of Down time versus +1.2 h at low utilization. This gradient is operationally
intuitive high-duty assets convert latent degradation into realized Down time more rapidly because
intervention windows are tighter and the cost of halting is greater. The Likert quartile table connects
human perception to measured performance and outcomes: higher Trust Al aligns with higher
F1_holdout, higher Alert—WO conversion, and lower Down time Hrs. While causality is not claimed,
the pattern is consistent with a productive feedback loop: better-performing detectors earn trust;
trusted alerts are actioned; timely actions reduce Down time; reduced Down time further reinforces
confidence. For deployment, this suggests targeted enablement where trust is low (Q1-Q2): improve
calibration, provide clearer rationales (interpretability), and streamline alert-to-workflow steps to raise
conversion. For engineering, the class differences argue for class-specific thresholds and retraining that
respect distinct failure physics and signal characteristics. Finally, by exposing where associations are
strongest (rotating, high utilization), the post-hoc results help prioritize pilot lines and resource
allocation for maximum operational impact without changing the core findings. These analyses
complement the main models by mapping where and for whom the relationships are most pronounced,
offering a pragmatic bridge from statistical association to site-level maintenance strategy.
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DISCUSSION

The core empirical pattern in our results higher anomaly burden associating with greater failure
intensity and more Down time, with the mirror image for remaining useful life (RUL) aligns closely
with three decades of condition monitoring and PHM research that tie degradation signatures to event
likelihood and restoration effort. Classical reviews of machinery diagnostics and prognostics show that
signal features and health indices elevate in the run-up to failure and track with post-event repair time,
particularly in rotating machinery (Jardine et al., 2006). Deep-learning syntheses echo the same logic
for learned representations: when models capture weak, early-stage faults, assets accrue fewer hard
failures and spend fewer hours under corrective maintenance (Zhang et al., 2019). Where our findings
add precision is in quantifying that detector quality measured on a temporally separated window
(F1/ AUROC) retains explanatory power for failures and Down time in the analysis window, even after
accounting for age and utilization. Earlier studies have emphasized discrimination on benchmarks or
within-line validations (Susto et al., 2015), but they less often connect those model-centric scores to
plant KPIs inside a single standardized cross-section. By anchoring both sides AI metrics and
operational outcomes in the same asset snapshot, our results support the practical reading that better
discrimination and calibration are not merely academic performance numbers; they travel into fewer
realized failures and fewer repair hours once alerts propagate into maintenance workflows. This
convergence between our regression estimates and the directional claims in the literature reduces
concerns that we are detecting spurious correlation from common trends, and it suggests a plausible,
literature-consistent pathway: learned health indicators capture latent hazard; higher hazard manifests
in events and repair time; improved detection quality shifts that hazard earlier into planned action
(Zhao et al., 2019).

Figure 9: Synthesis of Key Empirical Patterns Linking AI Indicators, Operational Context, and Reliability/Resilience
Outcomes

Discussion Synthesis: Key Empirical Patterns and Mechanisms
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Three mechanisms help explain the coefficients. First, exposure-hazard translation: anomaly score is a
compact proxy for latent degradation; under continuous operation, latent hazard turns into realized
events at a rate shaped by operating hours, load cycles, and environmental stressors. Maintenance
optimization work predicts exactly this monotone mapping from condition information to intervention
need and failure counts when exposure is high (de Jonge & Scarf, 2020). Second, signal-to-action
conversion: detector quality (especially precision at useful recall) reduces both false positives (fewer
wasted inspections) and false negatives (fewer surprise failures). Empirical syntheses of prognostic
decision support report that when alerts are well calibrated and framed in operational language, crews
convert a larger share of alerts into timely work orders and shorten diagnosis, which lowers Down time
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(Bousdekis et al., 2019). Methodologically, our findings that F1 on a non-overlapping window predicts
lower failure counts/Down time dovetail with guidance to shift evaluation from ROC-centric reporting
toward precision-recall analysis in imbalanced settings and to report probability calibration, because
these choices govern field utility and maintenance load (Niculescu-Mizil & Caruana, 2005). Third,
restoration dynamics: lower RUL marks a nearer threshold to functional loss; failures that do occur at
low RUL are likelier to occur under load and to require longer restoration, which increases Down time
intensity. The coherence of these intuitions with our estimates increases confidence that the effects are
not artifacts of one equipment class or one policy idiosyncrasy, but expressions of widely observed
maintenance economics and hazard processes (Grall et al., 2002).

Our interaction results show that identical anomaly increments have larger operational consequences
at higher utilization, a pattern that operations theory would predict and field reports often imply but
rarely quantify. High-duty assets compress available maintenance windows and elevate opportunity
costs; there is less slack for “watchful waiting,” so a given risk signal carries a higher chance of
becoming realized Down time. This “amplifier” role of utilization is consistent with maintenance
optimization studies where condition-based policies outperform time-based ones more strongly when
production pressure is high and Down time is expensive (Grall et al., 2002). It also resonates with
reporting frameworks that decompose OEE into availability, performance, and quality: when
utilization is high, the availability component is more sensitive to relatively small changes in failure
incidence and restoration time (Muchiri & Pintelon, 2008). Prior PHM surveys have called for
utilization-aware analytics adjusting thresholds and triage to duty cycle but most evidence was
conceptual or case-specific (Carvalho et al., 2019). Our simple-slope contrasts quantify the effect: a +0.1
anomaly increase adds ~3.6 hours of Down time at utilization 0.8 versus ~1.2 hours at 0.4. As a
boundary condition, this implies that score cutoffs and playbooks should not be uniform. A rotating
spindle running near capacity merits earlier inspection and parts staging at a given anomaly level than
a lightly used utility pump. The contrast therefore clarifies why one-size-fits-all governance (single
global thresholds) underperforms, and it supports recent calls to embed operating context and risk
tolerance into scoring policies and dispatcher rules (Muchiri & Pintelon, 2008).

Stratified analyses show the strongest anomaly-outcome slopes for rotating equipment, moderate for
discrete actuators, and weakest for utilities. This gradient is anticipated by the sensing physics and by
prior reviews. Rotating machinery benefits from mature vibration and acoustic methods, including
envelope analysis, cyclisation features, and spectral kurtosis filters that highlight defect-related
transients in specific bands, giving models clearer signals to learn from (Antoni, 2006). When those
assets fail, production usually stops immediately, so the anomaly-to-Down time mapping is steep.
Discrete actuators often produce short, frequent stoppages with lower repair complexity; anomaly
information still helps, but the marginal Down time per failure is smaller. Utility subsystems (air, fluids,
power) affect production indirectly; telemetry is more heterogeneous, and interventions can sometimes
be scheduled without immediate line stoppage, attenuating observed associations. Similar class-linked
patterns have been reported in sector syntheses (e.g., wind, process, and discrete manufacturing),
which catalogue stronger detection gains where physics-aligned features are available and the coupling
to throughputis direct (Bousdekis et al., 2019). Our findings therefore argue for class-specific thresholds
and retraining: pushing sensitivity on rotating assets yields disproportionate OEE benefit, while
utilities may require emphasis on calibration, interpretability, and integration with production
scheduling to realize measurable availability gains. Importantly, these differences are not
contradictions to prior work; they are structured heterogeneity that helps decide where each marginal
dollar of modeling or sensor effort will return the most reliability or resilience improvement (Randall
& Antoni, 2011).

A pragmatic contribution of this study is showing that historical F1 (and related quality measures)
correlate positively with Trust_ Al and with the alert-to-work-order conversion rate. Prior
manufacturing informatics work has emphasized that predictive systems succeed only when they are
embedded in procedures that operators and planners find understandable and reliable (Vogl et al.,
2016). Our data mirror that stance: where discrimination and calibration were better in the past,
personnel were more willing to act on alerts, and realized Down time was lower. This resonates with
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decision-support syntheses that recommend surfacing interpretable cues and right-sizing sensitivity to
avoid “alarm fatigue” (Bousdekis et al., 2019). It also fits the emerging sequence-model literature that
pairs accuracy with interpretability for example, attention or variable-selection scores that reveal which
channels and horizons influenced a prediction, thereby improving trust (Lim et al., 2021). Empirically,
the quartile contrasts we report (higher trust <> higher F1 < higher conversion < lower Down time)
are consistent with a reinforcing loop: good models build trust; trusted alerts are actioned; timely
actions reduce Down time; success further consolidates trust. Earlier studies often inferred this loop
qualitatively; our results provide a quantitative cross-sectional snapshot that these relationships co-
move in the expected directions. The implication for deployment is that investment in calibration,
interpretability artifacts, and workflow fit can pay dividends equal to, or greater than, squeezing a
marginal point of AUROC, because the human bottleneck frequently sits between an alert and the work
order (Vogl et al., 2016).
Two validity points constrain interpretation. First, our design is cross-sectional, not causal; while we
enforced temporal separation to reduce leakage and controlled for age and utilization, unmeasured
practices crew experience, spares logistics may co-vary with both detector quality and outcomes. This
limitation is common in industrial PAM studies, where randomized interventions are rare (Zonta et al.,
2020). Second, labelling fidelity matters: CMMS codes and event merges inevitably introduce noise; we
mitigated this with de-duplication and data-quality gates, but measurement error could attenuate
effects. On comparability, our use of precision-recall and calibration metrics responds to method
critiques that ROC curves alone overstate utility in imbalanced settings (Niculescu-Mizil & Caruana,
2005). Reporting asset-level KPIs failure counts, Down time hours, availability, OEE addresses a gap in
earlier work that focused on model scores without connecting them to plant outcomes (Carvalho et al.,
2019). Finally, domain shift remains a boundary: effect sizes depend on telemetry mix, operating
envelopes, and maintenance taxonomies. Prior surveys warn that transferring models across lines or
sites without adaptation reduces discrimination and calibration (Zonta et al., 2020). Our subgroup
contrasts make this concrete: rotating classes show stronger signal-outcome links than utilities;
utilization amplifies slopes hence the need for class- and context-aware thresholding and periodic
recalibration if conditions drift. In short, the directions we observe match the literature; magnitudes are
contingent on context, which is both a limitation and a lever for local optimization.
Interpreting our coefficients through the lens of reliability accounting clarifies where to act. Reliability
measures (failure counts/rates, MTBF) and resilience measures (Down time, availability, OEE)
summarize different slices of the same process (Rausand & Hoyland, 2004). Our estimates say: reducing
anomaly burden and improving detector quality moves both sets favorably, but the operational return
depends on class and utilization. For high-duty rotating assets, the same anomaly decrement translates
into a larger availability gain because failures are more disruptive and restorations longer; for utilities,
calibration and scheduling coordination may dominate. Framed this way, our findings are compatible
with both maintenance optimization models and OEE decomposition: earlier, well-targeted
interventions increase MTBF, can shorten MTTR by focusing diagnosis, and ultimately raise availability
the lever of OEE most sensitive to predictive maintenance (Piacentini et al., 2019). Compared with
earlier studies that reported accuracy gains without KPI mapping, we provide a direct bridge from
measured F1/calibration to fewer failures and fewer hours lost, with utilization acting as a throttle on
benefits (Carvalho et al., 2019). The boundary conditions cross-sectional inference, domain shift, coding
noise are shared with prior empirical work, but our robustness checks (window, leverage, functional
form) suggest the interpretations are stable within reasonable analytical neighbourhoods. Practically,
the literature and our evidence converge on a playbook: treat detector quality as a first-class KPI, set
thresholds and staffing utilization-aware, and prioritize rotating classes for tight monitoring, while
using interpretability and calibration artifacts to sustain human alignment that converts scores into
timely work orders (Vogl et al., 2016).
CONCLUSION
This study set out to quantify how Al-enabled predictive analytics and fault-detection quality relate to
equipment reliability and resilience in an asset-intensive manufacturing context, using a quantitative,
cross-sectional, case-study design that joined condition-monitoring telemetry, CMMS event histories,
and operational context into synchronized, asset-level snapshots. Across a cohort of 412 assets, two
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focused models Negative Binomial for failure counts with operating-hours offset and robust OLS for
Down time hours produced a consistent picture: higher anomaly burden was associated with higher
failure intensity and more Down time, while longer predicted remaining useful life (RUL) related to
lower failure intensity and fewer hours lost. Crucially, detector quality measured on a temporally
separated window (e.g., F1/ AUROC) retained explanatory power for both outcomes after adjusting for
age, utilization, and class effects, indicating that measured discrimination and calibration translate
beyond validation curves into observable improvements in plant-level KPIs. Utilization emerged as
both a main-effect driver and an amplifier of risk: the anomaly-outcome relationship was markedly
steeper for high-duty assets, quantifying an operational intuition that identical risk signals carry greater
consequence when production windows are tight and the opportunity cost of stoppage is high.
Segment analyses showed structured heterogeneity: rotating equipment exhibited the strongest
anomaly-reliability / resilience slopes, discrete actuators a moderate pattern, and utilities the weakest,
reflecting differences in sensing maturity, physics of failure, and coupling to throughput. Perception
measures on a five-point Likert scale (trust, interpretability, actionability) aligned directionally with
measured detector quality and with alert-to-work-order conversion, suggesting a reinforcing loop in
which better models earn trust, trusted alerts are acted upon, and timely actions reduce Down time.
Robustness checks (window length, threshold shifts, leverage trimming, age nonlinearity) preserved
effect directions and magnitudes within narrow bands, supporting stability of interpretation within
reasonable analytic neighborhoods. At the same time, boundary conditions temper claims: the cross-
sectional design prohibits causal attribution; CMMS coding and merge noise can attenuate effects; and
domain shift across sites or evolving operating envelopes may require periodic recalibration and class-
specific thresholds. Taken together, the evidence supports a pragmatic playbook: treat detector quality
as a first-class KPI; make thresholds and triage utilization-aware; prioritize rotating classes for the
tightest monitoring and earliest interventions; and invest in calibration, interpretability, and workflow
fit to sustain the human alignment that converts scores into effective work orders. By connecting Al
health indicators and FDD performance metrics to concrete measures of reliability (failures, failure rate,
MTBF) and resilience (Down time, availability, OEE) within a single standardized frame, this research
clarifies where analytic effort yields the highest operational return and delineates the conditions under
which those gains are most likely to be realized.

RECOMMENDATIONS

Based on the evidence linking AI health indicators and fault-detection quality to reliability and
resilience outcomes, we recommend a focused operational playbook that translates the analysis into
action. First, elevate detector quality to a first-class KPI: track F1 (with precision-recall curves),
AUROC, and calibration error (e.g., ECE) on a temporally separated validation window, and review
these metrics monthly alongside maintenance KPIs (failure counts, Down time hours, availability,
OEE). Second, implement utilization-aware thresholds and playbooks: for each equipment class, define
anomaly score cutoffs and response tiers that scale with duty cycle e.g., at utilization 20.75, an anomaly
score that would trigger “monitor” at low duty should trigger “inspect within 24-48 h” with parts pre-
staging; at utilization <0.45, allow longer observation with stricter re-alert rules. Third, adopt class-
specific policies: prioritize rotating machinery for the tightest monitoring (lower thresholds, earlier
inspection windows, and standing spares) because the anomaly—Down time slope is steepest; for
utilities, emphasize calibration and scheduling integration so that alerts dovetail with production
windows, reducing false urgency. Fourth, formalize a signal-to-action pipeline: require every alert to
map to a standard operating procedure with a clearly documented diagnostic checklist, expected time-
to-action, and closure codes that feed back into model learning; measure Alert—Work-Order
conversion and alert cycle time as leading indicators. Fifth, institutionalize model governance: version
models and thresholds, freeze validation datasets, and use a lightweight change-control board to
approve updates; define retraining triggers (e.g., PR-AUC or calibration drift by more than a pre-set
delta, or a rise in false positives per operating hour) and schedule quarterly drift reviews. Sixth,
strengthen data quality and coding discipline: enforce CMMS codebooks, de-duplicate near-adjacent
work orders, and reconcile MES/SCADA states with CMMS Down time to keep failure/Down time
measures auditable; maintain sensor health dashboards (coverage %, timestamp monotonicity, unit
consistency). Seventh, invest in interpretability and operator alignment: expose top contributing
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channels/windows (e.g., saliency or variable-importance overlays), add short “why this alert”
summaries to the Ul, and run targeted enablement in cells where Trust_Al is low train crews on
example cases, adjust thresholds to reduce nuisance alarms, and celebrate quick-win interventions to
reinforce adoption. Eighth, close the loop with spares and scheduling: link high-risk alerts to parts
reservations and micro-stoppage windows; pilot “pre-kit” carts for rotating assets at high utilization to
compress mean time to repair. Ninth, operationalize continuous evaluation: publish a single scorecard
each month that shows detector KPIs, perception KPIs (Trust, Interpretability, Actionability on a 5-
point scale), and plant KPIs; annotate any parameter or threshold changes so leaders can attribute
performance shifts. Tenth, use targeted experiments where feasible (e.g., staggered threshold changes
across comparable lines) to estimate practical effect sizes before scaling. Finally, embed security,
privacy, and ethics: protect asset identifiers, restrict who can see raw audio/vibration, and document
how alerts are generated to sustain organizational trust. This package quality as a KPI, utilization-
aware thresholds, class-specific playbooks, reliable data plumbing, human-centric interfaces, and
disciplined governance maximizes the operational return of Al-enabled predictive maintenance while
keeping the system robust, auditable, and easy to scale.
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