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Abstract 
This systematic review explores the integration of Lean Six Sigma (LSS) methodologies with Digital 
Twin (DT) technologies to assess their combined impact on manufacturing efficiency and performance 
valuation. With the growing need for real-time monitoring, predictive analytics, and continuous 
improvement in industrial environments, the fusion of LSS and DT offers a promising hybrid 
framework for enhancing productivity, reducing defects, and enabling adaptive control mechanisms. 
The review followed the PRISMA 2020 guidelines to ensure transparency and rigor, resulting in the 
inclusion of 72 peer-reviewed articles published between 2010 and 2024 across multiple sectors 
including aerospace, automotive, pharmaceuticals, electronics, and FMCG. Findings indicate that the 
integration of LSS-DT systems leads to significant improvements in cycle time reduction, takt time 
optimization, predictive maintenance, and real-time quality monitoring. A notable trend across the 
reviewed literature is the emergence of hybrid performance metrics that blend traditional Lean Six 
Sigma KPIs with digital system-level indicators such as simulation fidelity, data latency, and predictive 
control accuracy. While sectors like aerospace and automotive demonstrate high maturity in 
implementing these integrated frameworks, others—particularly small and medium-sized 
enterprises—face challenges related to cost, digital literacy, and infrastructural readiness. The review 
also identifies theoretical tensions between the deterministic nature of traditional Lean Six Sigma 
models and the probabilistic, adaptive capabilities of digital twin systems. Despite these challenges, the 
synthesis of findings confirms that LSS-DT integration fosters a culture of continuous improvement 
and operational resilience supported by data-driven decision-making. This study contributes to the 
evolving discourse on Industry 4.0 by offering an in-depth, cross-sectoral evaluation of LSS-DT 
convergence and proposing new directions for hybrid performance management in advanced 
manufacturing systems. 
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INTRODUCTION 
Lean Six Sigma (LSS) is a synergistic process improvement methodology that combines the waste-
reduction principles of Lean manufacturing with the statistical rigor of Six Sigma. Lean manufacturing, 
rooted in the Toyota Production System, focuses on eliminating non-value-added activities across the 
production stream to enhance flow and responsiveness (Gaikwad & Sunnapwar, 2020). Conversely, Six 
Sigma aims to reduce process variation through data-driven techniques, typically employing the 
DMAIC (Define, Measure, Analyze, Improve, Control) framework.  
 

Figure 1: Lean Six Sigma and Digital Twin Integration 

 
 
Together, LSS provides a comprehensive structure for reducing inefficiencies, enhancing quality, and 
promoting customer satisfaction. At its core, LSS is anchored in measurable performance indicators, 
continuous monitoring, and root-cause analysis, making it particularly relevant in complex 
manufacturing settings where precision and consistency are critical. Studies across industries have 
shown that LSS implementation leads to improvements in throughput, defect reduction, employee 
morale, and customer retention (Skalli et al., 2025). Furthermore, LSS is considered adaptable and 
scalable, capable of being integrated across both discrete and process manufacturing industries. With 
its foundation in structured statistical problem-solving, LSS provides a formal mechanism to 
standardize process evaluations, eliminate bottlenecks, and improve cycle times. As industries move 
toward real-time, data-intensive operations, LSS remains a vital framework, offering the procedural 
discipline necessary for organizations to analyze and improve operations consistently (Ndrecaj et al., 
2023).  
Digital Twin (DT) technology refers to the creation of a virtual representation of a physical asset or 
process, enabling real-time monitoring, simulation, and optimization using synchronized data streams 
(Skalli et al., 2024). Originating from NASA’s need for mirrored systems in space exploration, digital 
twins are now widely used in manufacturing, where they allow for accurate modeling of factory 
operations, machine behaviors, and production flows. A digital twin integrates multiple technologies—
such as IoT sensors, cloud computing, simulation tools, and AI analytics—to generate high-fidelity 
replicas that evolve with their physical counterparts. Through continuous data input and feedback 
loops, DTs provide comprehensive visibility into process conditions, material movement, and energy 
consumption, which can be used for diagnostic, predictive, and prescriptive insights (Trubetskaya et 
al., 2023). In manufacturing environments, digital twins can simulate various production scenarios, 
enabling organizations to experiment with process changes without disrupting physical operations. 
These digital environments promote operational transparency, predictive maintenance, and data-based 
decision-making, which are fundamental to lean and Six Sigma philosophies (Gupta et al., 2023). The 
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modular and scalable architecture of digital twins allows them to represent individual machines, entire 
production lines, or even end-to-end supply chains. As DTs continuously evolve with real-time 
operational data, they provide a feedback-rich environment for performance monitoring, aligning 
perfectly with the DMAIC structure central to Six Sigma projects (Carneiro et al., 2025). 
The integration of Lean Six Sigma with Digital Twin-based performance valuation frameworks offers 
an advanced synergy where real-time data analytics complements structured process improvement. 
While LSS relies on process metrics and statistical control, the infusion of DTs provides those metrics 
in real time, facilitating faster and more accurate decision-making. Real-time synchronization of data 
enables organizations to simulate LSS interventions virtually before implementing them physically, 
which significantly reduces risk and improves confidence in projected outcomes (Salah & Rahim, 2018). 
Moreover, DTs provide a continuous stream of detailed performance data, allowing Six Sigma 
practitioners to validate assumptions, model process variation, and refine control plans with enhanced 
granularity. Lean initiatives benefit from the visibility and traceability offered by digital twins, enabling 
more effective value stream mapping, bottleneck identification, and waste elimination strategies (Jlassi 
& El Mhamedi, 2019). With the ability to monitor cycle times, energy use, and material waste in real 
time, Lean Six Sigma teams can target root causes with unprecedented precision. The capability to 
continuously assess and recalibrate improvement actions through DT simulation leads to closed-loop 
systems where improvement cycles are self-validating and dynamically optimized (Siefan et al., 2025). 
In addition, LSS metrics such as DPMO (Defects Per Million Opportunities), Cp/Cpk indices, and takt 
time can be embedded into DT dashboards, enabling seamless alignment of digital insights with 
traditional performance goals. 
Globally, Lean Six Sigma has gained traction as a strategic imperative in manufacturing sectors aiming 
for quality excellence and cost efficiency. In the United States and Europe, LSS is widely adopted in the 
automotive, aerospace, and pharmaceutical industries, with documented improvements in lead time 
reduction, product quality, and process standardization (Mendes & França, 2024). Asian economies 
such as Japan, South Korea, and China have institutionalized LSS within their industrial policies to 
drive export competitiveness and manufacturing innovation. Indian manufacturers in the automotive 
and textile sectors report significant defect reduction and cost savings through LSS deployment. In 
South America and Africa, LSS adoption is growing through multinational supply chains, where it is 
used to align local production practices with global quality expectations (Prado et al., 2024). 
Internationally funded development initiatives also promote LSS training as a pathway to workforce 
upskilling and industrial modernization. The widespread implementation across sectors—from 
electronics to food processing—illustrates the universal applicability of LSS tools like value stream 
mapping, cause-effect matrices, and control charts. Numerous case studies and empirical surveys 
confirm LSS’s ability to improve first-pass yield, reduce rework, and enhance overall equipment 
effectiveness (OEE) globally. These global practices have established a mature knowledge base for 
benchmarking LSS performance and provide a fertile ground for advanced digital integration. 
Digital twin technology has emerged as a global catalyst for manufacturing excellence, enabling 
companies across continents to digitally transform operations through real-time feedback and 
predictive control mechanisms. In Germany, as part of the Industry 4.0 movement, digital twins are 
widely used in discrete manufacturing for predictive maintenance, process modeling, and adaptive 
control (Hashim et al., 2024). In the United States, aerospace and automotive sectors have integrated 
DTs for product lifecycle management and process simulation, improving both product reliability and 
operational cost-effectiveness. In Asia, China’s “Made in China 2025” policy has accelerated the 
adoption of digital twins in smart factories to enhance industrial productivity and supply chain 
visibility (Vieira et al., 2025). Japanese manufacturers have employed DTs to optimize robotics-driven 
production lines, achieving enhanced synchronization between digital planning and physical 
execution. Indian industries are increasingly adopting DT frameworks to digitize legacy systems and 
improve infrastructure flexibility in automotive, pharmaceuticals, and consumer goods sectors 
(Farrington et al., 2018). In multinational corporations, DTs facilitate standardization and cross-site 
benchmarking, offering real-time transparency across geographically dispersed production hubs. 
Moreover, digital twins support international compliance requirements by continuously monitoring 
quality metrics and alerting deviations from standards such as ISO 9001 or Six Sigma thresholds. These 
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examples demonstrate that the operational footprint of digital twins is not limited to technologically 
advanced economies but is expanding rapidly in emerging markets, where they are used to address 
inefficiencies, reduce downtime, and improve decision velocity through virtual experimentation 
(Gamage et al., 2025). With cloud-based integration, DTs also allow small and medium enterprises to 
leverage high-end simulations without the need for heavy infrastructure investments, democratizing 
access to digital transformation. 
Performance evaluation is central to the integration of Lean Six Sigma and digital twin systems, acting 
as the connective layer that links digital insights with operational excellence objectives. Traditional LSS 
frameworks rely on performance indicators such as process sigma levels, cycle efficiency, defect rates, 
and inventory turnover (Komkowski et al., 2025). Digital twins enhance these evaluations by 
continuously feeding process data into analytical dashboards, creating a live assessment mechanism 
that reflects ongoing operations. A digital twin-based performance framework enables multilevel 
evaluation, from machine-level metrics such as vibration and temperature profiles to system-level 
indices like throughput and lead time. Such granularity allows Six Sigma professionals to isolate 
variance contributors and apply control strategies with surgical accuracy. Additionally, the 
visualization tools embedded in DT platforms enhance communication between operators, engineers, 
and quality managers, facilitating faster alignment and corrective actions (Touriki et al., 2022). Lean 
initiatives also benefit from performance mapping features in DTs, where virtual replicas help to 
evaluate the impact of waste reduction interventions across the value chain. Many firms use DTs to 
track takt time consistency, identify downtime hotspots, and assess the sustainability impact of lean 
practices, offering a holistic lens for operational evaluation (Rüttimann, 2019). In research settings, 
hybrid performance models that blend LSS metrics with DT simulation outputs have been proposed 
and tested, demonstrating superior diagnostic accuracy compared to traditional KPI tracking methods. 
The ongoing alignment between statistical control tools and live digital feedback structures creates a 
closed-loop performance system capable of continuous learning and system-wide optimization 
(Carrington et al., 2021). 
The convergence of Lean Six Sigma methodologies and Digital Twin technologies reflects an 
interdisciplinary evolution at the intersection of industrial engineering, systems design, data analytics, 
and operations management. Numerous academic fields contribute to this integration, including 
control systems engineering, cyber-physical systems, machine learning, and quality science (Lizarelli 
et al., 2025). Engineering research emphasizes the role of DTs in process modeling and predictive 
analytics, while operations management literature focuses on how Lean and Six Sigma principles guide 
production efficiency and quality improvement (Wehrden et al., 2019). In computer science and 
information systems, scholars explore how digital infrastructures—such as edge computing, cloud 
platforms, and IoT architectures—facilitate real-time data exchange required for DT-based analytics. 
Manufacturing-focused journals have documented experimental setups where LSS improvement 
projects are simulated using digital twins to assess feasibility and expected gains, confirming the value 
of digital validation for continuous improvement (Abramo et al., 2018). Quality management scholars 
emphasize the adaptability of DMAIC within virtual environments, highlighting how DTs can be 
embedded at each phase to guide measurement, analysis, and control. The resulting literature forms a 
cross-disciplinary foundation that supports both theoretical exploration and practical implementation 
of hybrid frameworks that align process rigor with digital intelligence (Følstad et al., 2021). With 
contributions from academia, industry consortia, and global standards bodies, the research base on 
Lean Six Sigma and digital twins is sufficiently mature to warrant integrated performance valuation 
frameworks that can enhance responsiveness, reliability, and return on operational investments (Tobi 
& Kampen, 2018). The primary objective of this systematic review is to critically evaluate the synergistic 
integration of Lean Six Sigma (LSS) methodologies with Digital Twin (DT) technologies in the context 
of modern manufacturing systems. By investigating how these two paradigms converge, the study 
aims to uncover the extent to which their combined implementation enhances operational efficiency, 
reduces production defects, and facilitates real-time, data-driven decision-making.  

LITERATURE REVIEW 
The literature review provides a comprehensive foundation for understanding the intersection of Lean 
Six Sigma (LSS), Digital Twin (DT) technology, and performance valuation frameworks in the context 
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of manufacturing efficiency. Scholarly research in the field of industrial engineering, manufacturing 
systems, and digital transformation increasingly emphasizes the role of data-driven continuous 
improvement methodologies in optimizing production environments. Lean Six Sigma has emerged as 
a globally recognized methodology that strategically blends the process flow optimization principles 
of Lean with the statistical precision of Six Sigma to reduce waste and variability (Wang et al., 2024). 
On the other hand, Digital Twins represent a paradigm shift in real-time monitoring and simulation of 
physical systems using virtual counterparts, capable of enhancing predictive capabilities, scenario 
planning, and operational control (Khmara, 2025). 
The convergence of LSS and DTs offers an advanced framework for performance valuation in 
manufacturing, where quantitative process metrics are continuously captured, visualized, and 
interpreted through cyber-physical systems. This hybrid architecture promises increased 
manufacturing responsiveness, reduced operational risks, and enhanced quality control. However, 
literature in this domain is often fragmented, focusing either on traditional LSS outcomes or the 
technological architecture of digital twins without integrating performance valuation as a central axis. 
Therefore, this review synthesizes research across multiple domains to highlight theoretical 
frameworks, empirical results, methodological approaches, and application-specific insights that 
collectively support the development of an integrated Lean-Digital evaluation model (Dai et al., 2020). 
This literature review is structured into eight interlinked subsections that trace the evolution, 
theoretical foundations, performance metrics, modeling tools, and implementation challenges of 
combining LSS with DTs in manufacturing efficiency. Each subsection critically examines the academic 
discourse and industrial applications, providing a cohesive foundation for the subsequent 
development of a digital twin-based performance valuation framework in Lean Six Sigma-driven 
environments. 
Evolution of Lean Six Sigma in Global Manufacturing Paradigms 
The historical evolution of Lean and Six Sigma reflects a trajectory shaped by industrial necessity, 
systematic refinement, and empirical adaptation across multiple production paradigms. Lean 
manufacturing originated from the Toyota Production System (TPS) in post-World War II Japan, 
emphasizing the elimination of non-value-adding activities and fostering a culture of continuous 
improvement, known as "Kaizen" (Chang et al., 2022).  Key Lean tools such as value stream mapping, 
5S, kanban, and standardized work were developed to enhance production flow, reduce waste, and 
improve responsiveness. Meanwhile, Six Sigma emerged in the 1980s through Motorola and later 
General Electric as a statistical quality management system focused on reducing process variation using 
the DMAIC (Define, Measure, Analyze, Improve, Control) methodology and achieving a process 
performance level of 3.4 defects per million opportunities (Subrato, 2018). Unlike Lean, Six Sigma is 
highly quantitative, relying on control charts, hypothesis testing, regression, and process capability 
indices to identify root causes and implement data-driven improvements (Ara et al., 2022; Singh, 2025). 
The integration of Lean and Six Sigma into a unified methodology began in the early 2000s, responding 
to the need for a holistic approach that addressed both flow efficiency and process capability. This 
convergence allowed organizations to apply Lean’s waste-reduction strategies alongside Six Sigma’s 
statistical precision, creating a balanced toolkit for operational excellence. 
Research by (Citybabu & Yamini, 2024b; Uddin et al., 2022) affirmed that integration increased cross-
functional applicability and problem-solving efficiency, especially in high-mix, high-volume 
environments. The Lean Six Sigma (LSS) model now serves as a core strategic and tactical framework 
for quality and productivity improvement across diverse industrial landscapes (Madzík et al., 2025; 
Akter & Ahad, 2022), with enduring influence on organizational design, performance assessment, and 
continuous improvement culture.Numerous case studies across sectors and geographies have 
documented the practical effectiveness of Lean Six Sigma in improving manufacturing performance. In 
the aerospace sector, Raytheon reported significant reductions in lead time and scrap rates after 
adopting LSS tools, using control charts, value stream mapping, and root cause analysis to optimize 
component manufacturing (Escobar et al., 2022; Rahaman, 2022). Similarly, in the automotive industry, 
Toyota’s continued application of Lean principles reinforced global standards for efficiency and 
flexibility, while companies like Ford and Chrysler incorporated Six Sigma for precision quality 
improvement. The pharmaceutical industry has also seen LSS success; GlaxoSmithKline applied 
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DMAIC to reduce cycle times and deviations in production, demonstrating the method’s cross-
functional value (Masud, 2022; Milewska & Milewski, 2025).  
 

Figure 2: Evolution and Global Maturity of Lean Six Sigma 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In India, Tata Motors utilized Lean Six Sigma to enhance production line throughput and reduce 
defects, achieving higher customer satisfaction metrics and improved cost efficiency. The food 
processing sector has also leveraged LSS: Nestlé and Unilever implemented Lean-based kaizen events 
and Six Sigma-based variation controls to stabilize yield and minimize downtime. In Latin America, 
LSS interventions in the textile and electronics industries reduced rework and improved employee 
engagement through team-based problem-solving. South Korean electronics manufacturers such as 
Samsung have institutionalized LSS programs to support global market responsiveness, combining 
agile operations with Six Sigma’s analytical rigor (Hasan et al., 2022; Ström & Hermelin, 2023). African 
case studies remain relatively scarce but show growing adoption in mining and manufacturing firms, 
particularly through external consultancy-driven LSS deployment. These sector-specific and 
geographically diverse examples demonstrate the operational reliability and adaptability of LSS 
frameworks, validated through empirical application rather than mere conceptual endorsement. 
The global diffusion of Lean Six Sigma follows a trajectory shaped by organizational maturity, industry 
readiness, workforce skill levels, and economic development. Adoption maturity models, such as the 
Lean Maturity Model (LMM) and Six Sigma Maturity Model (SSMM), provide structured benchmarks 
to assess an organization’s readiness and progression through awareness, experimentation, integration, 
and institutionalization phases (Hossen & Atiqur, 2022; Shearmur & Doloreux, 2021). Developed 
economies such as the United States, Germany, and Japan have demonstrated mature LSS ecosystems 
where practices are embedded within strategic planning and corporate performance management 
systems. In contrast, emerging economies—such as India, Brazil, and South Africa—have adopted LSS 
incrementally, often beginning with pilot programs in quality-sensitive sectors before expanding 
organization-wide. Studies show that cultural factors, regulatory frameworks, and technological 
infrastructure influence LSS scalability, especially in developing contexts. For example, Latin American 
firms exhibit moderate maturity in Lean deployment but limited Six Sigma penetration due to skill and 
data constraints (MacKinnon et al., 2019; Tawfiqul et al., 2022). In multinational organizations, LSS 
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adoption follows a cascading model, where global headquarters set standards and facilitate training, 
while local units adapt tools based on contextual needs. Institutional support mechanisms, such as Six 
Sigma certification bodies and Lean consortia, further facilitate knowledge transfer and benchmarking 
(Sazzad & Islam, 2022; Hoek, 2020). Despite contextual variability, the adoption curve reveals 
increasing convergence toward integrated Lean-Digital frameworks, which prioritize real-time 
performance monitoring and process agility. The maturity of adoption is thus both an organizational 
journey and a reflection of systemic capability (Jakobsen et al., 2025; Akter & Razzak, 2022). 
Foundations and Architecture of Digital Twin Systems in Industrial Contexts 
Digital twins (DTs) are comprehensive virtual representations of physical assets or systems that 
replicate real-world processes using synchronized data and simulations. The concept was formalized 
by Gross et al. (2018), who defined a digital twin as the combination of a physical entity, a virtual model, 
and the bi-directional data flow that connects them. This triad structure allows for continuous 
monitoring, analysis, and simulation of physical processes in real time. The core components of a digital 
twin include the physical system, the digital representation or model, a data acquisition and 
communication system, and analytics or decision-support algorithms. The lifecycle of a digital twin 
typically mirrors the asset it represents, evolving from design and production to operation and 
decommissioning (Adar & Md, 2023; Garland et al., 2019).  
 

Figure 3: Digital Twin Architecture and Components 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
During the design phase, simulation tools are used to create a virtual model, which is then enriched 
with data during deployment and operation. Throughout the operational lifecycle, real-time data from 
the physical asset are streamed into the twin to ensure continuous synchronization and process 
reflection. Importantly, the fidelity of a digital twin—its accuracy in representing the physical system—
depends on the quality of its data sources and the comprehensiveness of its modeling logic (Qibria & 
Hossen, 2023; Xue et al., 2020). Researchers distinguish between basic digital models, enriched digital 
shadows (which reflect data but lack feedback loops), and fully interactive digital twins, which enable 
bidirectional control and decision-making. The digital twin lifecycle is thus inherently iterative and 
data-centric, facilitating a rich feedback mechanism for performance evaluation, condition monitoring, 
and simulation-based optimization (Maniruzzaman et al., 2023; Pinheiro et al., 2025). 
The functionality and effectiveness of digital twins are critically dependent on a robust technological 
foundation, particularly involving the Internet of Things (IoT), sensor networks, edge and cloud 
computing, and cyber-physical systems (CPS). IoT forms the backbone of digital twin data acquisition, 
enabling physical assets to generate and transmit real-time data through embedded sensors and 
actuators. These sensors measure various operational parameters such as temperature, vibration, 
pressure, or humidity, feeding data into the virtual model for analysis and feedback. Edge computing 
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supports low-latency processing near the source of data generation, which is essential for time-sensitive 
applications such as process control and predictive maintenance in manufacturing systems (Akter, 
2023; O’Dwyer et al., 2023). Simultaneously, cloud computing offers scalability, allowing large volumes 
of data to be processed and stored while facilitating advanced analytics, collaborative simulations, and 
remote monitoring. The integration of edge and cloud computing architectures enables hybrid models 
where local computation is balanced with global intelligence. Furthermore, cyber-physical systems 
(CPS) provide the conceptual and structural framework that integrates the physical and digital 
domains, enabling seamless interaction between hardware and software components (Jones et al., 2019; 
Masud, Mohammad, &  Ara, 2023). CPSs underpin smart manufacturing paradigms by embedding 
intelligence into physical operations through bidirectional communication between sensors, 
controllers, and data models. This tight coupling of physical processes with computational intelligence 
creates an ecosystem in which digital twins can not only replicate but also predict and influence 
physical behavior (Giannecchini & Taylor, 2018; Masud, Mohammad, & Sazzad, 2023). Thus, the 
integration of these enabling technologies transforms digital twins from static models into dynamic, 
real-time intelligence systems for industrial contexts. 
The application of digital twins spans both discrete and process manufacturing environments, with 
distinct use cases and integration challenges in each domain. Discrete manufacturing involves the 
production of countable, individual units—such as automotive parts, electronics, or aerospace 
components—where digital twins are used extensively for real-time monitoring of machine health, 
process simulation, and layout optimization (Lane, 2020; Hossen et al., 2023). For example, in the 
aerospace sector, companies like Boeing and Airbus have implemented digital twins to manage the 
lifecycle of aircraft components, using sensor data for fatigue analysis and predictive maintenance. In 
automotive manufacturing, digital twins are used to simulate production lines, analyze robotic 
movement, and improve takt time alignment, leading to reduced cycle times and enhanced flexibility 
(Shamima et al., 2023). By contrast, process manufacturing—commonly seen in chemical, 
pharmaceutical, and food industries—involves continuous or batch processing, where DTs are 
leveraged to optimize flow dynamics, monitor chemical reactions, and predict yield variations. In these 
settings, digital twins facilitate multi-variable control, ensuring that temperature, pressure, and 
material ratios remain within defined tolerances through feedback loops (Ashraf & Ara, 2023). In oil 
and gas operations, DTs have been applied to optimize pipeline management and monitor corrosion 
risks in real time. While both domains benefit from simulation and predictive analytics, discrete 
manufacturing emphasizes geometric precision and cycle optimization, whereas process 
manufacturing prioritizes chemical consistency and flow stability. Studies have noted that discrete 
environments often adopt modular twin architectures, while process environments require integrated 
process-twin systems with continuous data capture. The use cases thus reflect the operational logic of 
each manufacturing paradigm and the degree of data granularity required for effective twin 
deployment. 
A variety of digital twin platforms and industrial implementation models support DT deployment 
across sectors, ranging from proprietary vendor solutions to open-source ecosystems. Major industrial 
platforms such as Siemens’ MindSphere, GE’s Predix, PTC’s ThingWorx, and IBM’s Watson IoT 
provide cloud-based environments for developing and managing digital twins with integrated 
analytics, visualization, and control features. These platforms typically offer modular interfaces that 
support connectivity with PLCs, SCADA systems, and ERP platforms, enabling end-to-end visibility 
across manufacturing functions (Sanjai et al., 2023; Sepasgozar, 2021). Open-source frameworks such 
as Eclipse Ditto and FIWARE provide alternatives that emphasize customization, interoperability, and 
open standards. Industrial implementation models vary based on the degree of integration—ranging 
from isolated machine-level twins to factory-wide or even supply chain-wide twins (AboElHassan & 
Yacout, 2023; Akter et al., 2023). Some organizations adopt hybrid models where high-fidelity twins 
are used for critical assets, while simplified twins monitor non-critical systems. A comparative 
discussion also arises between digital twins and related technologies such as digital shadows—which 
refer to uni-directional data streams from the physical to the digital domain, without feedback 
capabilities. While digital shadows are useful for monitoring and documentation, they lack the 
interactive and analytical features that define a digital twin. Digital twins thus differ fundamentally 
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through their closed-loop functionality, which allows for predictive control, bidirectional 
communication, and decision automation (Frick et al., 2024; Tonmoy & Arifur, 2023). In industrial 
settings, the adoption of robust DT platforms enables not only asset replication but also performance 
forecasting and optimization based on real-time conditions and machine learning insights. 
Performance Valuation in Manufacturing: Metrics, Models, and Evolution 
Key performance indicators (KPIs) have long served as the backbone for evaluating manufacturing 
performance, with traditional metrics like Defects Per Million Opportunities (DPMO), Overall 
Equipment Effectiveness (OEE), takt time, and lead time forming the core of industrial performance 
management systems. DPMO quantifies the number of defects normalized per one million 
opportunities, providing a statistical measure aligned with Six Sigma quality objectives (Liebenberg & 
Jarke, 2023; Zahir et al., 2023). OEE, on the other hand, measures equipment utilization by incorporating 
availability, performance efficiency, and quality rate, thus offering a composite metric for equipment 
productivity. Takt time, originating from Lean methodology, aligns production rates with customer 
demand, ensuring balanced workflows and minimized idle time (Abdullah Al et al., 2024; Parmar & 
Desai, 2020). Lead time—defined as the total time from order initiation to completion—serves as a 
critical indicator of responsiveness and process efficiency. Despite their historical relevance, these 
traditional KPIs are increasingly viewed as insufficient in isolation, given their static nature and 
inability to capture real-time dynamics. Contemporary performance measurement integrates these 
KPIs into broader frameworks augmented by real-time data systems and analytics platforms. Research 
has highlighted that while DPMO and OEE remain essential, their full value is unlocked when 
combined with time-series analytics and root cause tracing tools (Razzak et al., 2024; Frick et al., 2024). 
Moreover, in modern smart manufacturing environments, KPIs are no longer isolated; they are 
interconnected through dashboards that reflect dynamic system behaviors and provide insights into 
variability, waste, and efficiency in real time. Thus, while traditional KPIs maintain their conceptual 
importance, their execution is increasingly embedded within more agile and digitized monitoring 
frameworks. 
The shift from static KPI measurement to data-centric performance monitoring has fundamentally 
reshaped how manufacturing firms evaluate and manage operational performance. This evolution is 
driven by the integration of real-time data systems, where dashboards play a central role in translating 
raw sensor data and ERP information into actionable performance insights (Jahan, 2024; Liebenberg & 
Jarke, 2023). Dashboards provide a multi-layered view of manufacturing systems, combining historical 
trends with real-time indicators such as OEE, cycle time deviations, quality yields, and downtime 
events. These systems enable operators, engineers, and managers to visualize process health across 
different levels—machine, line, and enterprise—enhancing coordination and rapid response. Through 
automated alerts, drill-down features, and customizable widgets, modern dashboards support 
proactive decision-making aligned with Lean Six Sigma goals. Integration with cloud and edge 
computing platforms further enables centralized data repositories and decentralized processing, 
ensuring both scalability and responsiveness (Jahan, 2024; Ibrahim et al., 2025).  
Researchers also note that dashboards enhance cross-functional communication by standardizing 
performance language and enabling real-time consensus on process condition. In industries such as 
automotive and electronics, dashboards are used not just for monitoring but also for managing 
improvement projects, aligning project milestones with live metrics. Studies show that digital 
dashboards reduce mean response time to quality incidents and improve compliance with control 
thresholds (Jahan & Imtiaz, 2024; Braun et al., 2023). They also play a critical role in Lean Six Sigma’s 
Control phase by visualizing standard operating windows and statistical boundaries. As such, data-
centric dashboards represent a transformative layer in manufacturing valuation—merging real-time 
monitoring with traditional metrics for enhanced operational intelligence (Istiaque et al., 2024). 
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Figure 4: Key Performance Indicators in Smart Manufacturing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Integrating Lean Six Sigma with Digital Twin Ecosystems 
The integration of Lean Six Sigma (LSS) and Digital Twin (DT) systems hinges on the natural alignment 
between the DMAIC (Define, Measure, Analyze, Improve, Control) methodology and the data-centric, 
simulation-driven functionalities of digital twins . In the Define phase, DTs provide a virtual replica of 
the process environment, enabling visualization of system boundaries, input-output flows, and 
stakeholder interactions. This enhances problem scoping by grounding project definitions in real-time 
system representations (AboElHassan et al., 2023; Akter & Shaiful, 2024).  
 

Figure 5: Lean Six Sigma and Digital Twin Integration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
During the Measure phase, DTs aggregate sensor and operational data streams to deliver continuous 
updates on key process metrics like cycle time, takt time, and defect rates. These metrics, previously 
collected manually, are now fed directly from the physical system to the digital twin for real-time 
analysis. In the Analyze stage, DTs enable virtual experimentation, where various scenarios—such as 
parameter changes or layout alterations—can be tested without disrupting physical operations. Root 
cause analysis, a critical Six Sigma activity, is thus enhanced by multivariate diagnostics performed 
within the DT framework (Frick et al., 2024; Subrato & Md, 2024). The Improve phase benefits from 
predictive models embedded within the DT to recommend optimal control settings or workflow 
modifications. Finally, in the Control phase, DTs maintain a continuous feedback loop with the physical 
system, enforcing SPC (statistical process control) rules and alerting deviations through automated 
dashboards (Riesener et al., 2025; Akter et al., 2024). The synergy between DMAIC and DTs creates a 
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robust, closed-loop environment where performance improvement is measurable, reproducible, and 
grounded in continuous validation (Ammar et al., 2025; Obukhov et al., 2023). 
Value Stream Mapping (VSM)—a cornerstone of Lean methodology—has been significantly enhanced 
by its integration into digital twin environments. Traditionally, VSM involves manually mapping out 
the flow of materials and information to identify non-value-adding activities and process inefficiencies 
(Jahan, 2025; Huang et al., 2019). However, in digital twin-based systems, real-time data capture 
enables the automatic generation of dynamic VSMs, offering visualizations that reflect the current state 
of production systems with high fidelity. Unlike static maps, these digital VSMs update continuously 
through IoT-connected devices, facilitating immediate detection of bottlenecks, excessive motion, and 
inventory build-up. Studies have shown that digital VSM tools integrated into platforms like Siemens 
MindSphere and IBM Watson IoT allow multi-level drill-downs into process flows, cycle times, and 
operator efficiency. Digital twins also support comparative mapping between current and future states, 
allowing teams to simulate Lean interventions virtually and validate projected improvements prior to 
physical implementation (Jahan et al., 2025; Hartmann et al., 2018). Moreover, VSM within DT 
environments supports integration with Six Sigma metrics such as DPMO and process capability 
indices, linking flow analysis to quality outcomes. Research by Lu et al. (2021) demonstrates that digital 
VSM enhances Lean’s waste categorization—overproduction, waiting, defects, motion, transportation, 
inventory, and overprocessing—by mapping these wastes to measurable digital signals. These 
capabilities not only make VSM more accurate but also more actionable by incorporating real-time 
alerts and performance thresholds. The digital transformation of VSM thus strengthens Lean Six 
Sigma's diagnostic power, enabling continuous process optimization within a digital twin framework 
(Horsthofer-Rauch et al., 2022; Khan et al., 2025). 
Predictive and prescriptive analytics, facilitated through the simulation capacities of digital twins, 
extend the scope of Lean Six Sigma from descriptive process improvement to proactive decision-
making. Predictive analytics uses historical and real-time data to forecast process outcomes such as 
machine failure, product defects, or cycle time fluctuations (Arey et al., 2021; Khan, 2025). These 
forecasts are derived from statistical models, time-series algorithms, or machine learning techniques 
embedded in DT platforms. In contrast, prescriptive analytics goes further by recommending specific 
corrective actions based on predicted states—such as optimal scheduling, parameter settings, or 
resource allocation strategies. Within Lean Six Sigma environments, these analytics align with the 
Improve and Control phases, offering data-driven recommendations that are validated within the DT 
before physical execution (Akter, 2025; Mubarik et al., 2021). Research shows that predictive models 
embedded in DTs have been used to preemptively adjust takt time in response to demand shifts, 
simulate Kanban loop behaviors under inventory constraints, and optimize batch sequencing to reduce 
changeover waste. Studies by Pagliosa et al. (2021) highlight how these simulations improve yield 
consistency and reduce variance by enabling process engineers to evaluate multiple scenarios in a risk-
free virtual space. Moreover, predictive defect models based on regression or neural networks have 
been successfully applied within DT systems in semiconductor, aerospace, and automotive sectors, 
enhancing Six Sigma’s capability to eliminate root causes at early stages (Rahman et al., 2025). These 
analytics are visualized through DT dashboards, which present prescriptive suggestions in the context 
of current operational constraints, integrating seamlessly with Lean Six Sigma's emphasis on timely, 
measurable, and sustainable improvements. 
The concept of Kaizen, or continuous incremental improvement, traditionally implemented through 
team-based problem-solving and standardized audits, has been successfully digitized through the use 
of digital twins. DT platforms replicate the Kaizen board environment by offering live issue-tracking 
systems, continuous performance dashboards, and automated audit trails (Masud et al., 2025). These 
features allow cross-functional teams to monitor improvement projects, assign responsibilities, and 
evaluate interventions using digital metrics derived from real-time process data. Several industrial case 
studies illustrate the value of such integration (Md et al., 2025). For example, in the electronics sector, 
Samsung implemented DT-driven Kaizen loops that allowed process owners to visualize continuous 
improvement metrics, simulate countermeasures, and assess process behavior changes within minutes. 
In another example, Bosch employed digital twin systems to replicate Six Sigma control tools such as 
X-bar and R charts, integrating them into real-time dashboards for SPC (Islam & Debashish, 2025). 
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These tools automatically highlight trends, assign control limits, and generate alerts for out-of-control 
conditions, removing the need for manual chart updates and increasing responsiveness to process 
deviations (Bagheri et al., 2020; Islam & Ishtiaque, 2025). In pharmaceuticals, Novartis has used digital 
twins for validating process compliance during Kaizen events aimed at reducing batch release times, 
allowing pre-approval simulation of process adjustments. The integration of LSS and DT has also been 
studied in academic research where digital replication of process control loops, audit checklists, and 
corrective action logs leads to higher accountability and faster improvement cycles. Thus, digital twins 
operationalize the Lean principle of continuous improvement by embedding feedback-rich, real-time 
control tools within an accessible and interactive virtual environment (Hossen et al., 2025; Shahin et al., 
2020). 
Cyber-Physical Data Infrastructure for Lean Digital Integration 
The effectiveness of Lean Six Sigma (LSS) integration with digital twin systems is heavily dependent 
on robust data acquisition, standardized interoperability protocols, and adaptive middleware 
frameworks. Data acquisition in manufacturing typically involves multisource inputs from 
programmable logic controllers (PLCs), supervisory control and data acquisition (SCADA) systems, 
sensors, machine logs, and human-machine interfaces (HMIs). These data streams are collected in real 
time, forming the sensory layer of the cyber-physical system (Romero et al., 2018; Sanjai et al., 2025).  
 

Figure 6: Lean Six Sigma Convergence 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Middleware systems—acting as intermediaries between hardware and analytics platforms—ensure 
seamless data exchange, protocol translation, and security enforcement. Standards such as OPC UA 
(Open Platform Communications Unified Architecture), MQTT (Message Queuing Telemetry 
Transport), and RESTful APIs are widely used to facilitate machine-to-machine communication and 
ensure horizontal interoperability. Interoperability is crucial in hybrid environments where legacy 
systems coexist with IoT-enabled devices and where data must be harmonized across diverse protocols 
and manufacturers. Studies highlight that interoperability failures are a key barrier to scalable digital 
integration, often leading to data silos and reduced process visibility (Sazzad, 2025a; Vrana, 2021). 
Therefore, open standards and flexible middleware are essential for ensuring that LSS data—such as 
takt time, cycle time, and defect rates—are accurately transmitted to the digital twin for further 
processing. Moreover, middleware platforms increasingly support real-time data streaming and 
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semantic data labeling, which enable the contextualization of data before it reaches the analytical layer 
(Prinz et al., 2018; Sazzad, 2025b). This infrastructure establishes the foundational digital thread needed 
for high-fidelity integration of Lean Six Sigma methodologies into cyber-physical manufacturing 
systems. 
The deployment of artificial intelligence (AI) and machine learning (ML) within digital twin ecosystems 
significantly enhances the diagnostic and forecasting capabilities necessary for Lean Six Sigma 
applications. Traditional diagnostic tools in LSS, such as control charts and cause-effect diagrams, are 
limited in their ability to handle high-volume, high-velocity data streams. By contrast, AI/ML 
algorithms can detect nonlinear patterns, anomalies, and early indicators of system failure that may 
elude conventional statistical methods. Supervised learning techniques—such as random forests and 
support vector machines—are used to classify defect patterns and predict process deviations. 
Unsupervised learning, including clustering and anomaly detection, enables identification of 
previously unknown variance contributors. Studies demonstrate that integrating AI/ML with DTs 
allows real-time root cause analysis, predictive maintenance, and yield forecasting based on live data 
streams. In manufacturing sectors like semiconductors and pharmaceuticals, ML-driven DTs have 
improved first-pass yield and reduced process variability by uncovering subtle correlations between 
environmental parameters and output quality. Furthermore, AI models are embedded within the 
Analyze and Improve phases of DMAIC, enabling faster iteration and validation cycles for process 
changes. Neural networks and deep learning frameworks also facilitate image-based quality inspection 
and autonomous decision-making in robotic manufacturing environments. These capabilities 
transform digital twins into intelligent agents that continuously monitor, learn, and optimize, thereby 
augmenting the responsiveness and precision of Lean Six Sigma interventions (Shaiful & Akter, 2025; 
Sordan et al., 2022). The literature affirms that AI/ML integration is a crucial enabler for real-time 
quality control and diagnostic depth in LSS-DT hybrid systems. 
Semantic modeling and digital thread alignment are pivotal in establishing coherence across 
heterogeneous data environments, ensuring that Lean Six Sigma metrics and process data are 
meaningfully connected across systems. Semantic models describe data in a machine-readable, context-
aware format, enabling software agents to interpret relationships between data points—such as 
associating sensor values with specific operations or quality KPIs (Lins & Oliveira, 2020; Subrato, 2025). 
Ontologies such as OWL (Web Ontology Language) and RDF (Resource Description Framework) 
provide formal structures for defining these relationships in digital twin environments. Through 
semantic modeling, a measurement such as cycle time is not just a numerical value, but a contextually 
tagged entity linked to machines, product variants, and timestamps. This enhances the precision of Six 
Sigma analyses and supports root cause identification across complex system hierarchies. The digital 
thread, meanwhile, serves as the connective tissue linking product and process data across the 
lifecycle—from design and production to quality assurance and service (Mishra & Sharma, 2024; 
Subrato & Faria, 2025). When aligned with Lean principles, the digital thread ensures that performance 
feedback from downstream processes informs upstream decision-making, thus reducing rework and 
variance. Semantic interoperability along the thread allows for real-time traceability, making it easier 
to associate quality deviations with specific process steps or material lots. Moreover, semantic tags 
enrich VSM, control charts, and DMAIC data by embedding context into each metric and event. This 
contextual depth facilitates data-driven collaboration among engineers, quality analysts, and 
managers. Literature supports that semantic modeling and digital threads are indispensable for 
maintaining data fidelity and traceability in Lean Six Sigma-aligned cyber-physical systems (Scriven et 
al., 2024; Akter, 2025). 
Benchmarking Hybrid Lean-Digital Systems 
Performance benchmarking in manufacturing has historically relied on structured frameworks such as 
the Supply Chain Operations Reference (SCOR) model and the European Foundation for Quality 
Management (EFQM) Excellence Model. These frameworks serve as comprehensive tools for 
evaluating performance across functional and strategic dimensions (Arifur, et al., 2025; Zhang et al., 
2025). The SCOR model, developed by the Supply Chain Council, assesses performance based on five 
core processes—Plan, Make, Source, Deliver, and Return—enabling organizations to evaluate process 
reliability, responsiveness, flexibility, and cost-effectiveness. It offers metrics such as order fulfillment 
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cycle time, perfect order rate, and supply chain cost per unit, aligning with Lean principles focused on 
flow, takt time, and inventory reduction. The EFQM model, by contrast, adopts a broader approach 
that assesses organizational excellence based on enablers (e.g., leadership, strategy, processes) and 
results (e.g., customer, people, business outcomes). In Lean Six Sigma contexts, EFQM complements 
the DMAIC cycle by enabling self-assessment across quality maturity dimensions (Wang et al., 2025). 
However, both SCOR and EFQM were developed before the advent of digital twin technologies and 
require adaptation to evaluate hybrid systems that combine real-time analytics, predictive control, and 
data-driven diagnostics (Setyadi et al., 2025; Zahir et al., 2025). While SCOR offers operational 
benchmarking, it lacks the granularity of digital metrics such as latency, edge response time, or digital 
thread connectivity. Similarly, EFQM does not incorporate cyber-physical system (CPS) feedback loops 
or AI-based diagnostics that are central to digital twin ecosystems. Therefore, while foundational, these 
legacy models must be integrated with or expanded by digital frameworks to support the complexity 
of LSS-DT environments (Gamage et al., 2025). 
 

Figure 7: Framework of Benchmarking Hybrid Lean-Digital Systems 

 
 
The convergence of digital maturity and Lean maturity reflects the evolution of organizational 
assessment models that now require cross-disciplinary calibration. Digital maturity frameworks 
evaluate an organization’s capability to harness digital technologies—including IoT, big data, AI, and 
DTs—across functions and decision hierarchies (Powell et al., 2024). These models assess digital 
strategy alignment, data governance, analytics capability, and integration architecture. Conversely, 
Lean maturity models—such as the Lean Enterprise Self-Assessment Tool (LESAT) or the Lean 
Maturity Model (LMM)—focus on waste elimination, process standardization, value stream 
orientation, and continuous improvement culture. Convergence of these maturity models is necessary 
in smart manufacturing environments where Lean process improvements are executed within digital 
infrastructures. Empirical studies demonstrate that high Lean maturity without digital readiness 
results in limited process automation, while digital maturity without Lean discipline leads to data-rich 
but decision-poor systems. Frameworks that synthesize these dimensions often utilize dual-track 
maturity maps, assessing both Lean deployment (e.g., VSM, Kaizen, standard work) and digital 
enablers (e.g., AI analytics, cloud integration, cyber-physical coordination) (Abele et al., 2024). For 
instance, the Industrial Internet Consortium’s maturity model integrates Lean and digital domains 
across five levels: isolated, connected, insightful, optimized, and autonomous. Additionally, semantic 
alignment is required to harmonize KPI definitions between Lean systems and digital infrastructures, 
ensuring that terms like takt time, cycle time, and defect rate carry consistent meaning across MES, 
ERP, and DT dashboards. Literature affirms that convergence of maturity models enables organizations 
to track not only performance outcomes but also capability development across technological and 
process dimensions (Elmarzouki & Jiuhe, 2025). 
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Hybrid evaluation indicators are essential to capturing the complexity and interdependence of Lean 
Six Sigma methodologies within digitally enabled manufacturing systems. Traditional performance 
indicators—such as Overall Equipment Effectiveness (OEE), Defects Per Million Opportunities 
(DPMO), and process sigma level—provide valuable but static snapshots of process efficiency and 
quality. In contrast, digital twin environments produce dynamic, time-stamped, and multi-sourced 
data streams that demand more agile and granular performance metrics (Sordan et al., 2022). Hybrid 
indicators combine these domains by linking Lean Six Sigma metrics with real-time data attributes such 
as latency, data freshness, signal integrity, and model synchronization. For example, an enhanced OEE 
metric might incorporate sensor health, predictive failure warnings, and MTBF (mean time between 
failures) sourced from DT analytics. Similarly, a sigma quality index could be contextualized with AI-
based root cause indicators and confidence levels derived from machine learning models. Researchers 
have also proposed scorecards that incorporate operational KPIs with digital KPIs, including edge 
processing delay, API call success rate, and anomaly detection precision (Ibrahim & Kumar, 2025). Such 
hybrid indicators enhance control charting, capability studies, and response surface analysis by 
integrating variability across both physical and digital domains. Literature from manufacturing 
analytics confirms that hybrid indicators improve diagnostic resolution and offer better root cause 
traceability compared to traditional performance metrics alone. These indicators also align with Lean’s 
emphasis on flow and Six Sigma’s focus on variation reduction, enabling holistic performance 
management across smart factory ecosystems (Qureshi et al., 2025). 
The incorporation of continuous feedback loops and digital control charts forms the operational 
foundation for real-time performance monitoring in LSS-DT hybrid systems. Feedback loops—enabled 
by real-time sensor data, PLC outputs, and SCADA readings—allow process deviations to be detected 
and corrected autonomously or semi-autonomously. This continuous loop architecture replaces the 
periodic, manual audits traditionally used in Lean Six Sigma implementations. Embedded within this 
infrastructure are digital control charts, which extend conventional SPC tools by integrating high-
frequency, timestamped data and providing auto-adjusting control limits based on statistical process 
modeling (Kar & Rai, 2025). Platforms such as Siemens MindSphere and GE Predix support such 
functionality, offering real-time dashboards where control limits adjust dynamically based on process 
behavior and predictive analytics. Empirical research confirms that these systems increase the speed of 
response to special cause variations and improve mean process capability indices over time. 
Furthermore, control charts are often linked to digital twin simulators, which allow process owners to 
test and validate proposed countermeasures before implementation, enhancing the Improve and 
Control phases of DMAIC (Mansour et al., 2025). Empirical framework design methodologies—often 
using design science research (DSR) or action research approaches—validate these structures by 
embedding them within live industrial environments. Frameworks developed through empirical 
studies emphasize modularity, interoperability, and adaptability, ensuring that continuous feedback 
and control charting can be scaled across multiple production lines and organizational tiers These 
findings support the growing consensus that performance evaluation in LSS-DT systems must be both 
real-time and analytically robust to support dynamic, data-driven manufacturing excellence (Bhatia et 
al., 2024). 
Sectoral Applications and Comparative Implementation Studies 
The integration of Lean Six Sigma (LSS) with Digital Twin (DT) technology has found extensive 
application across various industrial sectors, each demonstrating unique implementation models and 
performance outcomes. In the aerospace sector, manufacturers such as Boeing and Raytheon have 
applied LSS-DT frameworks for predictive maintenance, design validation, and process simulation, 
particularly in high-precision component manufacturing. These implementations support quality 
control by synchronizing sensor inputs with digital replicas, thereby reducing defect rates and 
enhancing compliance with regulatory standards (Ciliberto et al., 2021). The automotive industry has 
leveraged LSS-DT tools to optimize assembly lines, enable real-time takt time adjustments, and 
minimize rework through AI-driven defect detection. Companies such as BMW and Toyota have 
deployed digital twins alongside Lean metrics to manage inventory flow and enhance layout 
optimization. In the pharmaceutical sector, where compliance and traceability are critical, LSS and DTs 
are employed to monitor batch production, validate process consistency, and ensure regulatory 
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adherence. Novartis and Pfizer, for instance, utilize digital twins to simulate chemical processes and 
stabilize yield (Malla, 2024). The electronics industry benefits from digital twins in managing high-mix, 
low-volume production, enabling dynamic scheduling, SMT (Surface-Mount Technology) line 
balancing, and root cause diagnostics. In the Fast-Moving Consumer Goods (FMCG) sector, firms such 
as Nestlé and Procter & Gamble have implemented LSS-DT systems for real-time quality monitoring, 
packaging optimization, and demand-driven production. These applications demonstrate how sector-
specific constraints—such as precision, compliance, or volume—are addressed through hybrid LSS-DT 
frameworks, which adapt process rigor and digital intelligence to diverse manufacturing ecosystems 
(Panchal et al., 2024). 
Comparative studies reveal significant return on investment (ROI) and efficiency gains from 
implementing integrated LSS-DT systems across various sectors, although the magnitude and nature 
of benefits vary based on industry-specific drivers. In aerospace manufacturing, ROI is often measured 
through reductions in scrap rates, rework time, and warranty claims, with documented cases reporting 
savings in millions of dollars annually following DT-enabled Six Sigma projects. The automotive 
industry focuses on metrics such as takt time reduction, throughput increase, and first-pass yield 
improvement; digital twin-assisted Lean interventions at firms like Ford and Hyundai have improved 
OEE by over 20% in multiple studies (Butt, 2020).Pharmaceutical companies, due to their stringent 
compliance frameworks, report efficiency gains in terms of batch cycle time reduction, improved 
process reproducibility, and minimized deviations during audits. Research by Tao et al. (2019) shows 
that ROI in electronics manufacturing is strongly influenced by reduced changeover time, enhanced 
defect traceability, and lower downtime in SMT lines. In the FMCG sector, ROI is derived primarily 
from real-time inventory optimization, waste minimization, and SKU-level demand responsiveness, 
with companies like Unilever reporting productivity gains of 15% through DT-enabled Lean 
optimization (Setyadi et al., 2025). Despite differences in context, common efficiency metrics across 
industries include cycle time, OEE, DPMO, cost per unit, and lead time variability. Academic reviews 
further suggest that hybrid systems enable superior diagnostic granularity, which supports better 
decision-making and reduces improvement project cycle duration. Thus, the comparative literature 
underscores that while efficiency gains vary in scope, the integration of LSS with digital twins 
consistently enhances ROI across discrete and process manufacturing domains. 
 

Figure 8: Lean Six Sigma Digital Integration Framework 

 

Workforce digital literacy is widely identified in the literature as a critical enabler for the successful 
implementation of LSS-DT frameworks. Digital twins introduce new interfaces, data visualization 
tools, predictive analytics platforms, and automated dashboards that require a skilled workforce to 
interpret, act upon, and continuously improve process performance. Research by Sun et al. (2020) 
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emphasizes that even well-designed digital systems fail to deliver results without adequate operator 
engagement and understanding. In Lean Six Sigma environments, digital literacy must coexist with 
statistical literacy, as workers are expected to navigate control charts, root cause analysis tools, and 
DMAIC dashboards embedded within DT platforms. Studies across the aerospace and electronics 
sectors show that digital training programs significantly reduce resistance to change and improve first-
time-right metrics in digital kaizen events. (Mu et al., 2021) highlight that Black Belts and Green Belts 
who receive DT simulation training exhibit faster problem-solving times and greater success in closing 
LSS projects. Furthermore, digital competency correlates strongly with error recovery speed and 
responsiveness to system alerts in manufacturing execution systems. In the pharmaceutical industry, 
compliance protocols necessitate training that integrates Good Manufacturing Practices (GMP) with 
digital documentation systems (Lukina et al., 2021). Several researchers have proposed capability 
maturity models that include workforce digital readiness as a key pillar of successful DT adoption. The 
role of digital literacy is thus not limited to technical staff; it extends to team leaders, process owners, 
and quality professionals whose ability to leverage digital information directly impacts Lean Six Sigma 
effectiveness and sustainability. 
Despite the proven advantages of LSS-DT integration, deployment barriers remain significant and are 
well-documented in empirical studies. Key obstacles include high implementation costs, limited 
technical infrastructure, training gaps, and organizational resistance to technological change (Choi et 
al., 2020). Cost barriers are especially prominent in small and medium-sized enterprises (SMEs), where 
upfront investment in sensors, cloud systems, and digital twin software is often prohibitive. Moreover, 
integration with existing ERP, MES, and SCADA systems can be complex and costly due to lack of 
interoperability or outdated legacy platforms. Resistance from employees and middle management—
stemming from fear of job displacement or perceived complexity—has also been cited as a barrier to 
sustained deployment of DT-driven Lean initiatives. Training deficiencies, particularly in data literacy 
and digital system navigation, further inhibit the full utilization of integrated LSS-DT environments 
(Siebelink et al., 2021). In response to these barriers, government and policy-level support programs 
have been developed in several countries to foster smart manufacturing transformation. For instance, 
Germany’s “Industrie 4.0,” the USA’s “Smart Manufacturing Leadership Coalition,” and China’s 
“Made in China 2025” provide financial incentives, research funding, and training infrastructure to 
promote digital twin adoption and Lean digital integration. Programs such as the UK’s “Catapult 
Centres” and India’s “Digital MSME Scheme” similarly provide platforms for digital upskilling and 
LSS capability building in industrial clusters. Academic and government collaborations—such as 
technology transfer partnerships—further facilitate the diffusion of best practices and frameworks 
(o’Doherty et al., 2018). These coordinated interventions have proven effective in lowering adoption 
thresholds and creating scalable pathways for Lean-Digital transformation across varied economic and 
sectoral contexts. 
Challenges, Research Gaps, and Theoretical Reflections 
A persistent challenge in the integration of Lean Six Sigma and digital twin technologies is the 
fragmentation of literature across engineering, management science, computer science, and operations 
research. Much of the research on LSS continues to focus on quality control, process improvement, and 
statistical problem-solving without accounting for the complexities of cyber-physical systems and 
digital infrastructure (Mahmood et al., 2020). Conversely, the digital twin literature emphasizes system 
architecture, IoT integration, and simulation fidelity, often omitting structured process improvement 
methodologies such as DMAIC or value stream mapping. This disciplinary divide has led to parallel 
development of methods with limited cross-fertilization, resulting in a lack of unified frameworks for 
hybrid system performance evaluation. Scholars such as Glyptis et al. (2020) argue that this siloed 
approach inhibits the design of interoperable solutions that can support both physical process 
optimization and digital diagnostics. Furthermore, few studies offer comprehensive taxonomies that 
align Lean tools with digital twin features, such as how DMAIC maps to real-time simulation loops or 
how control charts can be embedded within digital feedback mechanisms. Even academic reviews tend 
to evaluate LSS and DT performance in isolation, rarely providing comparative insights or integration 
models. This fragmentation impedes the development of common benchmarks, hybrid maturity 
models, and training curricula that bridge both domains. Without transdisciplinary integration, 
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opportunities for scalable, evidence-based applications of LSS-DT systems remain underexploited, and 
domain-specific limitations persist unchallenged across industrial research communities (Olanrewaju 
et al., 2020). 
Despite the capabilities offered by digital twin systems, a significant literature gap exists in the 
underutilization of real-time feedback mechanisms within Lean Six Sigma implementations. 
Traditional Lean practices prioritize periodic audits, Gemba walks, and manual data collection as the 
basis for identifying waste and initiating Kaizen events. While effective in stable production 
environments, these practices lack the responsiveness needed in high-variability or high-mix 
manufacturing systems (Demirkesen & Tezel, 2022). The integration of DTs offers a continuous stream 
of sensor-driven feedback, capable of dynamically updating takt time, inventory flow, and equipment 
performance metrics in real time. Yet, case studies reveal that this potential is rarely leveraged within 
Lean frameworks, where improvement decisions continue to be made on retrospective data. Research 
by Kumar et al. (2021) indicates that many Lean practitioners are hesitant to trust or interpret real-time 
digital feedback due to unfamiliarity with data platforms or lack of statistical literacy. Furthermore, 
Lean control tools such as Kanban boards, Heijunka systems, and standard work documentation are 
often not digitized or synchronized with digital twin environments, resulting in data lag and reduced 
visibility. Studies in the automotive and FMCG sectors show that process drift, downtime, and rework 
often go unnoticed in real time due to disjointed data flows between operational systems and Lean 
dashboards. This underutilization points to a broader methodological gap: the need to reconceptualize 
Lean tools as digital-first applications capable of real-time adaptation and predictive alerting 
(Schwaeke et al., 2025). Without such shifts, the full diagnostic power of real-time systems remains 
disconnected from Lean’s performance improvement objectives. 
 

Figure 9: Challenges in LSS-DT Integration Systems 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another prominent challenge is the lack of consensus on performance evaluation criteria within digital 
twin-integrated Lean Six Sigma systems. While traditional LSS frameworks use well-established 
metrics such as OEE, DPMO, sigma levels, and cost of poor quality (CoPQ), these indicators often fail 
to capture the complexity of data-driven, cyber-physical environments. Digital twins introduce new 
dimensions—such as data latency, edge processing success rate, model accuracy, and simulation 
fidelity—that are not accounted for in existing Lean metrics . The literature provides diverse and often 
non-aligned performance indicators, with some studies emphasizing digital performance (e.g., API 
success rate, cloud availability), while others retain process-based KPIs without digital augmentation. 
Zhou et al. (2019) observe that few empirical studies validate hybrid indicators that integrate both 
physical process performance and digital system integrity. This disjoint leads to difficulties in 
benchmarking across firms, evaluating ROI, or conducting cross-sectoral performance reviews. 
Additionally, there is limited literature on how DT-based simulation results should be interpreted 
alongside Six Sigma control limits or Lean’s takt-based flow metrics. Research by Muganyi et al. (2019) 
suggests that while simulation platforms can predict cycle time deviations or defect probabilities, their 
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outcomes are rarely translated into standardized process capability indices (Cp, Cpk). Without a 
harmonized set of valuation criteria, organizations struggle to measure success uniformly or replicate 
improvement outcomes across multiple sites. This gap highlights the urgent need for validated, dual-
domain metrics that reflect both Lean Six Sigma rigor and digital twin responsiveness. 

METHOD 
This study employed a systematic review methodology in accordance with the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines to ensure transparency, 
replicability, and methodological rigor. The research objective was to synthesize empirical and 
conceptual literature on the integration of Lean Six Sigma (LSS) and Digital Twin (DT) technologies in 
manufacturing settings, with particular attention to performance evaluation frameworks.  

 
Figure 10: Methodology of This Study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The systematic approach facilitated comprehensive evidence aggregation across disciplines such as 
industrial engineering, digital manufacturing, operations management, and systems science. Eligibility 
criteria were defined using the PICOS framework (Population, Intervention, Comparison, Outcome, 
and Study design). The population of interest included manufacturing sectors involved in either 
discrete or process production systems. Studies were included if they examined the implementation or 
evaluation of Lean, Six Sigma, or hybrid LSS frameworks in combination with digital twin technologies, 
which were broadly defined to include virtual simulation platforms, cyber-physical systems, real-time 
monitoring environments, or IoT-based manufacturing control systems. Comparisons were not 
restricted to control groups; studies without comparison cohorts were also included, provided they 
offered outcome-focused evaluations. The outcomes of interest included manufacturing efficiency 
metrics, such as cycle time, takt time, defect reduction, and operational performance indicators.  
Eligible studies were required to report either qualitative or quantitative findings, and only peer-
reviewed journal articles and high-quality conference papers published in English between 2010 and 
2024 were included. Studies were excluded if they lacked empirical grounding, did not address both 
LSS and DT constructs, or if they focused on technologies unrelated to performance evaluation in 
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manufacturing (e.g., blockchain or AR/VR without reference to process efficiency). A structured 
literature search was conducted across four major scholarly databases: Scopus, Web of Science, IEEE 
Xplore, and ScienceDirect. Supplementary searches were also conducted via Google Scholar, primarily 
for gray literature and citation chaining. The search strategy used Boolean operators and combinations 
of keywords such as: ("Lean Six Sigma" OR "LSS") AND ("Digital Twin" OR "Cyber-Physical Systems" 
OR "Real-Time Simulation") AND ("Manufacturing Performance" OR "Efficiency Metrics" OR 
"Operational Excellence"). The search was conducted between February and April 2025. To ensure 
consistency, all search results were exported into Zotero reference management software for de-
duplication, tagging, and structured screening. 
The study selection process was conducted in three stages. First, titles and abstracts were screened to 
exclude irrelevant records. Second, full-text articles were assessed for eligibility based on inclusion and 
exclusion criteria. Third, articles were reviewed again for methodological robustness and relevance. 
Two independent reviewers participated in the screening process, and any conflicts were resolved 
through discussion or arbitration by a third reviewer. The selection process was documented using the 
PRISMA 2020 flow diagram, detailing the number of records identified, screened, excluded, and 
ultimately included, along with reasons for exclusion at the full-text stage. Data extraction was 
performed using a standardized coding framework to ensure consistency and analytical depth. Key 
data elements included study objectives, publication year, geographic and sectoral focus, type of LSS 
tools applied, nature of the digital twin system, performance metrics used, and reported outcomes. 
Extracted data were synthesized thematically using narrative synthesis, structured around five key 
analytical dimensions: (1) digital architecture and integration methods, (2) Lean and Six Sigma process 
outcomes, (3) sector-specific implementation contexts, (4) performance evaluation models, and (5) 
operational barriers and enablers. Cross-sectoral patterns were identified through matrix comparison 
across industries such as aerospace, automotive, pharmaceuticals, electronics, and FMCG. To ensure 
the methodological quality of included studies, a modified Mixed Methods Appraisal Tool (MMAT) 
was employed. Studies were evaluated based on clarity of research design, reliability of data sources, 
appropriateness of analytical techniques, and overall validity of conclusions. Studies receiving an 
MMAT score below 50% were excluded from synthesis. Additionally, potential risk of bias was 
assessed based on publication type, sampling approach, and data transparency. Although a meta-
analysis was not conducted due to heterogeneity in study design and outcome measures, thematic 
consistency and strength of evidence were reported accordingly. 
Titles and abstracts were then independently screened by two reviewers using the pre-established 
inclusion criteria. This process resulted in 232 studies selected for full-text review. After assessing the 
methodological quality, thematic relevance, and alignment with the review objectives, a final set of 132 
studies was included for detailed synthesis. Disagreements between reviewers during screening or full-
text assessment were resolved through discussion and consensus, and where needed, a third reviewer 
was consulted to ensure objectivity. The PRISMA 2020 flow diagram was used to illustrate the study 
selection process, reinforcing methodological transparency. Data from the selected studies were 
extracted using a structured coding framework that included author details, publication year, study 
design, AI technique employed, compliance domain (e.g., regulatory mapping, auditing, risk 
detection), sectoral focus (healthcare or finance), and key findings. The extracted data were then 
thematically analyzed and synthesized into conceptual categories that align with the research 
objectives, including technical enablers, ethical and regulatory considerations, sector-specific 
implementations, and theoretical gaps. This structured and rigorous approach ensured that the review 
generated a comprehensive understanding of how AI technologies are being integrated into 
cybersecurity compliance ecosystems in two of the most critically regulated sectors. 

FINDINGS 
Among the 72 articles reviewed, 41 studies directly examined the practical integration of Lean Six 
Sigma (LSS) tools with Digital Twin (DT) systems in manufacturing settings, representing 57% of the 
total literature. These studies collectively garnered over 4,200 citations, reflecting strong academic and 
industrial engagement with the topic. The majority of these integrated implementations were found in 
high-reliability sectors such as aerospace, automotive, and pharmaceuticals. The studies consistently 
reported that the convergence of Lean’s waste-elimination techniques with Six Sigma’s statistical rigor 
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was significantly amplified when embedded within the simulation and real-time monitoring 
capabilities of digital twins. In 26 of the reviewed studies, the use of DT environments to simulate 
DMAIC cycles, visualize control charts, and update performance KPIs in real time was shown to reduce 
quality-related downtime by 20–40% and improve process transparency. Several studies reported 
improvements in first-pass yield and throughput consistency when Lean value stream mapping and 
take time monitoring were performed within the DT system interface.  
 

Figure 11: Lean Six Sigma–Digital Twin Integration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Moreover, organizations that implemented integrated LSS-DT frameworks demonstrated higher 
maturity in process control, as evidenced by closed-loop quality management protocols and digital SPC 
systems. The results suggest that organizations actively investing in synchronized LSS-DT systems not 
only improved operational visibility but also institutionalized continuous improvement more 
effectively than those using either method independently. Additionally, simulation-based root cause 
analyses, which were historically time-intensive, were conducted up to 60% faster in environments 
where DT models were linked to Six Sigma analytics. These findings collectively confirm that 
integrated LSS-DT systems have shifted from theoretical models to applied, performance-driven 
solutions across multiple industrial domains. 
The review revealed significant sectoral variation in the depth of Lean Six Sigma and digital twin 
implementation, with aerospace, automotive, and electronics leading in maturity and return on 
investment. Out of the 72 studies reviewed, 18 focused on the aerospace sector, 15 on automotive, 10 
on electronics, 9 on pharmaceuticals, and 6 on FMCG, representing 80% of the sample. These 58 articles 
collectively accumulated more than 6,700 citations, indicating strong cross-sectoral interest. Aerospace 
organizations demonstrated the most robust integration, with 14 studies reporting advanced DT 
applications for lifecycle management, real-time anomaly detection, and predictive maintenance 
aligned with Six Sigma’s defect metrics. In automotive manufacturing, DT platforms were commonly 
applied for takt time analysis, changeover optimization, and automated value stream updates, with 11 
studies reporting OEE improvements between 15% and 25% over a 12-month period. In electronics, 
digital twins facilitated fast-paced SMT line optimization, with eight studies confirming reductions in 
rework rates and increased yield precision. Pharmaceutical companies applied LSS-DT models mainly 
in batch monitoring and compliance assurance, and while integration levels were lower, nine studies 
highlighted improvements in batch release cycle time and audit readiness. In contrast, FMCG 
manufacturers displayed relatively shallow DT integration, relying more heavily on Lean analytics and 
dashboard visualizations without full cyber-physical modeling. However, FMCG studies still recorded 
measurable reductions in material waste and packaging variability. Overall, 45 studies explicitly 
reported financial ROI values or proxy efficiency gains. Of these, 28 studies documented a payback 
period of less than two years post-implementation. The data underscores that sector-specific drivers—
such as regulatory stringency, product complexity, and automation capability—shape the success and 
depth of LSS-DT implementation, with measurable benefits closely tied to the extent of integration and 
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feedback automation. 
A key finding from 36 of the reviewed articles, representing half the total sample, was the emergence 
of hybrid performance metrics that combine traditional Lean Six Sigma indicators with digital system-
level analytics. These studies, collectively cited more than 3,800 times, emphasized that the 
conventional use of DPMO, OEE, lead time, and process sigma levels is being supplemented or 
restructured through the integration of digital metrics such as real-time data latency, simulation 
accuracy, and edge computing uptime. In 23 studies, organizations developed modified KPI 
dashboards that synthesized physical and digital performance indicators, allowing simultaneous 
evaluation of production variability and system responsiveness. Among these, 17 studies introduced 
new indicators such as Digital Process Fidelity Index (DPFI), Digital Takt Alignment Ratio (DTAR), 
and Predictive Control Effectiveness (PCE), which helped bridge traditional manufacturing logic with 
cyber-physical system monitoring. In environments where these hybrid metrics were deployed, 
process stability and decision-making speed improved markedly, with 12 studies reporting a 25–40% 
reduction in mean time to root cause identification. Furthermore, 14 studies documented the 
integration of Six Sigma control limits within digital dashboards, enabling automated alerts and 
statistical boundaries to adjust in real time based on streaming data inputs. Evaluation frameworks also 
became more predictive; in 11 studies, scenario modeling based on digital twins allowed proactive 
adjustment of operating parameters before deviations reached critical thresholds. This integration of 
predictive analytics into Lean performance reviews reflects a transition from static benchmarking to 
continuous, dynamic evaluation. Overall, the studies confirmed that without hybrid metrics, 
organizations risk underutilizing their digital infrastructure or misaligning process improvement 
efforts with system capabilities. Therefore, the emergence of hybrid KPIs represents both a theoretical 
advancement and a practical tool for benchmarking efficiency in LSS-DT environments. 
Across the reviewed studies, 34 articles—accounting for 47% of the literature—explicitly addressed 
barriers to adoption and organizational readiness, amassing over 3,300 citations collectively. A 
predominant theme was the uneven digital maturity of firms attempting to integrate Lean Six Sigma 
with digital twin infrastructure. Among these studies, 19 identified cost as a primary barrier, especially 
for small and medium-sized enterprises (SMEs) lacking capital for sensor deployment, simulation 
platforms, and training programs. Another 22 studies reported that workforce digital illiteracy 
hindered the implementation of real-time monitoring and feedback systems, even when basic Lean 
tools were in place. In 15 studies, legacy IT systems were identified as bottlenecks due to poor 
interoperability with modern IoT platforms or DT software environments. Organizational resistance 
also emerged as a significant constraint; 12 studies highlighted cultural inertia and change aversion 
among operational staff and middle management as key obstacles. Several case studies illustrated that 
despite technical feasibility, integration failed because process owners were unwilling or unable to trust 
digital data over traditional manual inspections or paper-based controls. Additionally, 11 studies noted 
a lack of alignment between strategic improvement goals and IT infrastructure deployment, resulting 
in siloed efforts where digital systems operated without Lean process integration. A common thread 
across these findings was the absence of standardized implementation roadmaps that account for Lean 
maturity levels, digital capability baselines, and cross-functional collaboration protocols. Moreover, 
only 9 of the studies reported the presence of government or institutional support to mitigate these 
adoption barriers, indicating a lack of coordinated policy or industry consortium engagement. 
Collectively, these findings emphasize that technical solutions alone are insufficient, and that 
organizational, cultural, and infrastructural readiness are crucial for successful LSS-DT adoption. 
Evidence from 39 of the reviewed studies—representing more than half of the sample and totaling over 
4,500 citations—showed consistent patterns of performance enhancement and continuous 
improvement maturity when Lean Six Sigma was integrated with digital twin environments. In these 
studies, firms that adopted full-cycle DMAIC models supported by DT platforms reported superior 
gains across productivity, quality, and flexibility metrics. Specifically, 21 studies demonstrated an 
average reduction of 30–50% in defect rates when Six Sigma analytics were fed by real-time sensor data. 
Another 19 studies recorded lead time reductions of 20–35% following the digital replication of Lean 
interventions such as standardized work and Heijunka scheduling. Process resilience also improved; 
14 studies showed that production lines equipped with digital twins could recover from process 
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disruptions up to 40% faster than non-integrated lines. Moreover, 18 studies reported that continuous 
improvement initiatives became more data-driven and cyclic, with shorter intervals between Kaizen 
events due to enhanced visibility of process metrics and deviation trends. Organizations in these cases 
demonstrated higher maturity on Lean-Digital capability models, where digital feedback loops were 
fully embedded into quality management systems. Real-time dashboards, automated anomaly 
detection, and simulation-based forecasting were not only used for operational control but also 
incorporated into strategic reviews and cross-departmental learning systems. Additionally, 16 studies 
reported increased employee engagement in improvement projects once digital performance metrics 
were made accessible and interpretable across job roles. Collectively, these findings provide strong 
empirical support for the assertion that LSS-DT integration fosters a self-reinforcing performance 
culture that transcends traditional boundaries of departmental responsibility and decision-making 
latency. The studies affirm that when implemented cohesively, this integration enhances not only the 
operational efficiency of manufacturing systems but also the institutionalization of continuous 
improvement as a cultural norm. 

DISCUSSION 
The findings of this review confirm that the integration of Lean Six Sigma (LSS) with Digital Twin (DT) 
systems significantly enhances manufacturing efficiency, aligning with and expanding upon the 
conclusions of previous studies. Prior research emphasized that LSS independently provides 
quantifiable gains in quality, defect reduction, and process cycle time (Mahadevan & Chejarla, 2022). 
Simultaneously, digital twins have been lauded for their capacity to mirror real-time process behavior, 
simulate operational scenarios, and support data-driven decisions. This review extends those findings 
by demonstrating that when these methodologies are jointly implemented, they create synergistic 
performance gains greater than the sum of their parts. Unlike earlier studies that explored LSS and DT 
in isolation, this synthesis shows that 41 of the reviewed articles directly examined their fusion, 
confirming not only reductions in downtime and lead time but also the emergence of predictive process 
control. This finding reinforces the assertions made by (Citybabu & Yamini, 2024b), who proposed that 
LSS frameworks gain responsiveness and adaptability when embedded in DT ecosystems. Moreover, 
while Sordan et al. (2024) stressed the importance of statistical rigor in Six Sigma application, the 
current review indicates that real-time analytics in DT platforms further augment this rigor, 
particularly in the Define, Measure, and Control phases of DMAIC. Hence, the integration represents 
a paradigm shift from retrospective quality analysis to real-time operational excellence, a theme 
underexplored in earlier literature and now empirically validated across multiple industries. 
This review corroborates and expands upon prior observations that sector-specific factors greatly 
influence the maturity and implementation success of LSS-DT integrations. Previous works by 
Citybabu and Yamini (2024) recognized that industry dynamics—such as regulatory intensity, product 
complexity, and automation readiness—shape Lean and Six Sigma adoption rates. The current findings 
align with this view, showing that aerospace and automotive sectors lead in mature integrations, 
particularly through use of DTs for predictive maintenance and takt-time optimization. These results 
mirror earlier case analyses from Hossain and Purdy (2025), which demonstrated that aerospace 
manufacturers benefit from DT-enabled lifecycle analytics. In contrast, the relatively limited use of 
digital twins in FMCG aligns with Duc et al. (2023), who noted that short product cycles and cost-driven 
environments often deter heavy digital investment. Additionally, pharmaceutical sector applications 
were largely oriented toward compliance and batch traceability, reflecting findings from Arangot et al., 
(2025), which highlighted the sector’s regulatory reliance on data integrity rather than operational 
flexibility. Compared to earlier research that focused on sectoral Lean adoption without digital 
augmentation (Vinodh et al., 2021), this review shows that DT integration introduces a new axis of 
differentiation—namely, the degree of real-time performance monitoring and closed-loop process 
control. These distinctions suggest that sectoral adaptation is not merely a function of process type but 
also of digital infrastructure maturity and workforce readiness. Thus, the review both confirms and 
elaborates on previous studies by articulating how specific industrial environments shape the pathway 
and potential of LSS-DT synergies. 
This review identifies a significant evolution in performance evaluation practices through the 
emergence of hybrid metrics that blend Lean Six Sigma KPIs with digital system diagnostics. Earlier 
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studies by Trstenjak et al. (2025) emphasized DPMO, process sigma levels, and OEE as the gold 
standards for evaluating manufacturing performance. However, these traditional metrics were 
developed for static or semi-static process environments. This review reveals that 36 studies introduced 
or modified these indicators by integrating digital factors such as real-time data latency, predictive 
model accuracy, and simulation integrity. This shift confirms and extends the proposals by Cannas et 
al. (2023), who advocated for real-time, adaptive metrics in smart manufacturing contexts. The concept 
of hybrid KPIs, such as the Digital Process Fidelity Index (DPFI) and Predictive Control Effectiveness 
(PCE), was largely absent in early LSS literature and now emerges as a practical necessity. These 
findings also build on the work of Najafi et al. (2024), who argued for the embedding of smart KPIs into 
cyber-physical production systems. Furthermore, the review supports the critique by Díaz-Arancibia 
et al. (2024), who noted that traditional KPIs often fail to capture upstream predictive insights or 
downstream system variability. By integrating digital intelligence with statistical control, the reviewed 
studies offer a more holistic framework for evaluating performance, confirming a methodological 
progression from descriptive to predictive analytics in Lean systems. This evolution marks a critical 
departure from earlier views, indicating that performance measurement must now accommodate data 
volume, feedback speed, and contextual awareness derived from DT systems. 
 

Figure 12: Proposed Method for the future study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The identification of adoption barriers in this review closely mirrors earlier findings while introducing 
new dimensions specific to digital transformation. Nadkarni and Prügl (2021) previously highlighted 
cultural resistance, skill shortages, and management inertia as persistent challenges in Six Sigma 
implementation. These issues remain evident, but the review further documents that 34 studies cite 
digital illiteracy and legacy IT infrastructure as new, significant inhibitors to LSS-DT integration. This 
corroborates and expands the insights from Borovkov et al. (2021), who found that many firms, 
particularly SMEs, lack the foundational digital architecture to deploy digital twins effectively. Unlike 
previous literature that largely assumed technological uniformity or readiness, this review surfaces the 
gap between technical feasibility and organizational capability. Moreover, earlier frameworks often 
overlooked the interoperability challenges posed by combining LSS data structures with dynamic, 
streaming data from cyber-physical systems. The review found that in at least 15 studies, these systems 
operated in silos due to incompatible data models or insufficient middleware. The lack of alignment 
between improvement project objectives and digital infrastructure constraints further supports the 
critique made by Opoku et al. (2023), who emphasized the importance of digital harmonization in 
Industry 4.0 ecosystems. This review confirms that unless cultural, infrastructural, and educational 
barriers are addressed, the operational benefits of LSS-DT integration may remain unrealized, 
regardless of technological potential. 
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The importance of workforce digital literacy and training emerges as a central theme in this review, 
aligning with and extending earlier literature that emphasized skill development in Lean 
environments. While prior research by Lanzolla et al. (2021) underscored the importance of team-based 
learning and continuous training in Lean Six Sigma, the current findings show that digital system 
adoption introduces new cognitive and technical demands. Among the reviewed studies, 22 explicitly 
reported that a lack of digital literacy inhibited the ability of workers to interpret simulation data, 
respond to real-time alerts, or engage meaningfully with DT dashboards. This observation builds on 
Lafioune et al. (2024), who demonstrated that human-system interaction quality directly affects the 
responsiveness of smart factories. The literature previously addressed technical skill gaps in terms of 
Six Sigma training—such as process capability analysis or hypothesis testing—but did not fully 
incorporate competencies like digital troubleshooting, data visualization literacy, or IoT platform 
navigation. The reviewed studies now illustrate that continuous improvement culture must evolve to 
include digital fluency alongside traditional Lean competencies. Moreover, studies confirm that when 
digital systems are perceived as opaque or overly technical, frontline resistance increases, undermining 
engagement in Kaizen or DMAIC cycles. This reinforces the work of Ghaleb et al. (2021), who noted 
the importance of user-centered design in DT interfaces. Overall, this review validates the assertion 
that sustainable LSS-DT integration is contingent not only on system architecture but also on workforce 
capability and digital inclusivity. 
A major theoretical insight from this review is the persistent tension between deterministic process 
control models inherent in Lean Six Sigma and the probabilistic, adaptive nature of digital twin 
analytics. Earlier foundational models—such as DMAIC, SPC, and control charts—were developed 
under assumptions of stable process parameters and relatively controlled environments (Hidayat-ur-
Rehman & Hossain, 2024). In contrast, digital twins operate under conditions of real-time variability, 
learning-based adaptation, and multivariate data complexity. This epistemological divide was 
addressed in 17 studies in the current review, where authors described difficulties in reconciling Six 
Sigma’s root cause philosophy with the probabilistic outputs of machine learning-based DT 
simulations. Previous literature only sparsely addressed this issue, with exceptions such as Ting et al., 
(2024), who argued for hybrid models of control that accommodate both statistical determinism and 
predictive intelligence. This review reinforces and extends that position by presenting empirical 
evidence that traditional Lean indicators—such as takt time or cycle efficiency—lose explanatory power 
unless interpreted in dynamic contexts. The findings suggest a need for theoretical convergence 
between Lean’s structured models and the adaptive logic of real-time systems. In doing so, the review 
opens space for a new framework of cyber-lean analytics, where system control, process stability, and 
feedback loops are redefined within digital ecosystems. These results highlight a pressing need for 
further methodological innovation, particularly in defining new control paradigms that blend cause-
effect clarity with probabilistic foresight (Citybabu & Yamini, 2024b). 
This review contributes to the growing body of literature at the intersection of Lean Six Sigma and 
Industry 4.0 technologies by offering a comprehensive synthesis of their integration via digital twin 
ecosystems. Unlike previous reviews that examined LSS or DT independently, this study systematically 
maps out their convergence, providing sector-specific, metric-specific, and architecture-specific 
insights. It affirms that the LSS-DT combination produces superior operational results, particularly in 
high-maturity sectors, and it identifies hybrid evaluation practices as an emerging frontier. The 
findings align with, but go beyond, those of Dehghani et al. (2021), by showing that integration is no 
longer theoretical but demonstrably applied across a wide industrial base. The review’s documentation 
of barriers, including skill gaps and IT constraints, complements previous scholarship while adding 
new layers on digital maturity models and implementation strategies. It also provides a comparative 
analysis of ROI and performance trends across industries, offering practical relevance for operational 
leaders, consultants, and policymakers. By articulating the theoretical tensions between static and 
dynamic systems, the review invites the development of hybrid control theories suited for cyber-
physical lean environments (Wankhede & Agrawal, 2025). In doing so, this study not only validates 
but expands the conversation on how operational excellence must evolve in digitally intensive 
manufacturing landscapes. 
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CONCLUSION 
This systematic review concludes that the convergence of Lean Six Sigma (LSS) and Digital Twin (DT) 
technologies forms a powerful hybrid approach for enhancing manufacturing efficiency, operational 
resilience, and quality performance. By analyzing 72 peer-reviewed studies across sectors such as 
aerospace, automotive, electronics, pharmaceuticals, and FMCG, the review establishes that 
organizations adopting integrated LSS-DT frameworks experience measurable gains in cycle time 
reduction, defect elimination, predictive maintenance, and takt time alignment. The real-time 
simulation and monitoring capabilities of DTs amplify the precision and responsiveness of LSS 
methodologies, especially within the DMAIC structure. Unlike traditional LSS deployments that rely 
on periodic audits and static control charts, digital twins offer continuous feedback loops, adaptive 
dashboards, and predictive analytics that enhance decision-making across production and quality 
functions. The emergence of hybrid performance metrics—such as digital takt time alignment and 
predictive control indices—further exemplifies how this integration leads to more nuanced and 
dynamic operational insights. However, despite these advantages, the review also reveals significant 
barriers to implementation, including high initial investment costs, digital skill deficits in the 
workforce, legacy IT constraints, and organizational resistance to change. These barriers are 
particularly pronounced in small and medium-sized enterprises (SMEs), which often lack the financial 
and infrastructural readiness to support large-scale digital transformation. The review also highlights 
a critical theoretical tension between Lean Six Sigma’s deterministic control logic and the probabilistic, 
adaptive modeling inherent in DT environments, suggesting a need for the development of integrative 
frameworks that align process stability with digital flexibility. Additionally, the absence of 
standardized evaluation criteria across hybrid systems complicates benchmarking and cross-sectoral 
performance assessment. Despite these challenges, the collective evidence affirms that integrated LSS-
DT systems not only deliver quantifiable efficiency gains but also advance the strategic capabilities of 
manufacturing firms. They foster a culture of continuous improvement driven by data, simulation, and 
predictive foresight, representing a significant evolution in the field of operations management and 
industrial process optimization. 
RECOMMENDATIONS 
Based on the comprehensive findings of this review, it is recommended that manufacturing 
organizations seeking to enhance operational efficiency and long-term competitiveness adopt an 
integrated Lean Six Sigma and Digital Twin (LSS-DT) framework. To maximize benefits, firms should 
begin by assessing their current Lean maturity and digital infrastructure readiness, using structured 
maturity models that evaluate both process capability and technological enablement. Investment in 
workforce digital literacy should be prioritized, ensuring that employees at all levels are trained to 
interpret real-time data, interact with DT dashboards, and apply Six Sigma tools in data-rich 
environments. Organizations are also encouraged to incrementally implement digital twin systems—
starting with critical production lines or high-defect processes—while embedding DMAIC phases 
within the simulation logic of these systems. Furthermore, the development and adoption of hybrid 
performance indicators that blend physical KPIs (e.g., OEE, takt time) with digital metrics (e.g., latency, 
simulation fidelity) should be institutionalized to enable continuous and dynamic performance 
assessment. For small and medium-sized enterprises (SMEs), collaboration with government-backed 
Industry 4.0 support programs, technology incubators, or consortia can help mitigate cost and 
infrastructure barriers. Academic and industrial stakeholders should also collaborate on building cross-
disciplinary implementation frameworks that resolve the current theoretical tension between 
deterministic Lean models and adaptive digital twin analytics. Lastly, policy-makers and industry 
regulators should promote interoperability standards and incentivize cross-sectoral adoption of 
integrated systems to enable scalable and sustainable smart manufacturing transformation. These 
recommendations collectively aim to support the strategic alignment of process excellence with digital 
intelligence, ensuring that the full potential of LSS-DT integration is realized across the global 
manufacturing landscape. 
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