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Abstract 
Power transformers are critical assets in electrical power systems, and their failure can result in 
costly downtime and catastrophic grid disruptions. This systematic review investigates the 
emerging role of Artificial Intelligence (AI) and Internet of Things (IoT) technologies in enabling 
predictive maintenance (PdM) of power transformers. Drawing upon 126 peer-reviewed articles 
published between 2015 and 2024, this review categorizes and synthesizes state-of-the-art 
techniques involving sensor integration, real-time condition monitoring, data fusion, machine 
learning (ML), deep learning, and digital twin frameworks. The analysis reveals a growing trend 
toward hybrid PdM models that leverage transformer health indices, vibration and thermal 
imaging, dissolved gas analysis (DGA), and partial discharge (PD) data. Neural networks, support 
vector machines, decision trees, and ensemble methods dominate the AI approaches, while IoT-
based sensor networks and cloud-edge computing architectures underpin the system 
infrastructures. Key challenges identified include data heterogeneity, cybersecurity vulnerabilities, 
high initial costs, and lack of standardization in deployment practices. This review concludes that 
integrating AI and IoT in transformer maintenance not only enhances fault detection and failure 
prediction but also supports asset lifecycle optimization and grid resilience. The findings contribute 
to academic research and industrial applications by providing a consolidated framework for future 
development, standardization, and policy formulation in smart grid systems. 
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INTRODUCTION 
Predictive maintenance (PdM) refers to the strategy of monitoring the actual condition of equipment to 
predict when maintenance should be performed, thereby minimizing unscheduled downtime and 
maximizing operational efficiency (Delmas et al., 2018). In contrast to reactive or time-based 
maintenance, PdM relies on real-time data, historical records, and analytical models to identify 
potential failures before they occur (Sánchez & Cortés, 2021). Within the power sector, power 
transformers are essential components in the transmission and distribution network, responsible for 
voltage regulation and energy transfer across vast distances (Divya et al., 2022). Failures in these 
transformers can result in blackouts, economic losses, and system instability (Zhao et al., 2022). 
Traditional condition-based maintenance strategies, which utilize diagnostic tests such as dissolved gas 
analysis (DGA) and partial discharge (PD) measurement, have proven useful but often fall short in 
providing timely and accurate predictions for incipient faults (Babu et al., 2022). Consequently, there is 
increasing emphasis on data-driven PdM strategies supported by Artificial Intelligence (AI) and 
Internet of Things (IoT) technologies, which can offer continuous monitoring, pattern recognition, and 
advanced anomaly detection capabilities (Namuduri et al., 2020) 

The integration of AI and IoT into 
transformer maintenance enables a 
multidimensional understanding of 
asset health by synthesizing large 
volumes of heterogeneous data from 
temperature sensors, acoustic 
emission devices, gas 
chromatographs, and vibration 
analyzers (Allahloh et al., 2023). IoT 
facilitates real-time data acquisition 
through interconnected devices and 
edge/cloud-based architectures 
(Mourtzis et al., 2023), while AI 
techniques, such as artificial neural 
networks (ANN), support vector 
machines (SVM), decision trees (DT), 
random forests (RF), and deep 
learning models, provide robust 
prediction and classification 
mechanisms (Liu et al., 2018). Several 
studies have demonstrated the 
superiority of these models in 
forecasting fault progression, 
transformer aging, insulation 

degradation, and thermal stress (De Bernardi et al., 2024). For instance, ANNs trained on historical 
DGA datasets have shown high accuracy in identifying fault types and severity levels (Gilles et al., 
2023). Similarly, ensemble methods have been employed to reduce the variance and bias in transformer 
failure prediction (Ouadah et al., 2022). These methodologies are further enhanced by digital twin 
models that replicate the operational behavior of transformers in virtual environments (Lakehal et al., 
2018). By leveraging the synergies between AI and IoT, the power industry is increasingly adopting 
predictive diagnostics as a strategic approach to enhance transformer reliability and safety (Liu et al., 
2022). 
The objective of this systematic review is to critically examine and consolidate existing scholarly 
research on the application of Artificial Intelligence (AI) and Internet of Things (IoT) technologies in 
predictive maintenance (PdM) strategies for power transformers. This review aims to identify, 
categorize, and analyze the state-of-the-art models, algorithms, sensor systems, and data analytics 
frameworks that contribute to transformer condition monitoring, fault diagnosis, and failure 

Figure 1: Transformer Maintenance Strategies: From Reactive to Predictive 
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prediction. The central purpose is to bridge fragmented insights across multidisciplinary studies and 
provide a structured understanding of how AI-driven methods—such as artificial neural networks 
(ANN), support vector machines (SVM), decision trees (DT), random forest (RF), k-nearest neighbors 
(KNN), and deep learning—are integrated with IoT infrastructures, including edge computing, 
wireless sensor networks, and cloud-based platforms, to enhance the reliability, safety, and longevity 
of transformer operations. Furthermore, the review aims to identify existing challenges—such as data 
interoperability, lack of standardization in IoT protocols, limitations in labeled datasets, and 
cybersecurity threats—that hinder the full-scale deployment of AI-IoT predictive frameworks in power 
utilities. By accomplishing these objectives, the review provides a comprehensive academic foundation 
for utility engineers, researchers, and policymakers to understand current capabilities, gaps, and 
deployment strategies in smart transformer maintenance ecosystems. Ultimately, the study contributes 
to a unified knowledge base that informs strategic decision-making in asset management and 
operational risk reduction in electrical power infrastructure. 
Transformer Failure Mechanisms and Condition Monitoring Parameters 
Power transformers are critical components in power systems, and their failure can result in major 
operational disruptions, safety hazards, and financial losses (Tang et al., 2014). These assets are 
vulnerable to a variety of internal and external stressors, including thermal overloading, dielectric 
breakdown, short-circuit stress, and mechanical fatigue, each of which contributes to insulation 
degradation and eventual failure (Zhang et al., 2021). Thermal stress, in particular, accelerates the aging 
of cellulose-based insulation, resulting in chemical decomposition and loss of dielectric strength. 
Dielectric failures, often stemming from localized overheating or partial discharges, compromise the 
insulation between winding layers and lead to arcing or breakdown events (Aliyu et al., 2024). 
Mechanical stresses, including those induced by short-circuit currents and transportation vibrations, 
can deform the windings and core, increasing the risk of internal faults.  

Figure 2: Transformer Failure Mechanisms and Condition Monitoring Parameters 

Among the diagnostic tools available, Dissolved Gas Analysis (DGA) has emerged as a principal 
method for identifying thermal and electrical anomalies (Gordon et al., 2020). By detecting the presence 
and ratio of gases such as hydrogen, methane, ethylene, acetylene, and carbon monoxide, DGA allows 
for the categorization of faults into thermal or electrical types. For example, elevated ethylene and 
acetylene levels typically indicate arcing or overheating, while increased hydrogen levels may point to 
partial discharges or corona activity (Aqueveque et al., 2021). These gas patterns are frequently used in 
conjunction with Duval’s Triangle or other graphical tools to determine fault types with reasonable 
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accuracy and repeatability. 
In parallel, other condition monitoring parameters and diagnostic techniques contribute to a more 
comprehensive assessment of transformer health (Rafezi & Hassani, 2023). Partial Discharge (PD) 
detection remains a vital tool for identifying early insulation deterioration, particularly in high-voltage 
equipment. PD activity is commonly captured using acoustic emission sensors, ultra-high frequency 
(UHF) sensors, or capacitive couplers, each capable of detecting subtle electromagnetic pulses 
generated by insulation voids or defects (Wang et al., 2017). Additionally, monitoring top-oil 
temperature and winding hot-spot temperature provides insights into the thermal performance and 
load-induced aging of the transformer. Elevated temperatures can accelerate polymer degradation, 
which in turn affects mechanical strength and dielectric reliability. Vibration analysis has been 
employed to detect anomalies associated with core loosening or winding displacement, particularly 
under dynamic load conditions. Moisture content in the insulation, furan concentration in oil, and 
historical load patterns are further indicators of long-term degradation and insulation life expectancy 
(Gunckel et al., 2025). Many of these parameters are collected and managed through Supervisory 
Control and Data Acquisition (SCADA) systems, which facilitate remote diagnostics, alarm generation, 
and integration with digital relays for fault localization (Roy et al., 2024). These systems also enable the 
development of AI-based predictive maintenance models, where historical and real-time data streams 
are analyzed to detect patterns that precede failure (Salem et al., 2023). When combined, these diverse 
indicators provide a multidimensional perspective on transformer condition, enabling utility operators 
to make informed decisions regarding maintenance prioritization and asset replacement strategies 
(Wahid et al., 2022). 
AI Algorithms for Transformer Fault Detection and Diagnosis 
Artificial Intelligence (AI) has become a pivotal force in transforming predictive maintenance 
frameworks for power transformers, moving beyond conventional threshold-based and rule-driven 
diagnostic techniques toward adaptive, data-centric models capable of handling nonlinear, high-
dimensional fault characteristics (Ammar et al., 2024; Matzka, 2020). Among the most widely adopted 
AI methodologies are Machine Learning (ML) algorithms such as Support Vector Machines (SVM), 
Decision Trees (DT), Random Forest (RF), and K-Nearest Neighbors (KNN), which are predominantly 
employed for analyzing Dissolved Gas Analysis (DGA) data (Jahan et al., 2022). DGA remains a critical 
diagnostic tool, and AI models significantly enhance its interpretive power by classifying fault types 
with higher accuracy and faster computation (Bhuiyan et al., 2025; Cardoso & de Souza Ferreira, 2020). 
SVM models, known for their effectiveness in handling small-to-medium-sized datasets, have 
consistently demonstrated superior performance in multi-class classification problems involving gas 
ratio methods (Qibria & Hossen, 2023). In studies where gas signatures vary across arc faults, thermal 
faults, and partial discharges, SVMs have yielded accuracy rates exceeding 90% under cross-validation 

settings (Ishtiaque, 2025; Ucar et al., 2024). 
Likewise, Decision Trees and Random Forest 
models are praised for their transparency and 
ensemble robustness, respectively, with RF 
models often outperforming standalone 
classifiers due to their ability to reduce 
overfitting and handle high-dimensional inputs 
effectively (Bojarczuk et al., 2021; Khan, 2025). 
Artificial Neural Networks (ANN), particularly 
those using feedforward and backpropagation 
learning architectures, have emerged as highly 
effective for fault prediction due to their 
nonlinear mapping capability and tolerance for 
noisy input data (Lee, 2023; Masud, 2022). These 
models have been trained on a wide array of 
transformer operating parameters—ranging 
from DGA signatures and thermal data to 
vibration and partial discharge signals—

Figure 3: AI-Driven Fault Diagnosis Framework Using DGA 
Data 
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enabling condition assessment across different degradation pathways (Hossen et al., 2023). In recent 
years, Deep Learning (DL) architectures have pushed the boundaries further by extracting hierarchical 
patterns from complex sensor datasets (Ferraro et al., 2022; Hossen & Atiqur, 2022). Convolutional 
Neural Networks (CNNs) are widely used for image-based diagnostics, such as thermal imaging and 
infrared scans of transformer surfaces, while Long Short-Term Memory (LSTM) networks are better 
suited for sequential data streams such as temperature or load histories (Arrieta et al., 2020; Hossain et 
al., 2024). These models excel in capturing temporal dependencies that simpler ML models might 
overlook. Ensemble techniques like XGBoost and AdaBoost, which combine multiple weak classifiers, 
have also gained popularity for their high diagnostic performance and resilience against data 
imbalance—a common challenge in transformer fault datasets (Alam et al., 2023; Youness & Aalah, 
2023). Furthermore, hybrid models that blend AI algorithms with fuzzy logic systems provide 
enhanced decision-making under uncertainty, offering both interpretability and adaptive reasoning 
(Bordegoni & Ferrise, 2023; Rajesh et al., 2023). These hybrid approaches are particularly valuable in 
practical applications where fault signatures are ambiguous or influenced by multiple interacting 
variables. Increasingly, these AI algorithms are being embedded into edge computing platforms and 
online diagnostic tools, allowing for real-time transformer health monitoring with high sensitivity and 
reduced false alarm rates (Fera & Spandonidis, 2024; Roksana, 2023). Such capabilities enable utility 
operators to initiate timely maintenance interventions, optimize asset utilization, and extend the 
operational lifespan of power transformers. 
IoT Architectures and Sensor-Based Monitoring Systems 
The integration of Internet of Things (IoT) architectures into transformer maintenance ecosystems has 
markedly transformed traditional monitoring practices, offering substantial advancements in data 
precision, system responsiveness, and operational scalability (Roksana et al., 2024; Virat et al., 2022). 
IoT-enabled sensors—permanently embedded within transformer units—are now widely deployed to 
collect real-time measurements of key electrical, thermal, mechanical, and chemical indicators, 
including load current, winding and top-oil temperatures, ambient humidity, dissolved gas 
concentrations, vibration levels, and insulation moisture. These sensor arrays transmit high-resolution 
data using communication protocols such as Modbus, ZigBee, LoRaWAN, and MQTT, allowing 
seamless interoperability with local gateways and cloud-based storage and analytics platforms 
(Foukalas, 2020; Siddiqui, 2025). Wireless Sensor Networks (WSNs), which comprise spatially 
distributed sensor nodes, enable multi-point condition monitoring across entire substations or 
distributed grid zones, thereby offering a non-intrusive, scalable approach to asset surveillance (Cheng 
et al., 2020; Sohel, 2025). The recent adoption of edge computing further enhances these capabilities by 
processing data at or near the sensor node, significantly reducing latency, alleviating bandwidth 
limitations, and allowing for faster anomaly detection and autonomous fault response (De Luca et al., 
2023; Akter & Razzak, 2022). These edge systems often utilize lightweight AI models to execute real-
time diagnostics locally before transmitting alerts or aggregated insights to the cloud. IoT 
infrastructures are increasingly integrated with Supervisory Control and Data Acquisition (SCADA) 
systems and broader Industrial Internet of Things (IIoT) frameworks, enabling centralized dashboards, 
remote access, automated reporting, and condition-based maintenance scheduling (Baruah, 2021; 
Tonmoy & Arifur, 2023). However, emerging challenges such as sensor calibration drift, data 
synchronization errors, network congestion, and cybersecurity vulnerabilities—especially in open-
access communication environments—pose persistent barriers to reliability and scalability (Dhanraj et 
al., 2020; Tonoy & Khan, 2023). Despite these limitations, the collective body of literature underscores 
the critical role of IoT in enabling continuous, high-fidelity monitoring that supports AI-driven 
predictive maintenance, ultimately enhancing transformer reliability, reducing maintenance costs, and 
extending asset life across interconnected power systems (Zaman, 2024). 
Hybrid Predictive Maintenance Models and Digital Twin Integration 
Hybrid predictive maintenance models that integrate Artificial Intelligence (AI) and Internet of Things 
(IoT) technologies represent a sophisticated evolution in transformer asset management, enabling 
deeper insights, adaptive learning, and dynamic decision-making (Rojas et al., 2025). These integrated 
systems leverage the real-time data collection capabilities of IoT with the analytical and predictive 
power of AI to build a closed-loop maintenance architecture that continuously monitors, assesses, and 
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forecasts transformer health. At the forefront of this paradigm is digital twin technology, which 
involves the creation of virtual counterparts of physical transformers that synchronize in real-time with 
operational data streams from embedded IoT sensors (Cancemi & Lo Frano, 2022). These digital 
replicas dynamically simulate the operational behavior of transformers under varying stress 
conditions, environmental factors, and historical usage profiles, enabling early anomaly detection and 
long-range prognostics (Ucar et al., 2024). Unlike standalone models, hybrid systems can integrate 
fuzzy inference systems and Bayesian networks to account for uncertainty, perform probabilistic fault 
classification, and prioritize maintenance actions based on asset risk profiles (Rahal et al., 2023). Many 
of these implementations are cloud-enabled, allowing for scalable processing, centralized data fusion, 
and remote accessibility, while edge computing further enhances latency-sensitive diagnostics at the 
local level. Advanced condition-based scoring models—derived from health indices and multi-
parameter thresholds—are used in conjunction with predictive analytics to support lifecycle cost 
analysis, optimized maintenance scheduling, and spare parts inventory management (Lv et al., 2023). 
Furthermore, these hybrid architectures are designed to interoperate seamlessly with enterprise asset 
management systems (EAMS), SCADA interfaces, and decision-support tools, creating a cohesive 
environment for strategic planning and cross-functional integration (Hosamo et al., 2022). As a result, 
hybrid AI-IoT-digital twin systems provide superior diagnostic granularity, operational agility, and 
system-level coordination, enabling utilities to move from reactive or scheduled maintenance practices 
toward a more intelligent, risk-aware, and performance-optimized infrastructure management model 
(Fu et al., 2023). 
Cybersecurity and Data Integrity in AI-IoT-Based Transformer Maintenance 
The increasing deployment of AI and IoT in predictive maintenance (PdM) systems for power 
transformers has introduced a new layer of complexity and risk, particularly in terms of cybersecurity 
and data integrity. These smart systems rely on vast networks of interconnected devices, such as 
wireless sensor networks (WSNs), edge 
computing nodes, and cloud-based data 
aggregation platforms, all of which are potential 
targets for cyberattacks (Galagedarage Don et 
al., 2025). Real-time data transmission across 
these nodes, often facilitated by protocols like 
MQTT, ZigBee, or LoRaWAN, can be 
vulnerable to unauthorized access, spoofing, or 
data interception if not adequately protected. 
Several studies highlight that PdM 
infrastructures are susceptible to advanced 
cyber threats including denial-of-service (DoS) 
attacks, malware injection, and man-in-the-
middle (MITM) intrusions, which can 
compromise both operational reliability and the 
trustworthiness of diagnostic outputs (Balla et 
al., 2023). A primary concern is the corruption 
or manipulation of condition monitoring data—
such as gas levels, vibration readings, or 
thermal measurements—used as input for AI 
algorithms. Even minor disruptions or data 
poisoning can mislead predictive models, 
leading to inaccurate assessments of 
transformer health, delayed fault detection, or 
unnecessary maintenance actions. In 
substations and transformer yards, the absence 
of end-to-end encryption, weak authentication 
mechanisms, and a lack of intrusion detection 
systems further increase the system’s exposure 

Figure 4: Cybersecurity and Data Integrity Framework for AI-
IoT-Based Transformer Predictive Maintenance 
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to cyber risks (Bordegoni & Ferrise, 2023). These vulnerabilities are particularly critical in decentralized 
architectures where edge devices process and act on local data autonomously, often without robust 
monitoring or centralized oversight (Fera & Spandonidis, 2024). 
To mitigate these risks, researchers and practitioners have proposed a range of technical and policy-
driven countermeasures aimed at safeguarding the integrity and confidentiality of PdM systems. 
Blockchain-based data logging is gaining traction as a method for ensuring immutability and 
traceability in transformer diagnostics, offering decentralized verification and audit trails for each data 
transaction (Pujana et al., 2023). In parallel, zero-trust architecture models are being advocated to 
implement dynamic identity verification, micro-segmentation, and least-privilege access control 
throughout the IoT network. Some studies recommend federated learning as a privacy-preserving 
alternative to traditional centralized training, wherein AI models are trained locally on edge devices 
using native datasets, and only model updates—not raw data—are shared with the cloud, reducing the 
risk of data leakage (Hiwase & Jagtap, 2022). Beyond technical tools, the literature stresses the necessity 
of standardized cybersecurity policies and regulatory compliance frameworks tailored to industrial 
and utility-grade systems. Frameworks such as IEC 62443 for Industrial Automation and Control 
Systems (IACS) and the North American Electric Reliability Corporation Critical Infrastructure 
Protection (NERC CIP) standards provide structured guidelines for risk assessment, system hardening, 
and incident response planning. Their adoption is increasingly seen as essential to aligning predictive 
maintenance operations with the overarching goals of grid security and infrastructure resilience 
(Hashemi & Dikmen, 2023). Together, these strategies reinforce the notion that cybersecurity is not a 
peripheral concern but a core enabler of trustworthy and sustainable AI-IoT-based PdM systems for 
critical assets such as power transformers. 

METHOD 
This study followed the Preferred Reporting 
Items for Systematic Reviews and Meta-
Analyses (PRISMA) 2020 guidelines to ensure a 
transparent, systematic, and replicable 
methodology for reviewing the applications of 
Artificial Intelligence (AI) and Internet of 
Things (IoT) in predictive maintenance of 
power transformers. The review process 
commenced with the formulation of a focused 
research question aimed at understanding the 
role of AI and IoT in transformer health 
monitoring, fault diagnosis, and maintenance 
optimization. In the identification phase, a 
comprehensive literature search was 
conducted across multiple electronic databases 
including IEEE Xplore, ScienceDirect, 
SpringerLink, Scopus, and Web of Science, 
covering articles published between January 
2015 and December 2024. The search strategy 
combined relevant keywords such as 
"predictive maintenance," "power 
transformers," "AI," "machine learning," "deep 
learning," "IoT," "sensor monitoring," "fault 
detection," and "digital twin" using Boolean 
operators. A total of 4377 records were initially retrieved. During the screening phase, duplicate entries 
(n = 1032) were removed, resulting in 3345 unique records. Titles and abstracts of these records were 
assessed based on predefined inclusion criteria, which focused on peer-reviewed studies in English 
that presented original experimental results, reviews, or case studies explicitly applying AI and/or IoT 
technologies in transformer predictive maintenance. This step excluded studies that addressed 
unrelated equipment, lacked methodological rigor, or were not accessible in full-text form, leading to 

Figure 5: PRISMA Flowchart 
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the exclusion of 2789 records. In the eligibility phase, the full texts of 556 articles were reviewed for 
relevance, resulting in a final sample of 126 studies that met all criteria and were included in the 
synthesis. Data were extracted and charted systematically using a structured matrix, capturing 
bibliographic information, type of AI and IoT technologies used, monitored parameters, evaluation 
metrics, and application outcomes. These data were synthesized thematically to generate insights into 
dominant research trends, model performance, system architectures, and implementation challenges. 
The PRISMA flow diagram (Figure 1) illustrates the sequential steps taken in the selection process, 
thereby enhancing the methodological transparency and reproducibility of this systematic review. 
FINDINGS 
The systematic review of 126 peer-reviewed articles revealed a dominant trend toward integrating 
Artificial Intelligence (AI) techniques for fault diagnosis and predictive maintenance in power 
transformers, with over 89 articles explicitly focusing on AI-driven models. These articles collectively 
accumulated more than 4,200 citations, reflecting a high level of academic and practical interest. The 
most frequently used AI methods included artificial neural networks (ANN), support vector machines 
(SVM), decision trees (DT), and random forest (RF), which demonstrated considerable accuracy in 
diagnosing fault conditions using real-time and historical transformer data. Among these, ANN-based 
models showed superior performance in modeling nonlinear degradation patterns and were 
commonly trained using datasets from dissolved gas analysis (DGA), partial discharge signals, and 
thermal imaging. Over 37 articles adopted deep learning approaches such as convolutional neural 
networks (CNN) and long short-term memory (LSTM) networks, further enhancing pattern recognition 
capabilities in unstructured sensor data. Ensemble models that combine multiple classifiers were found 
in 22 articles and yielded significant improvements in prediction accuracy and robustness. A 
substantial proportion of the studies employed hybrid models that merged fuzzy logic, optimization 
algorithms, or statistical methods with AI, enabling improved decision-making under uncertainty. 
Collectively, these findings confirm the effectiveness of AI in not only identifying fault types but also 
predicting time-to-failure and assessing residual life expectancy of transformers. Furthermore, over 
68% of these studies validated their models using real transformer data collected from substations, 
indicating a growing maturity and readiness for deployment in operational power systems. 
 

Figure 6: Citation Impact of Key Research Areas in Transformer PdM Review 

 
 

The second major finding highlights the crucial role of Internet of Things (IoT) infrastructure in 
enabling real-time condition monitoring and continuous data acquisition for predictive maintenance. 
A total of 73 studies, representing over 2,900 combined citations, focused specifically on the use of IoT-
based architectures, including wireless sensor networks (WSNs), edge computing systems, and cloud-
enabled analytics platforms. These studies reported the deployment of a wide array of sensors to 
monitor parameters such as oil temperature, moisture content, load current, vibration, and gas 
concentration. The reviewed articles demonstrated that IoT systems significantly improved the 
granularity and timeliness of monitoring compared to periodic offline testing. Approximately 41 
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studies implemented wireless communication protocols such as ZigBee, LoRaWAN, MQTT, and 
Modbus to transmit real-time data from transformers to centralized monitoring stations or edge 
analytics devices. Over 30 studies employed edge computing nodes to perform local preprocessing, 
feature extraction, and anomaly detection, which reduced latency and reliance on cloud-based 
computation. A smaller subset of 12 studies introduced blockchain-enabled IoT frameworks and 
federated learning to secure data exchanges and address privacy concerns. Moreover, several studies 
presented integrated dashboards and mobile interfaces for maintenance engineers, enhancing decision-
making and operational responsiveness. These implementations demonstrated not only technological 
feasibility but also economic value, as many articles reported reductions in unplanned outages and 
maintenance costs. Overall, the IoT-based monitoring ecosystem has emerged as a foundational enabler 
of predictive maintenance systems, with consistent improvements in reliability, scalability, and 
accessibility across power distribution networks. 
The final significant finding from the review concerns the emergence of hybrid predictive maintenance 
models, particularly those that combine AI algorithms, IoT-based monitoring, and digital twin 
technology. Of the 126 reviewed articles, 41 specifically explored hybrid models, accounting for more 
than 2,100 citations. These studies integrated physical transformer models with virtual simulations and 
real-time data streams to develop comprehensive digital twins capable of forecasting operational 
behavior under diverse loading and environmental conditions. A recurring theme in these studies was 
the ability of hybrid models to simulate aging, thermal stress, and electrical anomalies with high 
accuracy and temporal resolution. Over 25 of these articles demonstrated real-time synchronization 
between physical transformers and their digital twins, enabling predictive analytics and scenario 
simulations for maintenance planning. Another 17 studies included multi-source data fusion 
techniques, combining information from DGA, infrared thermography, PD signals, and SCADA logs 
to enhance model accuracy. Notably, several studies discussed decision-support systems that use 
hybrid models to optimize maintenance scheduling, spare part inventory, and resource allocation. 
Additionally, 14 articles examined the integration of these systems with enterprise asset management 
platforms, enabling coordinated interventions across grid assets. The combined findings suggest that 
hybrid models deliver substantial diagnostic depth and actionable insights, bridging the gap between 
physical infrastructure and intelligent analytics. The studies also confirmed that hybrid systems were 
more resilient to sensor noise, data loss, and cyber disturbances, due to the redundant and multi-
layered nature of their design. Consequently, these findings underscore the strategic potential of hybrid 
AI-IoT frameworks, not merely as predictive tools but as core components in the digital transformation 
of power transformer maintenance strategies. 

DISCUSSION 
The findings of this systematic review reaffirm the increasing integration of AI-driven models in 
predictive maintenance (PdM) for power transformers and align with previous studies that emphasize 
the superiority of machine learning over conventional rule-based maintenance systems. Early studies 
by Wang et al. (2020)  and Serradilla et al. (2021) argued for a shift toward data-centric maintenance 
strategies, yet the scalability and deployment of AI tools were limited due to a lack of high-resolution 
datasets and computational capacity. The current review illustrates how recent developments in deep 
learning—particularly convolutional neural networks (CNNs) and long short-term memory (LSTM) 
networks—have successfully overcome such limitations, allowing for the effective processing of 
nonlinear and time-series data from sensors. This is consistent with the findings of Fahmi et al. (2024), 
who demonstrated that LSTM models outperformed traditional statistical approaches in predicting 
insulation breakdowns. Furthermore, the results of this review support the conclusions drawn by 
Rossini et al. (2021) and Shin et al. (2021), where support vector machines (SVM) and artificial neural 
networks (ANN) achieved over 90% classification accuracy using dissolved gas analysis (DGA) 
datasets. The expanded application of ensemble models such as random forest and XGBoost in this 
review reflects recent advances reported by Rojas et al. (2025),  who found ensemble classifiers to be 
more robust under imbalanced datasets. Moreover, the dominance of hybrid AI models combining 
fuzzy logic or optimization algorithms with deep networks is echoed in the work of Matzka (2020), 
who argued for the interpretability and adaptability of such systems in uncertain operating 
environments. Thus, the current findings validate and extend the earlier literature by offering empirical 
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evidence of AI's maturity and industrial applicability in real-world transformer PdM scenarios. 
In parallel, this review identified IoT infrastructure as a foundational enabler for real-time PdM in 
transformer systems, aligning with the broader digital transformation trajectory outlined in previous 
works. For instance, Cancemi and Lo Frano (2022) emphasized the importance of wireless sensor 
networks (WSNs) in achieving distributed monitoring, and our findings confirm that over half of the 
reviewed studies successfully deployed WSNs to capture parameters such as oil temperature, load 
current, moisture content, and PD signals. This review's insights also build upon those of Benedetti et 
al. (2018), who observed that latency reduction through edge computing significantly enhances real-
time fault detection, a claim substantiated here with multiple studies showing improved response time 
and computational efficiency using edge-based IoT nodes. Furthermore, Cardoso and Ferreira, (2020) 
and Memala et al. (2021) discussed the transformative role of digital twins in simulating real-time 
transformer behavior; our findings not only support this but also reveal that digital twins, when 
combined with AI and IoT, provide superior diagnostic depth and support scenario-based maintenance 
planning. While early studies by Ucar et al. (2024) focused primarily on static diagnostics, the shift 
towards continuous, interconnected monitoring platforms evident in this review reflects a significant 
evolution in PdM practice. The inclusion of blockchain and federated learning in newer studies, such 
as those by Rahal et al. (2023), further highlights the field’s attention to data integrity and 
cybersecurity—areas that were underexplored in the earlier literature. Compared to the earlier phase 
of PdM research, where the focus was mainly on algorithmic performance, current research 
incorporates system-level implementation, operational scalability, and cyber-physical security. This 
progression illustrates a holistic maturation of transformer maintenance systems, establishing AI-IoT 
convergence not only as a technical enhancement but also as a strategic asset for utility resilience and 
reliability. 

CONCLUSION 

This systematic review synthesized evidence from 126 peer-reviewed articles to examine the 
integration of Artificial Intelligence (AI) and Internet of Things (IoT) technologies in predictive 
maintenance (PdM) for power transformers. The findings demonstrated a clear advancement in the 
field, with AI models—particularly artificial neural networks, support vector machines, and deep 
learning architectures—proving highly effective in fault detection, condition monitoring, and life 
expectancy estimation of transformers. IoT-enabled sensor networks and edge computing frameworks 
were equally pivotal in facilitating real-time data acquisition and decentralized processing, enhancing 
the responsiveness and granularity of PdM systems. Furthermore, the emergence of hybrid frameworks 
that combine AI algorithms, IoT infrastructure, and digital twin technology reflects a significant 
evolution in the implementation of smart maintenance ecosystems. These systems are not only accurate 
and efficient but also scalable and adaptable to dynamic grid conditions. The review also uncovered a 
parallel rise in research focusing on cybersecurity, data integrity, and interoperability, addressing 
critical barriers to full-scale adoption. By consolidating insights from articles collectively cited over 
9,000 times, this study provides a comprehensive academic foundation for advancing predictive 
transformer maintenance and supports the broader digital transformation of energy infrastructure. 
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