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Abstract 
This systematic review investigates how smart maintenance, aligned with Industry 4.0 principles, can improve 
performance and compliance in medical-imaging manufacturing by integrating sensing, connectivity, 
information management, analytics, and execution into a single, governed system. Using a PRISMA 2020 
protocol, we searched Scopus, Web of Science, IEEE Xplore, ACM Digital Library, and PubMed for English-
language studies published from 2011 to 2020. Eligibility focused on data-driven maintenance practices in 
discrete and imaging-proximate manufacturing with reportable operational outcomes. Two independent 
reviewers screened records, extracted data on technologies, integration touchpoints, governance controls, and 
key performance indicators, and appraised methodological quality. In total, 105 peer-reviewed studies were 
synthesized. Findings show consistent improvements when analytics are embedded in routine workflows: 
median gains included overall equipment effectiveness +6.4 percentage points, mean time to repair −19 
percent, mean time between failures +28 percent, and scrap or rework −14 percent. Effects were larger and 
more durable where bi-directional integration with CMMS and MES automated work orders and close-out, 
where prognostics with remaining useful life estimates informed schedules, and where prescriptive planning 
aligned interventions with calibration windows. Compliance practices change control, audit trails, 
authenticated telemetry, and documented threshold or model validation reduced nuisance alerts and helped 
sustain benefits beyond 12 months. Imaging-specific high-leverage indicators included vacuum integrity and 
particle counts that directly link equipment health to calibration yield. Overall, the evidence supports a 
compliance-aware blueprint that treats smart maintenance as a configured enterprise capability rather than a 
point solution, delivering measurable and auditable performance improvements across regulated imaging 
manufacturing. 
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INTRODUCTION 
Smart maintenance is widely recognized as the data-driven coordination of maintenance resources, 
strategies, and technologies, designed not only to sustain but also to enhance production outcomes 
across safety, quality, delivery, and cost dimensions (Bokrantz et al., 2020). This concept is firmly 
embedded within the transformative framework of Industry 4.0, which unifies cyber-physical systems 
(CPS), industrial internet of things (IIoT), cloud and edge computing, and advanced analytics into 
modern manufacturing landscapes (Lasi et al., 2014; Lu, 2017; Thoben et al., 2017). Within this 
framework, smart maintenance emerges as a knowledge-intensive service that relies on continuous 
monitoring, diagnostics, and prognostics to inform timely and precise interventions (Jardine et al., 
2006). The paradigmatic approaches of condition-based maintenance (CBM) and prognostics and 
health management (PHM) exemplify the shift from rigid calendar-based routines to dynamic, sensor-
informed decision-making processes that anticipate and respond to evolving asset conditions (Lee et 
al., 2014; Si et al., 2011). Complementing these methods, digital twin-enabled models provide 
continuously updated virtual counterparts of physical systems, creating an immersive platform for 
diagnosis, predictive analysis, and scenario exploration that enhances the accuracy and agility of 
maintenance operations (Qi & Tao, 2018; Tao et al., 2018). On the international stage, these 
developments are further intensified by the demands of global supply chains, cross-border regulatory 
frameworks, and the relentless pursuit of competitive advantage, all of which require manufacturers 
to maintain stable throughput and consistent quality under conditions of heightened product variety 
and complexity (Kang et al., 2016; Liao et al., 2017; OECD, 2017). Against this backdrop, the present 
research on “Smart Maintenance in Medical Imaging Manufacturing: Towards Industry 4.0 
Compliance at Chronos Imaging” seeks to clarify the conceptual boundaries of smart maintenance, 
map the architectural layers that translate raw data into actionable decisions, and anchor the discussion 
within a tightly regulated industrial environment where compliance, reliability, and traceability serve 
as uncompromising priorities. 
 

Figure 1: Evolution of Smart Maintenance: From Reactive to Cognitive Approaches 

 
 

Source: www.hso.com/blog  

Across global regions, policy discourse increasingly emphasizes that digital production technologies 
are transforming the foundations of industrial organization and governance, with maintenance 
consistently highlighted as a critical lever for resilience, competitiveness, and sustained productivity in 
the context of Industry 4.0 (OECD, 2017). In parallel, the operations management literature reinforces 
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this significance by demonstrating how maintenance practices directly influence firm performance, 
often assessed through benchmarks such as overall equipment effectiveness (OEE) and equipment 
availability (Kusiak, 2018; Muchiri & Pintelon, 2008; Tsang, 2002). Empirical investigations further 
reveal that strategies centered on preventive, predictive, and total productive maintenance (TPM) 
methodologies contribute meaningfully to enhanced operational outcomes while also facilitating 
alignment between technical functions and broader business strategies (Alsyouf, 2007; Kusiak, 2018; 
Pinjala et al., 2006; Waeyenbergh & Pintelon, 2002). The urgency of these practices becomes even more 
pronounced in the medical device manufacturing sector, where strict regulatory expectations dictate 
that process controls, device history records, and nonconformance management protocols remain not 
only auditable but also fully reproducible and continuously subjected to risk evaluation throughout 
the entire product life cycle. This environment places extraordinary emphasis on data integrity, system 
interoperability, and cross-platform traceability as central determinants of maintenance-related 
decision-making. These converging trajectories collectively establish the rationale for a literature-
driven mapping that bridges the conceptual abstractions of Industry 4.0 with the applied realities of 
smart maintenance in regulated domains. The purpose is to demonstrate how standards-based 
architectures, structured asset information models, and advanced analytics pipelines can be 
operationalized to support quality-critical manufacturing of highly sensitive imaging components such 
as X-ray detectors, gantries, and gradient subsystems, while simultaneously ensuring strict adherence 
to constraints surrounding safety, documentation, and change control procedures (Kritzinger et al., 
2018; Zhong et al., 2017a; Zhong et al., 2017b). 
 

Figure 2: Multilayered Architecture of Smart Maintenance within CPS and IIoT Framework 

 
 
Architecturally, smart maintenance is underpinned by multilayered data flows that seamlessly 
integrate edge sensing, secure communication, contextual modeling, and advanced decision-making 
services, thereby creating a cohesive ecosystem for intelligent asset management. Within the CPS and 
IIoT framework, raw telemetry from assets is captured through diverse modalities such as vibration, 
current, temperature, pressure, and control loop signals, which are then transmitted using 
interoperable protocols and transformed into condition indicators and event histories that can be 
systematically analyzed (Lu, 2017; Monostori, 2014). The establishment of open platform 
communication standards and unified address spaces ensures that heterogeneous devices and 
controllers can expose semantically structured data, while publish-subscribe mechanisms enable 
efficient bandwidth utilization and flexible dissemination to data historians, computerized 
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maintenance management systems (CMMS), enterprise asset management (EAM) platforms, and 
higher-order analytics engines (Mahnke et al., 2009; Thangavel et al., 2018). Edge computing plays a 
pivotal role in this architecture by reducing latency, minimizing outbound data volumes, and enabling 
privacy-preserving preprocessing and preliminary inference close to the point of data generation, while 
orchestrated integration with cloud infrastructures supports fleet-level learning, model training, and 
lifecycle management of predictive algorithms (Shi et al., 2016; Tao et al., 2018). Central to this 
configuration are digital twin frameworks, which merge continuous data streams with physics-based 
and data-driven models to provide analyzable and auditable representations of asset structures, 
behaviors, and degradation pathways. Within such arrangements, health indicators and projected 
remaining useful life (RUL) metrics are elevated as core decision objects that not only trigger the 
automated creation of work orders but also guide spare parts provisioning, maintenance scheduling, 
and shutdown coordination, all while preserving version-controlled records to satisfy compliance and 
traceability requirements. 
The analytics foundation of smart maintenance is deeply rooted in the principles of prognostics and 
health management (PHM) as well as statistical learning, providing the computational intelligence that 
transforms sensor data into actionable insights. Classical reviews establish a crucial distinction between 
diagnostic and prognostic functions, outlining a spectrum of algorithms that range from signal 
processing and Bayesian filtering techniques to survival analysis and ensemble learning approaches, 
each addressing specific dimensions of fault detection and life prediction (Jardine et al., 2006; Lee et al., 
2015). Building upon these foundations, more recent syntheses demonstrate how advanced machine 
learning and deep learning architectures, including random forests, gradient boosting methods, 
convolutional neural networks, and recurrent neural models, translate raw measurements and 
engineered features into accurate classifications of fault types, degradation trajectories, and remaining 
useful life (RUL) distributions. These studies also emphasize the importance of handling practical 
challenges such as covariate shift, class imbalance, and cost-sensitive performance evaluation, which 
are critical for ensuring robustness and reliability in industrial deployment (Lei et al., 2018; Susto et al., 
2015; Zonta et al., 2020). Within regulated environments, however, the operationalization of these 
models requires stringent documentation and version control, as well as clearly defined performance 
metrics and acceptance thresholds that justify model deployment under compliance frameworks. The 
PHM literature supports this requirement by cataloging predictive metrics and uncertainty 
quantification methodologies that inform threshold calibration and enable risk-based decision rules for 
maintenance actions (Lei et al., 2018; Susto et al., 2015; Zonta et al., 2020). In the specialized field of 
medical imaging manufacturing, where the integrity of imaging chains and the geometric precision of 
components directly couple process quality with equipment health, this analytics layer provides the 
evidentiary basis for maintenance triggers. These triggers remain traceable to validated sensor data, 
pre-verified processing pipelines, and version-controlled models, thereby ensuring both technical rigor 
and regulatory accountability (Kritzinger et al., 2018). 
Translating the intelligence generated by analytics into tangible maintenance actions requires seamless 
integration with computerized maintenance information systems, which serve as the operational 
backbone of smart maintenance. Both classical and contemporary studies on computerized 
maintenance management systems (CMMS) underscore that the value derived from such systems 
depends not only on the availability of advanced functionalities but also on the alignment between 
system requirements, data model architecture, and overarching maintenance strategy (Kans, 2008, 
2009; Lei et al., 2018; Schumacher et al., 2016). Effective CMMS and enterprise asset management (EAM) 
implementations connect detailed asset hierarchies, standardized failure codes, and structured work 
order workflows with complementary organizational resources such as production schedules, spare 
parts catalogs, and calibration records, thereby supporting both the day-to-day coordination of 
maintenance operations and the creation of auditable trails for compliance purposes (Wienker et al., 
2016). Within the Industry 4.0 paradigm, these systems become even more dynamic as open platform 
communication unified architecture (OPC UA) signals, historians, and manufacturing execution 
systems (MES) or enterprise resource planning (ERP) applications interoperate with CMMS platforms 
to automate work order generation in response to alarms, predicted degradation states, or out-of-
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tolerance conditions, while also enabling the feedback loop necessary to document repair effectiveness 
and post-maintenance verification (Oesterreich & Teuteberg, 2016). In the highly regulated domain of 
medical device manufacturing, such integrations are particularly critical since maintenance records 
form an integral component of the device history file when applicable and must consistently align with 
process controls, equipment qualification status, and broader risk management documentation (Kans, 
2009; Wienker et al., 2016). The literature further highlights that successful CMMS deployment does 
not rely solely on technology but is mediated by organizational factors such as workforce training, 
governance frameworks, and the maturity of data stewardship practices, which collectively determine 
how effectively organizations advance from simple “data collection” toward meaningful “decision 
support”. 
 

Figure 3: Smart Maintenance Assurance Framework in Regulated Manufacturing 

 
 
Assurance and governance are integral to smart maintenance in regulated industries. Studies surveying 
industrial-control security and cyber-physical systems highlight that vulnerabilities in connectivity, 
identity, and update mechanisms can propagate into safety and quality risks, motivating 
defense-in-depth controls, network segmentation, and authenticated telemetry (Humayed et al., 2017; 
Oesterreich & Teuteberg, 2016). In parallel, international policy analyses argue that productivity gains 
from digitalization are contingent on reliable infrastructures, standards, and workforce capabilities 
conditions that make cross-functional governance and documentation essential to sustainable adoption 
(OECD, 2017). For maintenance analytics, this translates into lifecycle control over data provenance, 
model versioning, validation evidence, and role-based access to results; for information systems, it 
entails rigorous change-management and audit trails across CMMS, MES, and ERP integrations. In 
medical-imaging manufacturing, the intersection of safety-critical assets, radiation-producing 
equipment, and quality-affecting processes increases the importance of secure telemetry pathways, 
calibrated measurement systems, and tamper-evident logs that can be inspected during internal audits 
or by notified bodies and competent authorities. 
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Finally, the medical-imaging manufacturing context clarifies why smart maintenance is not a generic 
overlay but a process-specific discipline(Campos, 2009; Heng et al., 2009). Reliability-centered 
maintenance (RCM) adapted for healthcare assets demonstrates how criticality, failure modes, and 
consequences guide task selection and scheduling to uphold safety and performance requirements 
(Abdelwahab et al., 2019). Imaging production relies on high-value, high-precision assets gantries, 
precision stages, vacuum systems, and X-ray tubes whose drift and degradation directly influence 
image quality metrics and downstream calibration yields; as such, continuous monitoring, quantitative 
acceptance criteria, and targeted preventive actions materially affect scrap, rework, and compliance 
risk (Kusiak, 2018). Literature on X-ray computed tomography for metrology further shows how 
acquisition parameters and system alignment affect defect detectability and measurement uncertainty, 
reinforcing the link between equipment health, process capability, and quality control (Cunningham et 
al., 2019). In complex, mixed-model production typical of imaging subsystems, these dependencies 
magnify the value of PHM-based scheduling that times interventions to minimize carryover effects on 
calibration and test operations while retaining evidence suitable for audits. The synthesis in this 
introduction therefore positions smart maintenance architected through IIoT/CPS dataflows, PHM 
analytics, and CMMS integration as an appropriate lens to examine Industry 4.0-aligned, 
compliance-respecting maintenance management in medical imaging manufacturing environments 
(Abdelwahab et al., 2019). 
This review pursues a set of specific, bounded objectives designed to clarify the construct of smart 
maintenance within medical imaging manufacturing and to document, with methodological rigor, how 
Industry 4.0 principles are operationalized under regulatory constraints at Chronos Imaging. First, it 
delineates precise working definitions for smart maintenance, condition-based maintenance, 
prognostics and health management, and digital twins, translating these definitions into measurable 
constructs that can be extracted consistently from the literature. Second, it undertakes a systematic 
evidence search and screening protocol to assemble a corpus focused on discrete, quality-critical 
manufacturing environments that are technologically and procedurally comparable to imaging-
component production. Third, it structures the extracted evidence into an architectural lens that spans 
assets, connectivity, information management, analytics, and decision support, enabling a transparent 
mapping from raw signals and context data to maintenance actions and documented outcomes. Fourth, 
it synthesizes reported performance results across operational metrics relevant to regulated 
manufacturing such as overall equipment effectiveness, mean time between failures, mean time to 
repair, scrap and rework rates, schedule adherence, and maintenance cost while preserving the study-
level conditions under which those results were obtained. Fifth, it characterizes the governance and 
assurance mechanisms that accompany technical deployments, including validation practices, data 
integrity controls, audit trail design, cybersecurity safeguards, and change-management procedures, 
and it organizes these mechanisms into a reusable, compliance-aware checklist. Sixth, it identifies 
recurring barriers and enablers that influence adoption trajectories spanning data quality, 
interoperability, skills, organizational alignment, and vendor capabilities and expresses them as 
actionable design constraints rather than general observations. Seventh, it consolidates the preceding 
elements into a blueprint tailored to the imaging-manufacturing context at Chronos Imaging, 
articulating a layer-by-layer reference architecture, a maintenance process model from detection to 
verification, and a concise set of decision rules that tie health indicators and predicted remaining useful 
life to work-order generation, spares planning, and production scheduling. Eighth, it specifies a 
performance-measurement frame with baseline definitions, computation methods, and target ranges 
suitable for year-over-year tracking, ensuring that reported benefits can be compared across assets and 
product lines. Together, these objectives define the scope, evidence boundaries, analytic structures, and 
operational artifacts that this review will deliver for direct use in a regulated manufacturing 
environment. 
LITERATURE REVIEW 
This literature review establishes the conceptual, architectural, and regulatory ground on which smart 
maintenance is practiced in medical imaging manufacturing, with the aim of clarifying what the field 
already knows and organizing that knowledge for use in a regulated production environment. The 
scope covers discrete manufacturing used to produce imaging subsystems and components X-ray 
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detectors, gradient coils, gantries, vacuum and thermal systems where equipment condition directly 
influences yield, calibration outcomes, and traceable device histories. To frame the subject, the review 
adopts a layered lens that follows data from the asset to the enterprise: sensing and control at the 
machine; secure, interoperable connectivity across operational networks; information modeling and 
contextualization; analytics for detection, diagnosis, and prediction; and maintenance execution 
through computerized maintenance management. Within that lens, the review treats condition-based 
maintenance, prognostics and health management, and digital twins as reinforcing practices that 
convert signals and process context into health indicators, failure hypotheses, remaining-useful-life 
estimates, and actionable work orders. Because medical-device manufacturing is governed by quality, 
risk, and cybersecurity requirements, the synthesis is explicitly compliance-aware: it attends to how 
data integrity, audit trails, equipment qualification status, and change control shape feasible designs 
and acceptable evidence, and it reports maintainable connections among maintenance records, device 
history elements, and production documentation. The body of literature considered spans empirical 
case studies, methodological papers, reviews, and standards-oriented discussions relevant to industrial 
analytics and maintenance information systems; clinical device operation and hospital-based 
maintenance are outside scope unless they yield transferable methods for manufacturing. Across 
studies, the review extracts and normalizes operational outcomes overall equipment effectiveness, 
mean time between failures, mean time to repair, scrap and rework rates, and maintenance cost 
together with contextual factors that condition those results, including asset criticality, sensor 
portfolios, data lineage practices, and workforce capabilities. Finally, the review organizes the literature 
to support a structured reading: it sets the regulatory and reference-model foundations anchoring 
smart maintenance within Industry 4.0; examines maintenance maturity and asset failure modes in 
imaging production; synthesizes evidence on sensing and connectivity, data and systems integration, 
and analytics and digital twins; and closes the section by consolidating reported impacts and adoption 
factors into a clear evidence map. 
Regulatory & Compliance Landscape 
Across medical-imaging manufacturing, compliance is defined by a lattice of interlocking regulations 
and consensus standards that govern safety, quality, data governance, and lifecycle risk. In the 
European Union, Regulation (EU) 2017/745 (MDR) reframes obligations across the device lifecycle, 
including clinical evidence, post-market surveillance, and traceability changes that condition how 
manufacturers design monitoring and “smart maintenance” programs for complex imaging systems 
(Melvin & Torre, 2019). MDR’s explicit treatment of software (including embedded analytics and 
remote-service tools) intersects with factory and field maintenance because diagnostic algorithms, 
device firmware, and service portals can constitute regulated software or influence clinical performance 
(Becker et al., 2019). From a management-system perspective, ISO 13485 requires a documented, risk-
based quality management system (QMS) that cascades into device maintenance planning, change 
control, and supplier oversight; QMS effectiveness is demonstrated through evidence-based risk 
reduction and continual improvement activities that rely on robust data capture from installed 
equipment and production assets (Ramnarine & O’Donnell, 2018). Complementing this, ISO 14971 
operationalizes risk management for hazards linked to device design, production, information systems, 
and post-market signals an essential scaffold for structuring predictive and condition-based 
maintenance so that it demonstrably reduces residual risk (Mishra & Shukla, 2020). Together, these 
frameworks establish that smart maintenance is not merely a reliability program; it is a regulated 
activity that must be planned, justified, documented, and performance-audited within the QMS and 
risk file so that maintenance data can serve as objective evidence of safety and performance across the 
imaging device lifecycle. 
The same compliance system makes data integrity non-negotiable for smart maintenance telemetry, 
audit trails, and electronic records that underpin device release, validation, and post-market decisions. 
U.S. 21 CFR Part 11 and EU Annex 11 expectations are reflected in decades of regulatory actions on 
data integrity; these actions repeatedly highlight risks such as uncontrolled user access, undocumented 
changes, and incomplete audit trails exactly the failure modes that can compromise maintenance logs, 
predictive models, and service interventions (Shafiei et al., 2015). Historical analyses and remediation 
guidance emphasize ALCOA+ attributes (attributable, legible, contemporaneous, original, accurate, 
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plus complete, consistent, enduring, and available) and show how broken metadata chains or offline 
“shadow systems” erode evidentiary value (Rattan, 2018). In microbiology and process monitoring 
contexts highly relevant to clean-manufacture of imaging subsystems assuring integrity of raw data, 
intermediate calculations, and final results requires procedural controls and validated computerized 
systems, including audit-trail review and periodic assessments (Tidswell & Sandle, 2018). To 
strengthen provenance, tamper-evidence, and version control across distributed manufacturing and 
service operations, technologists have explored blockchain-backed records architectures and rigorous 
version control as means to guarantee the verifiability of process and maintenance data without 
changing the underlying validation principles (Steinwandter & Herwig, 2019). Within a pharmaceutical 
quality-system analogue that regulators often cite for good practice, manufacturers demonstrate QMS 
effectiveness through structured metrics, risk-signal detection, and corrective actions an approach 
transferable to imaging maintenance where model drift, calibration cycles, and field-replaceable-unit 
performance must be trended and justified. Practically, these requirements trace a straight line from 
smart sensors and CMMS logs to validated, reviewable, and decision-grade records that withstand 
inspection and support conformity claims. 
Furthermore, smart maintenance intersects with operational-technology (OT) cybersecurity an area 
that regulators increasingly expect manufacturers and service organizations to manage because 
compromised maintenance channels can threaten device safety and manufacturing integrity. Surveys 
of industrial-control-system (ICS) security show how remote connectivity, third-party access, and 
legacy protocols introduce measurable cyber risk, and they outline management controls that align 
naturally with risk-based maintenance governance: asset inventories, role-based access, hardening 
baselines, anomaly monitoring, and incident response tied to change control (Knowles et al., 2015). 
Complementary reviews of SCADA/ICS risk-assessment methods detail how to select and apply 
methodologies that quantify likelihood and consequence in industrial environments, offering traceable 
inputs to the ISO 14971 risk file when maintenance sensors, gateways, or remote-service tools touch 
production or in-service devices (Cherdantseva et al., 2016). Within the MDR context, these controls 
help demonstrate continuous post-market vigilance and the suitability of software updates, 
cybersecurity patches, and configuration changes that emerge from maintenance analytics especially 
where software functions or connectivity affect clinical performance or essential performance.  
 

Figure 4: Regulatory and Compliance Landscape for Smart Maintenance 
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Industry 4.0 Reference Models for Maintenance 
Industry 4.0 reference models provide an essential structural framework for organizing maintenance-
related data flows, allocating responsibilities, and coordinating control functions across both product 
and asset life cycles, thereby ensuring that maintenance activities are systematically integrated into the 
broader digital enterprise. Within this domain, conceptualizations such as the Reference Architectural 
Model for Industry 4.0 (RAMI 4.0) and the Industrial Internet Reference Architecture (IIRA) are 
particularly influential, as they are operationalized through foundational design principles that include 
interoperability, virtualization, decentralization, real-time capability, service orientation, and 
modularity, all of which align closely with maintenance imperatives such as condition monitoring, 
predictive intervention, and rapid service responsiveness (Hermann et al., 2016). The role of 
standardization becomes paramount in this translation process, functioning as the backbone that allows 
these guiding principles to move effectively from strategic intent into practical application within 
highly modular, multi-vendor manufacturing ecosystems. Such modular environments are especially 
characteristic of medical imaging equipment production, where original equipment manufacturers 
(OEMs), specialized sub-suppliers, and regulated service providers must exchange maintenance-
critical information seamlessly and with uncompromising reliability (Weyer et al., 2015). 
Complementing this perspective, layered implementation frameworks add further clarity by 
illustrating precisely “where maintenance resides” within the system hierarchy, with categories 
spanning the field, control, operations, and business layers, each corresponding to specific tasks such 
as sensor telemetry acquisition, deployment of prognostics algorithms, orchestration of work orders, 
and execution of compliance reporting (Qin et al., 2016). These allocations are brought to life through 
vendor-neutral middleware solutions and standardized messaging profiles, where OPC UA 
companion specifications, for example, are widely utilized in discrete manufacturing environments to 
ensure that asset state data, diagnostic events, and calibration lineage flow smoothly across equipment, 
manufacturing execution systems (MES), and CMMS platforms (Pfrommer et al., 2016). Finally, the 
robustness of industrial networking infrastructures including deterministic Ethernet with time-
sensitive networking (TSN), IPv6 protocols, and edge gateway configurations ensures that the 
maintenance digital thread remains continuous from embedded controllers up to enterprise-level 
analytics, thereby keeping service-related decisions synchronized with dynamic production 
requirements (Wollschlaeger et al., 2017). 
From a governance standpoint, Industry 4.0 reference models play a pivotal role in sequencing and 
calibrating the scale of maintenance digitalization, ensuring that organizations advance systematically 
rather than through fragmented or ad hoc initiatives. Syntheses of maturity models demonstrate that 
firms typically progress through staged capability levels that begin with basic data capture, extend into 
integration across systems, advance to analytics-driven insights, and ultimately culminate in closed-
loop decision-making where predictive outputs directly inform operational actions. These stages map 
neatly onto preventive, condition-based, and predictive maintenance practices, thereby offering a 
structured lens through which organizations can evaluate their current standing and plan future 
advancements (Mittal et al., 2018). Strategic roadmaps further advise that each maturity stage should 
be paired with architectural waypoints, such as consolidating equipment hierarchies and failure codes 
within a CMMS at the information layer prior to introducing edge-based prognostics at the control 
layer, thus minimizing integration debt and ensuring that each advancement rests on a stable 
foundation (Ghobakhloo, 2018). Complementing this perspective, empirical implementation studies 
reveal that organizations achieving success with Industry 4.0 initiatives often cluster technologies into 
coherent patterns such as sensing and identification, connectivity infrastructures, analytics and 
artificial intelligence engines, and human–machine interfaces that correspond directly to reference 
model layers. When deployed in coordinated combinations, these patterns yield measurable 
improvements in maintenance outcomes, including reduced mean-time-to-repair and increased first-
time-fix rates (Frank et al., 2019). Governance also extends to the precise use of terminology, as 
definitional analyses encompassing nearly one hundred interpretations of Industry 4.0 highlight the 
importance of considering both technological enablers and organizational arrangements. This evidence 
urges maintenance leaders to articulate clearly which components whether asset administration shells, 
traceability mechanisms, or service orchestration routines are being instantiated at each architectural 
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layer, thereby preventing drift between architectural intent and execution, especially during the rigor 
of regulated validations (Culot et al., 2020). 
 

Figure 5: Maintenance in Medical Imaging Manufacturing 

 
Smart Maintenance Taxonomy and Maturity 
A coherent taxonomy clarifies how maintenance philosophies evolve from reactive “run-to-failure” 
responses toward increasingly information-rich regimes that institutionalize prevention, prediction, 
and prescription. At the foundational end, time-based preventive maintenance groups tasks by 
calendar or usage intervals, seeking tractable policies under uncertainty about degradation paths; early 
optimization studies formulated replacement and inspection intervals to balance risk and cost in 
stochastic settings, establishing the mathematical backbone for subsequent strategies (Dekker, 1996). 
As organizations recognized heterogeneity in deterioration and failure consequences, strategy 
frameworks emphasized aligning maintenance policy to asset criticality and performance goals, linking 
choices among corrective, preventive, and condition-based approaches to measurable outcomes such 
as availability and throughput (Swanson, 2001; Wang, 2002). Total Productive Maintenance (TPM) 
reframed maintenance as a socio-technical system, distributing routine care to production teams and 
embedding equipment reliability in daily work to affect quality and flow; empirical evidence associated 
TPM practices with improvements in focused metrics and broader operational performance (McKone 
et al., 2001). Decision-analytic work further showed that selecting an “efficient” mix of strategies 
requires multicriteria reasoning under variable environments and data quality constraints, pushing 
firms to consider consequence severity, detection capability, and resource availability when 
committing to policies for classes of assets (Al-Najjar & Alsyouf, 2003). Within this taxonomy, 
condition-based maintenance (CBM) marks a pivotal shift: tasks are triggered by observable indicators 
of health, allowing interventions that are neither premature nor late. CBM’s position in the taxonomy 
is not merely a midpoint between preventive and predictive; it is the first paradigm to treat data 
acquisition, feature construction, and thresholding as integral elements of policy design, thereby setting 
the stage for prognostics and prescriptive decision rules (Wang, 2002). 
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Figure 6: Taxonomy and Maturity Progression of Smart Maintenance Practices 

 
Building on CBM, prognostics and health management (PHM) incorporates diagnostic inference and 
remaining useful life estimation so that decisions are not only conditioned on thresholds but also on 
predicted degradation trajectories and uncertainty around time-to-failure (Kothamasu et al., 2006). 
PHM’s contribution to the taxonomy is the formalization of a pipeline in which sensing, data reduction, 
state estimation, and prognostic modeling feed decision modules for planning and spares logistics. 
Within this pipeline, e-maintenance extended the informational scope by integrating remote 
connectivity, web-based services, and collaborative knowledge management so that analysis and action 
could be coordinated across organizational boundaries and vendor ecosystems, which is particularly 
pertinent for complex, multi-supplier equipment such as medical-imaging subassemblies (Iung et al., 
2003). Optimization research embeds these pipelines into operational policies, demonstrating that 
inspection intervals, alarm thresholds, and repair/replace decisions can be tuned jointly to minimize 
expected cost or maximize availability under modeled uncertainty, including imperfect detection and 
partial observability (Banjevic & Jardine, 2006). Economic analyses complement these models by 
quantifying how preventive and condition-based strategies influence direct and opportunity costs 
downtime, spares, labor, and lost production thereby translating technical design into financial control 
and governance language (Eti et al., 2006). Decision frameworks targeted at CBM generalize this control 
by structuring triggers, evidence, and actions as a repeatable cycle, clarifying preconditions for data 
quality, model validity, and organizational readiness and codifying the feedback loops that raise policy 
fidelity over time (Bousdekis et al., 2015). Together, these contributions anchor predictive and 
prescriptive maintenance as extensions of CBM in which the “object of control” is not only current 
health but also the distribution over future states and the costs of alternative courses of action. 
Maturity models map this taxonomy to capability development, articulating how firms progress from 
ad hoc, corrective responses toward integrated, analytics-enabled maintenance embedded in 
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production and business planning. Literature syntheses identify characteristic stages data visibility, 
condition monitoring, diagnostic competence, prognostic forecasting, and closed-loop decisioning each 
with distinct technical and organizational markers such as sensor coverage, data lineage, modeling 
expertise, and work-order automation (Garg & Deshmukh, 2006). At lower maturity, policies are static 
and documentation is episodic; as maturity increases, firms shift to evidence-driven policies in which 
thresholds, models, and schedules are parameterized by asset context and continuously calibrated from 
feedback. TPM can be interpreted as a maturity accelerator because it embeds routine care, abnormality 
detection, and autonomous maintenance into daily practices, raising the floor on data quality and 
problem-solving skills required for CBM and PHM to function reliably (McKone et al., 2001). 
Optimization studies from the maintenance-policy tradition contribute diagnostic questions for 
maturity assessment e.g., whether inspection accuracy and lead times are quantified and whether 
policy parameters are derived from cost and risk models rather than rule-of-thumb practices (Dekker, 
1996). Economic lenses reinforce the maturity narrative by revealing how preventive and predictive 
regimes reallocate cost over the asset life cycle and by making explicit the trade-offs among inventory, 
labor, and planned downtime that accompany policy changes. In mature organizations, e-maintenance 
structures knowledge sharing and remote collaboration across internal and external partners, 
stabilizing the flow from detection to decision while preserving auditability and reproducibility within 
formalized processes (Iung et al., 2003). The resulting picture is a capability curve that links taxonomic 
position to measurable practices and outcomes, allowing maintenance leaders to select feasible next 
steps that are consistent with data, skills, and risk tolerance. 
Asset Criticality & Failure Modes in Imaging Manufacturing 
Asset criticality and failure-mode understanding form the practical hinge between abstract 
maintenance philosophy and day-to-day decisions in imaging-component production. Criticality 
analysis typically begins with systematic enumeration of functional failures and effects via 
FMEA/FMECA to expose how a single component can propagate risk to process capability and safety. 
Classical expositions stress that FMEA provides structure but not priority without explicit severity, 
occurrence, and detection constructs, and they delineate the logic by which FMECA adds consequence-
focused ranking suitable for environments where downtime and nonconformances carry asymmetric 
penalties (Rausand & Øien, 1996). Early work also demonstrated that ordinal risk-priority numbers can 
mislead when multiplicative scoring obscures the underlying distribution of risk contributions, 
motivating scoring refinements and the use of fuzzy or approximate reasoning to express vagueness in 
expert judgement and to better discriminate among competing failure scenarios (Bowles & Peláez, 1995; 
Pillay & Wang, 2003). As evidence from manufacturing accumulated, reviews codified pitfalls in 
classical RPN schemes and surveyed alternative aggregation and weighting strategies, urging analysts 
to treat severity as noncompensatory when quality or safety limits would be breached and to account 
for detection capability explicitly (Liu et al., 2013). In discrete, high-mix production characteristic of 
imaging subsystems, these methodological insights translate into an operational sequence: define 
functions and boundaries at the machine and line level; identify failure modes including drift, loss of 
alignment, contamination, insulation breakdown, and vacuum leakage; quantify effects on capability 
and documentation; and prioritize mitigation through design, monitoring, or procedure. In practice, 
that prioritization must also consider the couplings among assets how a small increase in backlash in 
an upstream positioning axis can cascade into calibration instability, or how a vacuum leak in a 
deposition chamber can degrade surfaces that later confound metrology so that criticality reflects 
system behavior rather than component isolation. 
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Figure 7: Framework for Criticality Analysis, Failure Mode Assessment, and Asset Prioritization 

 
Translating qualitative FMEA findings into an asset-level priority map typically requires multi-criteria 
methods that combine technical, economic, and compliance viewpoints. In manufacturing settings with 
heterogeneous equipment, analytic hierarchy process–based formulations provide a transparent way 
to weight severity, occurrence, detectability, downtime cost, and substitution difficulty, yielding a 
ranked list that can guide inspection frequency, spares provisioning, and qualification schedules 
(Bevilacqua & Braglia, 2000). Multi-attribute extensions of failure-mode analysis further allow inclusion 
of attributes such as cleanroom sensitivity, calibration drift impact, and traceability requirements; by 
treating the ranking problem as a structured decision with trade-offs, they make the prioritization 
reproducible across workshops and product variants (Braglia, 2000). In regulated imaging 
manufacturing, these methods help reconcile cross-functional perspectives: production emphasizes 
throughput stability; quality focuses on defect containment and documentation; engineering weighs 
tolerancing and alignment; and maintenance evaluates access, testability, and repair learning curves. 
The resulting asset-criticality index integrates failure consequence with exposure and controllability, 
highlighting clusters where intensified monitoring and procedural rigor deliver disproportionate 
payoff. For example, a vacuum deposition module may receive high weights on severity and 
detectability because minor leaks can silently degrade film properties until final inspection, whereas a 
conveyor buffer may carry lower severity but higher occurrence, translating to preventive 
housekeeping rather than frequent intrusive checks. Risk-based maintenance frameworks add a 
normative layer by coupling the ranked list to frequency–consequence models that allocate inspection 
intervals, proof tests, and condition-monitoring modalities according to explicit risk tolerances (Khan 
& Haddara, 2003). In practice, the multi-criteria ranking also feeds commercial planning: safety-stock 
levels for critical spares, vendor maintenance agreements, and capital refresh timing are parameterized 
by the same weights and scores used to justify the maintenance plan, ensuring that budgeting, 
procurement, and engineering changes remain consistent with the organization’s explicit view of 
criticality. This alignment reduces ambiguity and drives accountable, auditable decisions. 
Criticality scoring becomes operational when it is grounded in the physics of failure that dominate each 
asset family common to imaging manufacturing. Rotating systems in spindles, pumps, and fans tend 
to concentrate risk in rolling-element bearings, where surface pitting, cage defects, and lubrication 
problems generate spectral patterns that can be tracked for incipient damage; the diagnostic literature 
offers guidance on feature selection and envelope analysis that directly informs which sensors, 
sampling rates, and thresholds deserve priority (Randall & Antoni, 2011). Electrical drives and motion 
axes introduce another cluster of failure modes stator turn faults, broken rotor bars, eccentricity, and 
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misalignment that interact with load dynamics; frameworks for motor condition monitoring and fault 
diagnosis translate these mechanisms into current- and voltage-signature indicators that maintenance 
can capture without invasive disassembly (Nandi et al., 2005). In precision assemblies such as gantries 
and linear stages, servo drift and backlash shift the behavior of positioning error and cycle-to-cycle 
repeatability, which is observable through process capability metrics and through axis-level 
diagnostics; mapping those shifts back to failure hypotheses ties quality indicators to concrete 
maintenance tasks. Pumps, blowers, and vacuum subsystems add failure mechanisms seal wear, 
particulate ingress, and leaks that couple to cleanroom performance and deposition yield; their 
detectability varies with instrumentation quality, and their severity rises when effects remain latent 
until metrology. To keep prioritization realistic, the temporal dimension is incorporated via remaining-
useful-life modeling that characterizes how fast a degraded state progresses under duty cycles and 
conditions; by pairing state estimation with uncertainty bounds, maintenance can assign windows for 
verification and intervention (Khan & Haddara, 2003; Sikorska et al., 2011). Finally, the ranked failure-
mode landscape is folded back into procedures and training: operators learn symptom patterns that 
align with the sensor suite, technicians receive checklists around the most discriminative tests, and 
engineers document acceptance criteria that keep detection power high while minimizing intrusive 
checks. 
Sensing & Connectivity 
Sensing for smart maintenance in medical‐imaging manufacturing spans classic condition indicators 
(vibration, acoustic emission, temperature, current, and pressure) and process-integrated metrology 
(alignment, particle counts, vacuum integrity) that link equipment health to yield and calibration 
stability. Foundational reviews of machining/process monitoring show how multi-sensor suites 
combining force, AE, vibration, and thermal streams reveal wear, chatter, misalignment, and other 
precursors to off-spec behavior, establishing design patterns for feature extraction, sampling, and 
thresholding that transfer to precision assembly and cleanroom subsystems used in imaging 
production (Teti et al., 2010). For capital equipment such as precision stages, pumps, and fans, surveys 
of machine‐tool health monitoring detail the role of time- and frequency-domain descriptors, envelope 
analysis, and model-based features in distinguishing early-stage degradation from normal variability, 
guiding sensor placement and rates that respect controller bandwidth and cycle times (Yang et al., 
2015). Wireless augmentation extends sensor coverage where cabling is intrusive or safety-critical, with 
industrial wireless sensor networks offering mesh resilience, energy-aware duty cycling, and 
coexistence mechanisms for harsh RF environments typical of multi-vendor production floors (Gungor 
& Hancke, 2011). At the system edge, preprocessing pipelines stabilize data quality by performing de-
noising, compression, and event detection close to the asset, ensuring that downstream analytics 
receive reliable indicators even when network bandwidth is constrained or when sampling bursts are 
tied to machine states. Together, these sensing patterns support a maintenance vocabulary built from 
measurable proxies bearing energy, motor current signatures, vacuum and pressure stability, thermal 
gradients, and particle outliers that can be mapped to failure hypotheses and to actionable work 
instructions for regulated imaging lines. 
Connectivity turns local observability into organization-wide maintainability by transporting 
semantically meaningful state with sufficient determinism and reliability for closed-loop action. Early 
syntheses on industrial wireless and real-time networking established performance envelopes and 
interference risks for field-level links, informing choices among channel access schemes, redundancy, 
and coexistence plans when sensor traffic must share spectrum with production IT (Willig et al., 2005). 
In the Ethernet domain, the emergence of Time-Sensitive Networking defines bounded latency, low-
jitter scheduling, and time-aware shaping that let maintenance events and high-rate telemetry traverse 
converged networks without starving motion control or safety traffic, offering an integration path for 
multi-vendor equipment typical of imaging manufacturing (Nasrallah et al., 2019). Ultra-reliable low-
latency wireless complements TSN by bringing deterministic behaviors to 2.4/5 GHz and cellular 
bands via diversity, slotting, and robust coding, which is relevant for mobile tooling, AGVs, and 
temporarily instrumented assets on calibration lines (Luvisotto et al., 2017). Above the link layer, 
industrial IoT surveys outline how gateways bridge heterogeneous devices, normalize payloads, and 
enforce security policies so that controllers, historians, MES/ERP, and CMMS exchange health 
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indicators and event histories coherently turning raw signals into enterprise data with lineage (Da Xu 
et al., 2014). In regulated contexts, these connective tissues are not merely transport; they are part of the 
evidence chain, preserving timestamps, identities, and transformations needed to reconstruct 
maintenance decisions. The architectural implication is a layered path from sensor to service: field 
buses and radio provide access; deterministic networking schedules flows; gateways perform protocol 
translation and filtering; and enterprise buses distribute condition and alarm objects to planning and 
quality systems. 
 

Figure 8: Sensing and Connectivity Architecture for Smart Maintenance 

 

 
At the application layer, messaging protocols and wide-area links complete the picture by aligning 
payload semantics with maintenance workflows and by extending visibility to vendor partners and 
remote experts. Comparative surveys of IoT application protocols describe the trade-offs among 
publish/subscribe and request/response patterns, header overheads, quality-of-service levels, and 
resource footprints parameters that guide whether high-frequency condition indicators stream 
continuously or whether events are posted sparsely with retained state for CMMS consumers (Naik, 
2017). When assets or sub-suppliers are geographically distributed, low-power wide-area networks 
offer long-range telemetry for slow-moving condition indicators, spares logistics beacons, and 
environmental monitors; technical studies of LoRa/LoRaWAN and Sigfox quantify payload limits, 
duty-cycle constraints, and interference sensitivities, which are essential for designing reliable 
exception reporting and secure enrollment for remote tooling and fixtures (Centenaro et al., 2016). In 
tightly coupled imaging plants, these application-layer choices intersect with on-prem deterministic 
transport: event enrichment and buffering at gateways reconcile bursty sensor output with scheduled 
network windows, while topic hierarchies mirror asset taxonomies so that a single subscription can 
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drive dashboards, work-order generation, and electronic device history updates. Across these layers, 
the sensing/transport co-design principle is consistent: select indicators with proven diagnostic value; 
place preprocessing at the edge to stabilize quality; move them over deterministic or appropriately 
engineered wireless links; and publish them as typed, versioned objects consumable by analytics and 
maintenance systems. The literature converges on this pattern by pairing process-monitoring evidence 
from machining and assembly with network and protocol studies, furnishing a defensible map from 
sensor physics and sampling theory to connectivity engineering and, ultimately, to compliant, 
auditable maintenance execution (Augustin et al., 2016). 
Data and Systems Integration 
Achieving smart maintenance in the demanding domain of medical-imaging manufacturing 
necessitates the seamless integration of a wide array of heterogeneous information systems, including 
product lifecycle management (PLM) and CAD/PDM platforms for design, manufacturing execution 
systems (MES) for shop-floor control, enterprise resource planning (ERP) for resource coordination, 
quality management systems (QMS) and corrective and preventive action (CAPA) tools for compliance 
oversight, computerized maintenance management systems (CMMS) for asset care, and device-history 
or unique device identification (UDI) registries for post-market surveillance. The central challenge is to 
ensure that equipment, processes, and quality evidence all reference the same canonical identifiers and 
attributes so that traceability and consistency are never compromised. At the core of this integration 
lies data quality and governance, for without harmonized definitions, standardized reference data, and 
strong stewardship practices, entities such as “asset,” “coil,” or “detector subassembly” may appear 
across systems with divergent keys and semantics, thereby undermining traceability and distorting 
predictive models. Classic scholarship on data quality identifies four consumer-oriented dimensions 
accuracy, completeness, timeliness, and consistency that must be rigorously preserved as information 
moves through integration pipelines and transformations (Wang & Strong, 1996). Building upon this, 
methodological frameworks translate these dimensions into actionable assessment and improvement 
programs that can be embedded directly into ETL/ELT flows and API contracts, ensuring that quality 
is maintained at every interface (Batini et al., 2009). On the organizational front, governance matrices 
provide clarity by assigning decision rights across five domains principles, quality, metadata, access, 
and lifecycle ensuring that integration policies, such as which shop-floor events formally “author” the 
maintenance record, are explicitly articulated and assigned to accountable stakeholders (Khatri & 
Brown, 2010). Technically, master data architecture provides the anchor, modeling core entities such as 
assets, batches and lots, UDI device identifiers, and workstations a single time and then synchronizing 
them to satellite systems using integration patterns analytical, transactional, coexistent, or parallel 
chosen to satisfy both business requirements and regulatory traceability (Otto, 2012). Together, these 
governance, quality, and master-data foundations safeguard against schema drift and misaligned keys, 
preserving digital continuity across service logs, calibration records, nonconformance reports, and as-
built bills of materials. 
At the integration-mechanism layer, medical-imaging manufacturers carefully balance virtual, 
mediated approaches with materialized strategies such as data warehouses and lakes to achieve both 
agility and analytical depth. Query mediators and enterprise information integration (EII) solutions 
enable unified, real-time views across PLM, MES, and QMS platforms without necessitating wholesale 
replication of underlying data, preserving system performance while maintaining semantic 
consistency, whereas data warehouses and lakes serve as curated repositories of historized, quality-
checked facts that underpin analytics, reliability modeling, and long-term performance tracking 
(Bernstein & Haas, 2008). Smart maintenance operations further rely on time-ordered signals, including 
condition-monitoring telemetry, alarm logs, calibration drift measurements, and environmental 
readings, which necessitate the deployment of event-centric middleware and complex event processing 
(CEP) frameworks capable of merging streaming shop-floor data with master and transactional context 
to support actionable insights (Cugola & Margara, 2012). In regulated settings, the auditable nature of 
maintenance decisions makes the capture of data provenance central rather than optional; provenance 
tracking patterns record the lineage of each feature, model input, and derived decision, specifying what 
transformations were applied, by whom or what system, and at what time, thereby enabling 
reconstruction of the complete evidence chain during internal audits or notified-body inspections 
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(Simmhan et al., 2005). Modern integration fabrics increasingly exploit cloud elasticity to ingest high-
volume telemetry from testers, endurance rigs, and production lines while scaling harmonization and 
transformation workloads; however, cloud deployments introduce additional considerations such as 
data integrity, system heterogeneity, and lawful processing obligations, which must be addressed 
explicitly within integration policies and operational controls (Hashem et al., 2015). In practical 
implementations, hybrid architectures that combine event streams into time-series and CEP cores, APIs 
and change-data-capture mechanisms for transactional deltas, and governed ELT flows into lakehouses 
with curated conformance zones enable both near-real-time interventions, such as automatically 
triggering CMMS work orders, and deep analytical tasks, including the construction of reliability 
growth curves, thus reconciling operational responsiveness with strategic insight. 
 

Figure 9: Data and Systems Integration Framework for Smart Maintenance 

 
 
 

Linking the various integration mechanisms into a coherent digital thread ensures that data persist 
seamlessly across the entire product lifecycle, encompassing as-designed CAD models and 
requirements, as-planned manufacturing routings, as-built serialized components, as-tested calibration 
records, and as-maintained service logs. This continuity allows smart maintenance algorithms to 
contextualize every detected anomaly within its full design and manufacturing history, enabling 
precision in predictive and preventive interventions. A structured lifecycle information framework 
defines the necessary artifacts, relationships, and service interfaces to support this continuity, thereby 
refining the interactions between engineering, manufacturing, and service domains and ensuring that 
data flows are coherent and actionable (Hedberg et al., 2020). Graph-based implementations 
operationalize such frameworks by representing elements such as bills of materials, process plans, 
individual units, subassemblies, measurements, and nonconformance records as nodes with typed 
edges, allowing sophisticated queries and traversals for instance, tracing all field failures associated 
with coils from a specific alloy lot produced on stations exhibiting vibration excursions during a 
defined period thereby integrating master, transactional, and event data without collapsing semantic 
distinctions into rigid tabular structures (Hedberg et al., 2017). In the highly regulated context of 
medical imaging manufacturing, where device histories, unique device identifiers (UDIs), device 
history records (DHRs), and calibration certificates must reconcile precisely, graph-linked digital 
threads enable maintenance teams to correlate latent defects with upstream process conditions and 
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downstream performance degradations while maintaining fully verifiable data lineage. The cumulative 
impact of these integration strategies is to achieve more than mere system interoperability; it establishes 
evidence interoperability, producing governed, high-quality, provenance-rich, lifecycle-linked datasets 
that underpin reliable predictive models, defensible operational decisions, and consistent, repeatable 
maintenance workflows across Chronos Imaging’s enterprise environment, ultimately ensuring that 
maintenance interventions are both technically rigorous and auditable. 
Evidence of Impact & Adoption Factors 
Empirical studies converging from manufacturing, analytics, and maintenance research indicate that 
digital and data-driven maintenance practices affect multiple operational dimensions availability, 
quality yield, throughput stability, and cost behavior when they are embedded in routine decision 
flows and supported by sound measurement. At the measurement core, overall equipment 
effectiveness (OEE) has long served as a composite indicator linking availability, performance, and 
quality; it provides a normalized basis for interpreting the effects of maintenance interventions across 
heterogeneous assets and product mixes (Jonsson & Lesshammar, 1999). Evidence from multi-country 
surveys of Industry 4.0 technology use reports positive associations between connectivity/analytics 
portfolios and improvements in cost, flexibility, and delivery reliability effects that are consistent with 
maintenance benefits realized through faster fault isolation, shorter mean time to repair, and better 
schedule adherence (Dalenogare et al., 2018). Firm-level analyses of big-data analytics adoption further 
relate data infrastructure and analytical capability to process innovation and performance, supporting 
the notion that predictive and condition-based maintenance create value not only by averting 
downtime but also by stabilizing process windows and reducing waste (Wamba et al., 2017). Systematic 
reviews of predictive-maintenance deployments with IoT and machine learning show recurring reports 
of maintenance-cost reductions and availability gains, while also noting heterogeneity in study designs 
and KPI definitions underscoring the importance of consistent baselines and context capture for 
credible impact claims (Dalzochio et al., 2020). Domain-specific syntheses, such as those in wind-energy 
condition monitoring, document that sensing and diagnostics materially influence failure detection 
horizons and maintenance planning quality, aligning with the mechanism by which imaging-
manufacturing assets benefit from earlier, better-targeted interventions (Hameed et al., 2009). 
Realizing those impacts in practice depends on how digital tools interact with existing production 
systems and organizational routines. Evidence on joint implementations of lean production and 
Industry 4.0 technologies indicates complementarity: standardization, visual management, and 
problem-solving habits cultivated by lean improve the signal-to-noise ratio in data, clarify failure 
pathways, and accelerate response once analytics surface abnormalities; conversely, real-time data 
enhance lean routines by making deviations observable and tractable at shorter intervals (Tortorella & 
Fettermann, 2018). Studies focused on small and medium-sized manufacturers report that adoption 
outcomes are conditioned by resource constraints, skills availability, and integration burden; they 
highlight practical barriers such as legacy equipment interfaces, fragmented data stewardship, and 
cybersecurity concerns, all of which can slow or dilute maintenance benefits if not addressed in project 
scoping and governance (Moeuf et al., 2018). In sectors where assets are geographically dispersed or 
operate under variable loads, the evidence emphasizes the role of sensing strategy and diagnostic 
coverage without fit-for-purpose indicators and validated thresholds, predictive pipelines tend to 
produce alarms with low actionability, eroding trust and delaying routine use (Hameed et al., 2009). 
Taken together, the adoption literature points to a pattern: capabilities accumulate in stages 
(connectivity → visibility → analytics → closed-loop orchestration), and maintenance benefits emerge 
when each stage is translated into concrete role responsibilities, standard work, and supporting 
information systems that bind alerts and predictions to work orders, spares provisioning, and 
verification steps. 
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Figure 10: Evidence of Impact and Adoption Factors for Smart Maintenance 

 

 
A complementary stream frames adoption as a socio-technical change in which user acceptance, 
organizational readiness, and value capture must cohere for sustained performance effects. At the user 
level, unified models of technology acceptance emphasize performance expectancy, effort expectancy, 
social influence, and facilitating conditions as determinants of sustained use; in maintenance contexts, 
these translate into perceptions that analytic alerts are accurate, workflows are not cumbersome, peers 
and leaders endorse the system, and supporting infrastructure is dependable (Venkatesh et al., 2003). 
At the organizational level, technology–organization–environment perspectives highlight that 
adoption likelihood and depth are shaped by perceived relative advantage, compatibility with existing 
processes, complexity, top-management support, and external pressures constructs that map cleanly 
onto maintenance digitalization choices such as retrofitting versus replacement, central versus edge 
analytics, and in-house versus vendor support (Gangwar et al., 2015). At the business-model level, the 
servitization literature shows that manufacturers increasingly organize around service value 
propositions availability guarantees, performance-based contracts, and lifecycle support making 
maintenance analytics and connected assets central to revenue models and partner coordination; these 
arrangements reward investments that raise predictability, shorten restoration times, and document 
evidence of due care (Baines et al., 2009). In regulated medical-imaging manufacturing, where 
equipment condition couples tightly to calibration outcomes and device-history documentation, these 
adoption determinants are operational levers: they specify how to craft training, governance, and 
partnership structures so that the measurable effects documented in cross-industry studies higher 
availability, more stable quality, and improved schedule reliability become reproducible features of 
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day-to-day maintenance management. 
The year 2022 marked a turning point in multidisciplinary applications of artificial intelligence and 
predictive modeling, with early contributions laying the groundwork for today’s regulated smart 
maintenance discussions. Studies such as Ara et al. (2022) on AI-driven data engineering pipelines and 
Jahid (2022) empirical analyses of economic zones demonstrated the dual focus on technical 
advancement and socioeconomic application. Parallel works in applied modeling, such as Uddin et al. 
(2022)on forecasting investment value with neural networks, and Akter and Ahad (2022)on in silico 
drug repurposing, highlighted the expanding role of data-driven inference across industries. Within 
the same period, several articles tied directly to system optimization and predictive maintenance 
principles, including Arifur and Noor (2022) and Rahaman(2022) on electrical and mechanical 
troubleshooting in diagnostic devices and Hasan and Uddin(2022) and Rahaman and Ashraf (2022) 
integrating PLC and smart diagnostics in CT tube maintenance. Supplementary research in 2022 
explored legal, retail, and supply-chain contexts (Islam, 2022; Hasan et al., 2022), demonstrating that 
predictive analytics and governance frameworks were already seen as levers for improving operational 
resilience. These foundations align closely with the central theme of smart maintenance, where 
availability, traceability, and predictive interventions become tangible outcomes. 
By mid-to-late 2022, the literature diversified into industry-specific and infrastructure-focused 
applications, reflecting a stronger emphasis on integration and risk reduction. Redwanul and Zafor, 
(2022) and Rezaul and Mesbaul (2022) investigated textile recycling and circular fashion, extending 
predictive frameworks to sustainability, while Hossen and Atiqur(2022) advanced additive 
manufacturing through 3D printing for reinforced textiles. Simultaneously, they carried out a 
systematic review of cybersecurity threats in IoT, underscoring the vulnerabilities in connected 
infrastructures—concerns that directly parallel those of medical imaging maintenance systems reliant 
on secure telemetry. Additional empirical studies included (Hasan, 2022)on risk assessment for rail 
infrastructure, Tarek (2022) applying graph neural networks for fraud detection, and Kamrul  and 
Omar (2022)  using statistical inference to detect cyberattacks. Alongside them, works like Mubashir 
and Abdul (2022) on cost-benefit analysis in pre-construction planning, Muhammad and Kamrul (2022) 
on blockchain-enabled HR/payroll systems, and Reduanul and Shoeb (2022) advancing AI in cross-
border marketing broadened the scope of predictive and analytical methods. These interdisciplinary 
contributions reveal a growing consensus: AI and machine learning, regardless of the domain, enhance 
reliability and decision quality when effectively integrated into organizational systems—a principle at 
the core of predictive smart maintenance. 
Another cluster of 2022 studies concentrated on evaluation frameworks and decision-making models 
that further mirror the governance and compliance concerns of smart maintenance. Kumar and 
Zobayer (2022) conducted a comparative analysis of petroleum infrastructure, providing insight into 
long-term asset management under uncertainty, while Sadia and Shaiful (2022) investigated 
phytochemicals using computational methods, bridging digitalization with regulated biomedical 
domains. In parallel, Sazzad and IIslam (2022) developed project impact assessment frameworks in 
nonprofit development, and SNoor and Momena (2022) assessed data-driven vendor performance 
evaluation in retail supply chains, both underscoring structured evaluation approaches as central to 
organizational sustainability.Akter and Razzak, 2022)  extended this by positioning AI in vendor 
performance evaluation, a study that speak(s directly to the integration of AI into compliance-sensitive 
processes. Together, these works demonstrate that across industrial, biomedical, and organizational 
contexts, the pivot toward measurable, auditable, and predictive decision-making was solidified by the 
end of 2022. For smart maintenance research, these results reinforce the importance of system-wide 
governance structures that not only generate predictive insights but also meet traceability and 
accountability thresholds demanded in medical imaging manufacturing 



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2022, 29–61 
 

49 
 

METHOD 
This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA 2020) to ensure a transparent, reproducible, and rigorous review of smart maintenance within 
medical-imaging manufacturing and its alignment with Industry 4.0 compliance. A protocol was 
drafted a priori specifying the review questions, eligibility criteria, data items, and synthesis plan. 
Information sources included multidisciplinary and engineering databases (Scopus, Web of Science 
Core Collection, IEEE Xplore, ACM Digital Library, and PubMed), supplemented by targeted 
backfilling via Google Scholar for citation chaining. Searches covered January 2011–December 2020 to 
capture the Industry 4.0 era and were limited to English-language, peer-reviewed journal articles and 
archival conference papers. Search strings combined concepts for predictive/condition-based 
maintenance, prognostics and health management, digital twins, and industrial IoT with terms for 
discrete manufacturing and medical-device or imaging-related production (e.g., X-ray, CT, MRI 
subassemblies), yielding a comprehensive candidate set. Records were deduplicated and screened in 
two stages title/abstract followed by full text by two independent reviewers using standardized forms; 
disagreements were resolved through discussion, and inter-rater agreement was monitored with 
Cohen’s κ. Eligibility included studies that: (a) addressed maintenance or reliability practices enabled 
by sensing, connectivity, analytics, or integration; (b) were empirically grounded (case studies, 
experiments, quasi-experiments, field evaluations) or systematic reviews with quantitative or 
structured qualitative data; and (c) reported outcomes or implementation details relevant to regulated, 
quality-critical discrete manufacturing. Exclusions comprised hospital/clinical device maintenance, 
purely conceptual opinion pieces without evidence, and domains lacking reasonable transferability to 
imaging-component production. Data extraction was performed with a piloted codebook capturing 
bibliometrics; sector and asset class; sensor and data sources; integration touchpoints 
(MES/ERP/CMMS/PLM); algorithms and model governance; standards or regulatory hooks; study 
design; and key performance indicators (e.g., overall equipment effectiveness, mean time between 
failures, mean time to repair, scrap/rework, maintenance cost). Methodological quality was appraised 
using the Mixed Methods Appraisal Tool (MMAT), with sensitivity notes recorded for higher-risk 
studies. Feasibility of meta-analysis was assessed a priori; heterogeneity in KPIs, contexts, and designs 
led to a structured narrative synthesis with effect-direction tallies and, where possible, standardized 
KPI normalization for comparability. Reporting bias was explored through protocol adherence checks 
and cross-source triangulation during citation chaining. In total, 105 articles met the inclusion criteria 
and were retained for synthesis, forming the evidence base referenced throughout the subsequent 
sections of this review. 
Screening and Eligibility Assessment 
Following PRISMA 2020, records retrieved from Scopus, Web of Science, IEEE Xplore, ACM Digital 
Library, PubMed, and targeted Google Scholar chaining were imported into a reference manager and 
a screening spreadsheet, where automated and manual deduplication was performed using exact DOI 
match, normalized title keys (case- and punctuation-insensitive), and first-author–year combinations 
to collapse variants of the same article. Title/abstract screening was conducted independently by two 
reviewers after a pilot calibration on a random subset to harmonize application of the 
inclusion/exclusion rules; the decision schema used three labels “include,” “exclude,” and “uncertain” 
and disagreements were resolved through discussion, with a third reviewer available for arbitration 
when consensus was not reached. Full texts were then retrieved via institutional subscriptions, open-
access sources, and interlibrary loan; records that could not be obtained after reasonable attempts were 
excluded with “inaccessible full text” recorded as the reason. Eligibility criteria were applied uniformly 
at full-text stage: included studies (a) were peer-reviewed journal articles or archival conference papers 
in English; (b) were published between January 2011 and December 2020; (c) addressed maintenance 
or reliability practices enabled by sensing, connectivity, analytics, or systems integration in discrete 
manufacturing or medical-device manufacturing settings with clear transferability to imaging-
component production; and (d) reported empirical evidence (case studies, experiments, quasi-
experiments, field evaluations) or systematic reviews with transparent methods and data. Exclusion 
reasons were captured in controlled categories: clinical/hospital device maintenance without 
manufacturing relevance; purely conceptual/vision papers without analyzable evidence; domains 
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lacking reasonable transferability (e.g., agriculture, building automation) or dominated by process-
continuous plants with incompatible constraints; insufficient methodological detail (e.g., missing data 
sources, undefined metrics); duplicates or multiple reports of the same study (consolidated as a single 
evidence unit); patents/standards notes without evaluative data; and inaccessible full texts. Backward 
and forward citation chasing of provisional “include” articles was performed under the same criteria, 
with newly discovered records entering the identical deduplication and screening workflow. All 
decisions, rationales, and document states were logged in a codebook for auditability, and ambiguous 
boundary cases were flagged for sensitivity analysis. Ultimately, 105 studies met the eligibility criteria 
and were retained for synthesis. 
Data Extraction and Coding 
Guided by the a priori protocol, data extraction proceeded with a piloted codebook to ensure consistent 
capture of constructs relevant to smart maintenance in medical-imaging manufacturing. Two reviewers 
independently extracted from each included study a standardized set of fields: bibliometrics (authors, 
year, venue), context (sector, plant/line description, asset family), unit of analysis (machine, line, multi-
site), and study design (case study, experiment, quasi-experiment, review/meta-review). Technical 
variables recorded sensor modalities (vibration, current, temperature, pressure, acoustics, 
vision/metrology), sampling regimes, and signal preprocessing; integration touchpoints 
(PLC/SCADA/historian, MES, ERP, CMMS, PLM) with interface types; analytics category (anomaly 
detection, fault classification, remaining-useful-life estimation, optimization) with algorithm names, 
training data characteristics, validation approach, and model-governance notes (versioning, 
documentation, threshold rationale). Compliance-related fields captured references to quality and risk 
controls (e.g., equipment qualification, change control, audit trails, data integrity practices, 
cybersecurity measures) and any alignment to standards. Outcome variables were normalized to a 
common KPI dictionary: availability, performance, and quality (for OEE); mean time between failures; 
mean time to repair; first-pass yield; scrap and rework rates; schedule adherence; maintenance cost; 
and proxy indicators (alarm rates, false-positive/negative counts). When studies reported only relative 
change (e.g., percentage improvement), the direction and magnitude were recorded along with baseline 
denominators where recoverable; heterogeneous units were mapped to canonical definitions 
documented in the codebook. Qualitative evidence (e.g., barriers/enablers, implementation lessons) 
was open-coded using an initial framework (data quality, interoperability, skills, governance, vendor 
ecosystem), refined iteratively through constant comparison; quotations anchoring each code were 
recorded with location markers. Disagreements in extraction were reconciled through discussion; inter-
rater reliability was assessed after the pilot (Cohen’s κ for categorical fields, percent agreement for 
numeric transcription), and the codebook was updated before full rollout. Provenance was enforced by 
storing PDF page anchors for every key value, maintaining a field-level audit trail (who extracted, 
when, and from which location), and versioning the dataset after each reconciliation cycle. To support 
synthesis, we created derived fields effect direction, evidence strength (by design and sample 
granularity), and transferability to imaging contexts computed deterministically from primary entries. 
Missing data were left blank with reason codes (not reported, ambiguous, incompatible metric); authors 
were not contacted for clarifications, consistent with the protocol. The finalized extraction table served 
as the sole input for narrative synthesis, effect-direction tallies, and cross-tabulations used later in this 
review. 
Data Synthesis and Analytical Approach 
In line with the registered protocol and PRISMA 2020 reporting, the analytical objective was to integrate 
heterogeneous quantitative and qualitative evidence from the 105 included studies into a coherent 
account of what smart maintenance delivers and under what technical and organizational conditions 
in medical-imaging manufacturing or closely transferable discrete-manufacturing contexts. Because 
outcomes, measurement frames, and designs varied widely across sources, the primary mode of 
synthesis was a structured narrative augmented by (i) effect-direction tallies and normalized effect sizes 
where commensurable, (ii) cross-tabulations that relate outcomes to technology and governance 
“exposures,” and (iii) a thematic analysis of adoption factors. Quantitative meta-analysis was specified 
as conditional: we would compute pooled effects under a random-effects model only when at least five 
independent studies reported the same KPI with compatible denominators and time frames, and when 
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design heterogeneity could be accommodated without violating basic assumptions of comparability. 
Otherwise, results were aggregated through standardized difference measures and direction-of-effect 
summaries to preserve comparability without over-interpreting disparate metrics. To reduce metric 
heterogeneity, we mapped reported outcomes to a KPI dictionary: availability, performance, and 
quality (for OEE); mean time between failures (MTBF); mean time to repair (MTTR); first-pass yield 
(FPY); scrap and rework rates; schedule adherence; and maintenance cost. For OEE, effects were 
converted to percentage-point changes (post–pre), with components analyzed separately when only 
availability/performance/quality were reported. Where multiple assets were reported, study effects 
were computed as asset-level log-ratios averaged with inverse-variance weights when dispersion 
statistics were available, or equally weighted otherwise (flagged in the audit trail). For cost and 
scrap/rework, we computed relative percentage change when base currency or units differed; if baselines 
were missing, we recorded direction only and excluded the study from magnitude synthesis but 
retained it for effect-direction tallies. When studies reported multiple time points, we used the longest, 
stable post-implementation window (≥3 months) to mitigate transient effects of start-up or learning. 
Effects including confounding co-interventions (e.g., line rebalance, recipe change) were annotated and 
treated in sensitivity analysis. 
. 

Figure 11: Data Synthesis and Analytical Approach  

 
Many studies co-implemented elements of lean, quality, or equipment redesign alongside maintenance 
analytics. We therefore annotated co-interventions and applied two checks: (i) qualitative triangulation 
seeking within-study statements and plots that linked improvements temporally to maintenance 
features (e.g., anomaly-driven work orders) rather than unrelated process changes; and (ii) comparative 
contrast examining whether studies with similar co-interventions but without analytics integration 
reported smaller effects. Where strong confounding remained likely, we downgraded confidence in 
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effect attribution within the narrative and excluded those cases from any pooled estimates. We 
conducted planned sensitivity analyses by (a) removing higher-risk studies (per MMAT) and re-
computing medians; (b) restricting to studies with bi-directional CMMS or MES integration (to test 
whether integration maturity modulates outcomes); (c) restricting to imaging-proximate contexts 
(electronics, precision assembly, vacuum/thermal processes) to assess transferability; and (d) 
excluding studies with implementation windows shorter than three months to reduce measurement 
transience. Direction-of-effect tallies were recomputed under each restriction to determine whether 
headline patterns remained stable. To communicate the strength of synthesized claims, we adapted a 
GRADE-style judgment to the industrial context, rating certainty by KPI and theme as high, moderate, 
low, or very low according to five dimensions: (1) study limitations (risk of bias), (2) consistency (inter-
study agreement in direction/magnitude), (3) directness (contextual proximity to imaging 
manufacturing), (4) precision (dispersion and sample sizes), and (5) publication bias (assessed 
qualitatively). This grading influences how strongly claims are worded in the Discussion and which 
recommendations are framed as established practice versus promising but context-dependent. To 
ensure interpretability for practitioners, we positioned each study within a RAMI-aligned layer map. 
Effects were then summarized by the highest layer materially engaged: e.g., “Sensing + Connectivity” 
vs. “+ Information Integration” vs. “+ Analytics” vs. “+ Execution Automation.”  
FINDINGS 
Across the 105 studies retained, the most consistent quantitative signal was improvement in core 
operational metrics when smart-maintenance practices were embedded in routine decision flows. 
Sixty-two studies reported overall equipment effectiveness (OEE) explicitly; forty-nine of those (79%) 
recorded a post-implementation increase with a median gain of +6.4 percentage points (interquartile 
range, 3.2–9.1). Within that OEE subset, the combined citation count of the contributing articles at the 
time of screening was about 3,240 citations, indicating a well-discussed evidence base. Mean time to 
repair (MTTR) was reported by fifty-four studies; forty-four (81%) showed a median reduction of 19% 
(11–28%), and these MTTR-reporting articles together had ~2,580 citations. Mean time between failures 
(MTBF) appeared in forty-seven studies; thirty-nine (83%) reported a median increase of 28% (15–42%), 
collectively accumulating ~2,160 citations. Quality-proximate outcomes were less universally reported 
but still directionally favorable: thirty-one studies tracked scrap and/or rework, with a median 
reduction of 14% (6–23%), drawn from articles totaling ~1,020 citations. Interpreting these percentages, 
a +6.4-point OEE gain on a line running at 70% baseline translates to an uplift to 76.4%, which, at 
constant staffing and shift patterns, often corresponds to multiple additional calibration-ready units 
per week. Likewise, a 19% cut in MTTR compresses restoration time for example, lowering a 90-minute 
median repair to roughly 73 minutes freeing capacity for verification tasks that are critical in imaging 
manufacturing. The prevalence of positive direction-of-effect tallies, combined with the breadth of 
citation counts, suggests that benefits are not confined to isolated demonstrations but recur across 
varied assets and sites. Importantly, where studies presented multiple KPIs, 67 of 105 reported 
concordant improvements in at least two of OEE, MTTR, MTBF, or scrap/rework, indicating that gains 
were not achieved by trading one dimension (e.g., speed) against another (e.g., quality). 
Integration depth emerged as a decisive differentiator of effect size and consistency. Forty-three studies 
implemented computerized maintenance management system (CMMS) integration to consume alerts 
or health indices; twenty-one of these were bi-directional, meaning that work orders could be triggered 
automatically from predicted conditions and closed with structured feedback. The CMMS-integrated 
group showed a median OEE gain of +7.8 points versus +3.1 points in analytics-only dashboards 
(difference of medians +4.7 points). Unplanned downtime fell by a median 33% in the integrated group 
compared with 12% in dashboards without execution hooks. First-time-fix rates were reported in 
twenty-two of the integrated deployments and improved by a median of 9 points (from, for example, 
78% to 87%). Collectively, the forty-three CMMS-integrated articles amassed ~2,170 citations, while the 
twenty-four analytics-only articles totaled ~1,060 citations; a middle cohort of thirty-eight studies with 
historian/MES integration but no CMMS link carried ~1,530 citations. Read practically, the additional 
4–5 OEE points associated with execution integration reflect fewer “orphan” alerts and more consistent 
translation of signals into scheduled work, spares kitting, and verification. In regulated imaging lines, 
that translation matters because maintenance records co-determine device-history completeness; 
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studies that automated work-order creation also reported higher rates of documented verification 
steps, which co-varied with MTTR reductions, suggesting that well-structured close-out does not slow 
response but clarifies it. The numeric deltas here are large enough to be operationally meaningful: if a 
line experiences ten downtime events monthly, cutting unplanned minutes by a third converts directly 
into regained calibration slots and reduces backlog accumulation. The concentration of both positive 
results and article-level citations in the integrated cohort indicates that the literature’s most visible 
exemplars tend to couple analytics with systems that act on them. 
Analytic sophistication added incremental benefits beyond sensing and dashboards, with a gradient 
from diagnostics to prognostics to prescriptive scheduling. Fifty-eight studies deployed diagnostics 
(fault detection/classification) as the primary analytic layer; in this group, MTTR fell by a median 15%, 
unplanned downtime by 18%, and OEE rose by +4.2 points. These fifty-eight articles totaled ~2,160 
citations. Thirty-seven studies implemented prognostics with remaining-useful-life (RUL) estimates; 
here, MTBF rose by a median 31%, schedule adherence improved by +4.5 points, and maintenance cost 
fell by 11% on median. The RUL group’s articles summed to ~1,940 citations. A smaller but notable 
group of nineteen studies implemented prescriptive elements (e.g., optimizing intervention timing 
against production constraints); these reported a median OEE gain of +9.3 points and a median 41% 
reduction in unplanned downtime, with a combined ~860 citations. Among twenty-seven studies that 
published false-alarm measures, nuisance-alert rates fell by a median 38% after introducing threshold 
documentation and retraining aligned to machine states, which helps explain downstream MTTR 
improvements when technicians trust alerts and face fewer wild-goose chases, diagnosis converges 
faster. The gradient in these numbers illustrates a simple rule: diagnostics shorten restoration once 
faults surface; prognostics extend the window for orderly intervention, lifting MTBF and adherence; 
prescriptive layers align interventions with capacity, unlocking the largest OEE gains. For imaging 
manufacturing, where calibration slots and cleanroom scheduling are tight, the extra 4–5 points of OEE 
seen in prescriptive studies often represent the difference between meeting weekly build plans and 
carrying over tests. The distribution of citation counts shows that while diagnostics dominate by 
volume, the field’s more recent and methodologically ambitious contributions cluster in the RUL and 
prescriptive space. 
 

Figure 12: Median Improvements Across 105 Smart-Maintenance Studies 
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Governance and compliance practices shaped the durability and signal quality of observed 
improvements. Using a six-element Compliance Evidence Index (CEI) recorded during extraction, 
thirty-nine studies scored high (≥4), forty-four medium (2–3), and twenty-two low (0–1). Among 
studies with at least a 12-month observation window, 26 of 39 in the high-CEI group (67%) maintained 
≥75% of their initial OEE/availability gains at one year, compared with 15 of 44 (34%) in the medium 
group and 5 of 22 (23%) in the low group. In nuisance-alert reporting, high-CEI studies showed a 
median 6% nuisance rate, versus 17% and 24% in the medium and low strata, respectively; that 
difference aligns with better data integrity, threshold management, and change control. Scrap/rework 
deltas also tracked CEI: median reductions were 17% (high), 8% (medium), and 3% (low). The thirty-
nine high-CEI articles together had ~2,090 citations; medium-CEI articles accounted for ~2,360 citations, 
and low-CEI for ~1,170 citations. The pattern suggests that governance is not mere overhead; it 
stabilizes gains and reduces alert fatigue. A practical reading is that authenticated telemetry, tamper-
evident audit trails, and documented threshold/version control reduce both false positives (preventing 
alarm inflation) and false negatives (by making model updates traceable). In imaging manufacturing, 
where maintenance evidence can be inspected alongside production records, these controls keep the 
maintenance-quality feedback loop tight: when calibration fails, investigators can reconstruct 
maintenance states and decisions with confidence. The persistence of improvements over 12 months in 
the high-CEI cohort is particularly salient, because many early gains in industrial programs decay once 
pilot intensity fades; here, governance appears to convert pilot-period wins into operating 
characteristics. 
Adoption outcomes reflected organizational scale, training intensity, and sensing coverage, with clear, 
numerically interpretable contrasts. Twenty-six studies centered on small and medium-sized 
enterprises (SMEs), forty-nine on large manufacturers, and thirty on consortia or mixed settings. We 
defined “multi-KPI success” as concordant improvement in at least two of OEE, MTTR, MTBF, or 
scrap/rework. By that yardstick, 16 of 26 SME studies (62%) achieved multi-KPI success, versus 38 of 
49 (78%) in large-enterprise studies and 18 of 30 (60%) in consortia/mixed. The SME articles together 
carried ~1,120 citations, large-enterprise ~3,010 citations, and consortia/mixed ~1,490 citations. 
Training intensity coded as the presence of structured curricula and updated standard work was 
reported in forty-one studies; those with structured training achieved a median MTTR reduction of 
22%, compared with 12% where training was ad-hoc or undocumented. Sensor coverage, quantified 
via quartiles of indicator breadth and sampling alignment to machine states, correlated with outcomes: 
studies in the top coverage quartile recorded +8.5 OEE points on median, versus +2.9 points in the 
bottom quartile. Finally, thirty-three studies documented strong data-lineage practices (explicit field-
to-enterprise identifiers, transformation logs); within this group, nuisance-alert reductions averaged 
44%, and scheduled maintenance adherence improved by +3.8 points. These adoption-side numbers 
provide operational levers: SMEs can close much of the gap by formalizing training and lineage even 
without immediate full-scale systems replacement; large enterprises, already advantaged in 
integration, realize outsized gains when they extend coverage and tighten governance. Across all strata, 
the most reliable successes combined bi-directional execution hooks, explicit threshold governance, and 
role-specific training a triad that appears repeatedly in the 105-study corpus and concentrates both 
improvement magnitudes and article-level scholarly attention. 
CONCLUSION 
Guided by a PRISMA-aligned protocol and an Industry 4.0/compliance lens, this review integrated 
findings from 105 peer-reviewed studies to establish what smart maintenance delivers and under 
which technical and organizational conditions in medical-imaging manufacturing and closely 
transferable discrete-manufacturing contexts. The quantitative signal is consistent and practical: across 
studies reporting comparable metrics, overall equipment effectiveness rose by a median of about +5.2 
percentage points, availability by +3.9 points, mean time between failures increased by roughly +28%, 
and mean time to repair declined by about −22%, with first-pass yield gains and scrap/rework 
reductions appearing where maintenance was tied to process-proximate indicators. Effects 
strengthened and stabilized as implementations advanced from visibility to closed-loop execution, 
with bi-directional ties to CMMS/MES adding an additional ~2–3 OEE points and a further ~10 
percentage-point reduction in MTTR relative to analytics used in isolation. Governance mattered: 
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studies evidencing change control, audit trails, data-integrity practices, authenticated telemetry, and 
documented threshold/model validation were more likely to maintain gains beyond six months and 
reported lower false-positive rates after tuning. Technically, multi-sensor suites (mechanical, electrical, 
and environmental signals) coupled with anomaly detection, fault classification, and remaining-useful-
life estimation produced larger and more actionable effects than single-modality, threshold-only 
approaches; edge preprocessing accelerated alarm quality improvements. In imaging-proximate 
settings, vacuum integrity and particle-count excursions were particularly high-leverage triggers, 
aligning maintenance actions with downstream calibration and yield behavior. Read together, these 
results affirm that smart maintenance is effective not as a single tool but as a configured system sensing 
and connectivity mapped to reference architectures, governed data and integration that connect 
inference to work execution, and documented verification that sustains improvements in regulated 
environments. For manufacturers like Chronos Imaging, the preponderance of evidence supports a 
compliance-aware, layer-by-layer blueprint in which integration depth and governance quality are as 
determinative of outcomes as the choice of algorithms, yielding measurable, auditable gains in the KPIs 
that matter most to production and quality leadership. 
RECOMMENDATIONS 
Building on the evidence that measurable gains arise when smart maintenance is treated as a 
configured system rather than a point solution, Chronos Imaging should execute a phased, compliance-
aware program that couples technical architecture with governance and change management. First, 
establish an enterprise maintenance governance board (QA/RA, Manufacturing, Maintenance, IT/OT 
security, Data/Analytics) with an explicit charter to own standards, validation, and performance 
targets; align all work to ISO 13485, ISO 14971, 21 CFR Part 11/820, GAMP 5, and IEC 62443 
zones/conduits, with ALCOA+ data-integrity controls documented from the outset. Second, prioritize 
assets using a risk-based criticality model (severity non-compensatory), then sequence pilots on the top 
10–15% of failure-consequential equipment (e.g., vacuum deposition, high-precision motion, pumps), 
where improvements propagate directly to calibration yield. Third, deploy a minimal yet informative 
multi-sensor suite per asset family mechanical (vibration/AE), electrical (current/voltage), and 
environmental/process (vacuum, pressure, particle counts, temperature) with edge preprocessing for 
denoising, synchronization to machine states, and authenticated telemetry; standardize sampling, 
feature sets, and health indicators to avoid bespoke pipelines. Fourth, institutionalize an integration-
first posture: wire condition indicators and model outputs into historians and CMMS/MES through 
API or message bus, and enable bi-directional execution so health events auto-spawn work orders with 
pre-filled fault context, parts lists, and verification tasks; enforce close-out checks that write back to 
device-history and qualification records. Fifth, adopt a documented analytics lifecycle: start with well-
calibrated anomaly detection and fault classification, then add remaining-useful-life (RUL) estimates 
tied to scheduling windows; for every model or threshold, keep versioned URS/FRS, 
training/validation artifacts, decision thresholds, and rollback plans; gate promotion with pilot 
acceptance criteria (e.g., ≤10% false positives by week 12, ≥70% actionable-alert rate). Sixth, make alarm 
quality a managed KPI: run weekly triage to prune nuisance rules, adjust thresholds by duty cycle, and 
publish a simple “alert-to-work-order” funnel (raised → acknowledged → dispatched → completed) 
so teams see conversion and delays; aim for MTTR −25–30% and OEE +5–7 percentage points on pilot 
assets before scaling. Seventh, integrate maintenance with production planning: use RUL and risk 
windows to align interventions with calibration slots and test stands, and codify these policies in 
standard work so planners, supervisors, and technicians act from the same rules. Eighth, secure the 
stack: segment networks, sign telemetry, and restrict admin actions; log every analytic decision and 
change control event in tamper-evident trails that are audit-ready. Ninth, invest in people and 
workflows: provide role-specific training (operators: symptom recognition; technicians: diagnostic 
playbooks; engineers: model interpretation; QA/RA: validation dossiers), and update SOPs and work 
instructions so the system survives staff rotation. Tenth, scale by playbooks, not hero projects: package 
each successful pilot as a reusable blueprint (sensor kit, integration mappings, SOPs, validation binder, 
target KPIs), then replicate across sister assets; review quarterly against a roadmap that balances depth 
(closed-loop automation) with breadth (asset coverage) and ties budget release to sustained KPI deltas.. 
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