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Abstract 
This meta-analysis explores the integration of Deep Learning (DL) and Internet of Things (IoT) 
technologies within the context of sustainable economic recovery and clean environmental 
initiatives. As global economies seek resilient and low-carbon pathways in the aftermath of 
economic disruptions and environmental crises, the role of intelligent technologies in supporting 
data-driven decision-making has become increasingly critical. This study systematically reviewed 
147 peer-reviewed articles published between 2010 and 2025, encompassing empirical research 
across sectors such as energy, transportation, agriculture, urban planning, and environmental 
monitoring. The findings reveal that over 70% of the reviewed studies reported significant 
improvements in prediction accuracy, operational efficiency, emissions reduction, and resource 
optimization when DL models were applied to real-time data generated by IoT infrastructures. DL 
architectures such as LSTM, CNNs, and transformers consistently outperformed traditional 
forecasting models in dynamic and multivariate settings. However, several persistent challenges 
were identified, including issues of dataset bias, model transparency, high energy consumption in 
DL training, and limited access to digital infrastructure in developing regions. The review also 
highlights the lack of standardized evaluation metrics and governance frameworks, which impedes 
scalability and cross-sector benchmarking. Despite these limitations, the overall evidence supports 
the transformative potential of DL-IoT systems as intelligent enablers of green recovery strategies. 
This study offers a comprehensive synthesis of current applications, challenges, and sectoral 
impacts, contributing valuable insights for researchers, practitioners, and policymakers aiming to 
leverage emerging technologies for sustainable development and environmental resilience. 
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INTRODUCTION 
Economic recovery refers to the multidimensional process of revitalizing economic systems after a 
period of downturn, recession, or crisis, characterized by increases in GDP, employment, industrial 
output, and consumption (Nekipelov, 2019). In the 21st century, the emphasis has shifted from mere 
growth to sustainable economic recovery, a concept that embeds ecological stability, resource 
efficiency, and long-term environmental resilience within the metrics of economic revitalization 
(Dragoṣ et al., 2021). Concurrently, clean environment initiatives are defined as policy frameworks and 
technological interventions aimed at reducing environmental degradation through emission reduction, 
pollution control, and ecological restoration. The Internet of Things (IoT), a digital ecosystem of 
interconnected devices and real-time data transmission, has become a critical enabler of these green 
strategies, particularly when coupled with deep learning (DL) techniques that enable pattern 
recognition, forecasting, and adaptive control in complex environments. Deep learning, a subfield of 
machine learning rooted in artificial neural networks, excels at extracting complex representations from 
high-dimensional data, making it well-suited for modeling dynamic and nonlinear economic-
environmental systems. DL algorithms have shown superior performance in economic prediction 
(Cheng & Zhang, 2020), energy management, and environmental monitoring, especially when trained 
on real-time IoT sensor streams. The integration of IoT with deep learning creates a synergistic digital 
framework for addressing sustainability challenges by optimizing resource use, predicting demand, 
monitoring environmental indicators, and automating green policies. These interdependencies form 
the conceptual architecture of economic recovery frameworks that are both technology-driven and 
environmentally conscious (Petrakis & Kostis, 2020). 
 

Figure 1: DL-IoT for Sustainable Recovery 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sustainability and economic recovery are inseparably intertwined within global development agendas, 
including the United Nations Sustainable Development Goals (SDGs), particularly Goals 8 (decent 
work and economic growth), 9 (industry, innovation, and infrastructure), and 13 (climate action) 
(UNDP, 2015). The COVID-19 pandemic underscored the fragility of traditional economic models and 
accelerated the need for resilient, inclusive, and sustainable recovery paradigms (Barbier, 2020; 
Hepburn et al., 2020). Green recovery strategies, which emphasize low-carbon transitions, clean energy 
adoption, and circular economy principles, have gained political and institutional momentum in both 
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developed and developing economies (Ženka et al., 2021). Deep learning-based technologies, when 
embedded within IoT infrastructures, offer scalable and adaptive tools to operationalize these 
sustainability transitions. For instance, in smart cities, DL-IoT systems have been deployed to monitor 
air quality, predict urban energy consumption, and regulate traffic emissions. In the agricultural sector, 
similar systems support precision farming, reducing chemical inputs while maintaining productivity. 
In industry, predictive maintenance and real-time supply chain optimization powered by DL and IoT 
significantly reduce carbon footprints. These cross-sectoral deployments reinforce the international 
significance of AI-driven recovery and sustainability models. The economic benefits of such integration 
include cost savings, efficiency gains, and new employment opportunities in the green tech sector, 
while the environmental returns encompass reduced emissions, improved biodiversity, and enhanced 
climate resilience (Liu et al., 2020). These dual imperatives—economic growth and ecological 
protection—are no longer seen as conflicting goals but as convergent paths facilitated by intelligent 
digital infrastructure. 
Deep learning has become indispensable in the field of economic forecasting due to its ability to model 
complex, nonlinear relationships between macroeconomic indicators, policy changes, and global 
market dynamics. Traditional econometric models often struggle with high-dimensional, sparse, or 
unstructured data, whereas DL techniques such as recurrent neural networks (RNNs), long short-term 
memory networks (LSTMs), and convolutional neural networks (CNNs) have demonstrated superior 
performance in time-series forecasting and trend extraction (Matyashova et al., 2021). These methods 
have been used to predict GDP fluctuations, inflation trajectories, and employment rates, often 
outperforming traditional autoregressive integrated moving average (ARIMA) and vector 
autoregression (VAR) models. In the context of economic recovery, particularly following shocks like 
pandemics, climate-induced disasters, or financial crises, DL architectures facilitate high-frequency, 
multi-input modeling of recovery scenarios based on real-time economic, social, and environmental 
data. When integrated with IoT data streams, DL can capture the granular effects of stimulus policies, 
consumer behavior, and industrial outputs, thereby enabling data-driven policy adjustments and 
resource reallocation (Ikram & Sayagh, 2023). For example, IoT-based economic monitoring systems 
combined with DL classifiers have been used to predict recovery patterns in sectors such as 
manufacturing, transport, and housing. Such models are not only retrospective but also scenario-
driven, supporting simulation and planning tools for central banks, fiscal authorities, and multilateral 
agencies. This capacity to adapt in real-time and learn from dynamic data sources provides 
governments and private stakeholders with robust tools for planning resilient and inclusive economic 
recoveries. These methods represent a paradigm shift from reactive to proactive economic 
management, with DL-IoT ecosystems at the core (Kim et al., 2022). 
The Internet of Things (IoT) functions as a digital nervous system for environmental monitoring, 
characterized by a distributed network of sensors, actuators, and cloud platforms that collect and 
transmit environmental data continuously (Thukral, 2021). Applications span air and water quality 
monitoring, waste management, renewable energy integration, and ecosystem protection. When 
coupled with DL models, these infrastructures can process vast amounts of streaming data to identify 
anomalies, predict pollution spikes, and optimize resource deployment. For instance, air pollution 
monitoring systems using DL algorithms such as stacked autoencoders and LSTMs have been deployed 
in cities like Beijing, London, and Delhi, predicting particulate matter (PM2.5) levels with high 
accuracy. Water management systems use IoT sensors to monitor flow rates, contamination levels, and 
infrastructure leakage, with DL algorithms aiding in early detection and response.  Waste collection 
systems equipped with DL-trained vision sensors optimize routing and processing based on bin 
occupancy and waste classification (Xu et al., 2023). DL-IoT frameworks also facilitate the integration 
of renewable energy systems into national grids by forecasting solar irradiance and wind patterns, 
thereby stabilizing supply-demand balances and reducing dependency on fossil fuels (Xu et al., 2023). 
In forestry and biodiversity conservation, drone-based IoT imaging and DL-based classification 
support deforestation detection and wildlife monitoring. These applications represent the functional 
convergence of environmental science and artificial intelligence, enabling actionable insights and real-
time control that underpin clean environment strategies. 
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Sustainability metrics—such as carbon emissions, energy efficiency, water usage, and ecological 
impact—have been increasingly integrated into economic performance indicators as part of the green 
economy transition (Đuričin & Herceg, 2018).  
 

Figure 2: Cross-National Integration of DL-IoT Frameworks in Sustainability Applications 

 
 
Deep learning models allow for multidimensional optimization across these indicators by processing 
structured and unstructured data from IoT sensors, satellite imagery, public records, and social media. 
These capabilities enable the construction of sustainability-aware economic models that incorporate 
not only output and consumption but also environmental externalities. DL algorithms such as deep 
belief networks (DBNs), generative adversarial networks (GANs), and attention mechanisms have been 
deployed to evaluate and predict sustainability scores across regions and industries (Pavloudakis et al., 
2023). For example, smart buildings equipped with IoT sensors collect data on occupancy, temperature, 
and energy usage, which DL models use to optimize HVAC operations, reduce emissions, and enhance 
user comfort. In agriculture, DL-IoT systems track soil moisture, weather conditions, and crop health 
to improve resource utilization and reduce fertilizer runoff. By embedding sustainability targets into 
the core logic of DL-driven economic models, policymakers and enterprises can perform cost-benefit 
analyses that include environmental costs, enabling more ethical and long-term decision-making. 
Furthermore, such integration supports compliance with global frameworks like the Paris Agreement, 
the EU Green Deal, and corporate ESG (Environmental, Social, Governance) reporting requirements . 
The convergence of DL, IoT, and sustainability metrics thus defines a new frontier in intelligent 
economic planning (Bhattacharya & Bose, 2023). 
Sector-specific applications of DL-IoT frameworks illustrate their adaptability and effectiveness in 
delivering both economic and environmental benefits. In manufacturing, predictive maintenance 
systems powered by DL and fed by IoT sensors reduce downtime and energy waste, enhancing 
productivity while minimizing emissions. In the energy sector, smart grids integrate DL-based load 
forecasting to balance demand, increase renewable uptake, and prevent blackouts. Transportation 
systems benefit from DL-IoT through intelligent traffic control, congestion forecasting, and electrified 
public transit optimization, contributing to reduced emissions and travel times. In retail, real-time 
inventory and logistics systems minimize overstocking and wastage, while optimizing delivery routes 
to reduce fuel usage (Shi & Lu, 2024). Healthcare systems integrate wearable IoT devices with DL 
diagnostics to support remote monitoring, early disease detection, and personalized medicine, thereby 
reducing hospital overcrowding and resource strain. Several national and regional initiatives have also 
highlighted successful implementations. For example, Singapore’s Smart Nation program, China’s 
carbon neutrality roadmaps all include DL-IoT deployments in smart infrastructure and urban 
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sustainability. These case studies underscore the feasibility and impact of integrating intelligent 
technologies into real-world sustainability and recovery efforts (Ibrahim et al., 2025). 
The methodological evolution of DL-IoT frameworks for sustainability and economic recovery is 
marked by rapid advances in neural architecture design, data fusion techniques, and transfer learning 
strategies (Jiang et al., 2024). Early models often suffered from overfitting, poor generalizability, and 
limited interpretability, particularly when applied to heterogeneous and noisy IoT data. Recent 
innovations, such as federated learning, explainable AI (XAI), and hybrid neural-symbolic systems, 
have addressed some of these limitations, enabling more robust and transparent frameworks. Data 
interoperability remains a critical challenge, as IoT devices often operate in siloed environments with 
proprietary protocols and inconsistent data formats (Al-Zaidawi & Cevik, 2025). Moreover, the energy 
consumption of DL training processes—especially for large-scale transformers and deep reinforcement 
learning models—presents an ecological paradox when applied to sustainability-focused objectives. 
Research is thus exploring more efficient training algorithms, quantized neural networks, and 
neuromorphic computing approaches . Ethical and equity concerns also shape the methodological 
landscape. Biased datasets, uneven access to digital infrastructure, and opaque algorithmic decisions 
can exacerbate socioeconomic disparities if not properly managed (Raoufi et al., 2024). As a result, 
interdisciplinary approaches integrating technical, social, and environmental sciences are gaining 
prominence, advocating for inclusive and equitable frameworks of intelligent economic recovery 
(Otoum et al., 2022). These methodological dynamics underscore the evolving complexity of designing, 
deploying, and evaluating DL-IoT systems for sustainability and economic resurgence. This study 
systematically examines the integration of deep learning (DL) and Internet of Things (IoT) technologies 
within sustainable economic recovery and environmental initiatives. The primary objective is to 
evaluate the effectiveness, scalability, and sectoral impacts of DL-IoT frameworks in advancing data-
driven sustainability goals. The analysis focuses on measuring improvements in prediction accuracy, 
operational efficiency, emissions reduction, and resource optimization, while also identifying 
challenges such as data bias, infrastructure limitations, and ethical considerations. By synthesizing 
existing evidence, this study aims to inform policymakers, researchers, and technology practitioners on 
best practices and strategic pathways for deploying intelligent digital systems to foster sustainable and 
resilient economic growth. 

LITERATURE REVIEW 
The literature on deep learning (DL), Internet of Things (IoT), and sustainable economic recovery has 
rapidly evolved, driven by the convergence of digital technologies and environmental imperatives. As 
global economic systems grapple with the dual challenges of post-crisis recovery and long-term 
ecological preservation, the role of artificial intelligence—particularly deep learning—in shaping 
adaptive and intelligent recovery strategies has garnered significant scholarly attention. The integration 
of DL with IoT systems has enabled real-time monitoring, predictive analytics, and automated 
interventions across multiple sectors, including energy, transport, agriculture, and urban planning. 
These technologies, when deployed in the context of sustainability goals, offer new paradigms for clean 
growth, green innovation, and environmental justice. This literature review systematically explores the 
interrelated bodies of knowledge that underpin the domain of DL-IoT-driven economic recovery 
frameworks. It begins by examining foundational works on sustainable economic recovery models and 
the theoretical basis for integrating technological and environmental objectives. Next, it reviews the 
evolution of deep learning architectures relevant to economic and environmental modeling. This is 
followed by a focused analysis of IoT infrastructures that enable sustainability monitoring, along with 
case studies demonstrating successful DL-IoT implementations. The review further delves into 
empirical findings on sectoral applications, cross-cutting challenges, and evaluation metrics. Finally, it 
synthesizes gaps and limitations identified in the existing body of research, providing a robust basis 
for the meta-analytical synthesis presented in subsequent sections. 
Sustainable Economic Recovery in the Age of Digitalization 
The theoretical basis of economic recovery has traditionally centered on Keynesian principles, 
emphasizing government intervention through fiscal stimuli and public spending during downturns. 



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 247–277 

252 
 

Figure 3: Sustainable Economy Recovery in Digitalisation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This model persisted through various crises, including the 1970s oil shock, the 1997 Asian financial 
crisis, and the 2008 global financial meltdown, with empirical support validating the short-term 
effectiveness of counter-cyclical spending in reviving employment and GDP growth. However, this 
framework lacked substantial ecological consideration, often sidelining environmental sustainability 
in the pursuit of rapid economic gains. The COVID-19 pandemic marked a paradigm shift, with 
economists, policymakers, and development institutions acknowledging the unsustainability of linear, 
carbon-intensive growth models. The ensuing economic disruption presented a “window of 
opportunity” to reimagine recovery as a pathway to systemic transformation rather than mere 
restoration (Zhao et al., 2023). Empirical studies demonstrated how green investment in renewable 
energy, public transport, and sustainable agriculture provided higher employment multipliers and 
long-term returns than traditional brown sectors. Additionally, the climate crisis has intensified calls 
for integrating low-carbon transitions into economic frameworks, embedding sustainability at the core 
of recovery policies. Thus, the historical evolution of recovery economics reflects a transition from 
stimulus-centered fiscal responses to more ecologically grounded, inclusive frameworks, positioning 
sustainability as both a normative and instrumental goal (Kurniawan, Maiurova, et al., 2022). 
The rise of green recovery frameworks is deeply interlinked with global sustainability agendas, 
particularly the principles of circular economy (CE), carbon neutrality, and the Sustainable 
Development Goals (SDGs). The CE approach advocates for systemic redesign of production and 
consumption cycles to minimize waste, preserve resources, and foster regenerative practices, shifting 
from a linear “take-make-dispose” economy to a closed-loop system (Bikmetova et al., 2021). Empirical 
studies in Europe and East Asia have shown that circular strategies in sectors such as plastics, 
electronics, and textiles not only reduce environmental impact but also enhance competitiveness and 
employment resilience. The CE has become a cornerstone of post-pandemic recovery plans, especially 
in the EU Green Deal and China’s Circular Economy Promotion Law. Decarbonization efforts, another 
pillar of green recovery, focus on phasing out fossil fuels and increasing energy efficiency to reduce 
greenhouse gas emissions. Countries with strong carbon pricing mechanisms and renewable energy 
targets have observed measurable reductions in emissions without compromising economic growth. 
Deep learning and IoT applications further enable decarbonization by optimizing energy consumption 
patterns, predicting grid loads, and enabling low-emission industrial processes. These technical 
innovations align with broader strategic goals outlined in the Paris Agreement and the 



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 247–277 

253 
 

Intergovernmental Panel on Climate Change (IPCC) scenarios. The SDGs offer a holistic framework for 
aligning economic recovery with long-term development, social justice, and environmental protection. 
Goals such as SDG 8 (decent work and economic growth), SDG 9 (industry, innovation, and 
infrastructure), and SDG 13 (climate action) serve as benchmarks for recovery efforts across regions. 
Integrated green recovery programs that address job creation, infrastructure resilience, and ecological 
integrity are increasingly viewed as both economically rational and morally imperative (Luo et al., 2023; 
Subrato, 2018). 
Multilateral organizations such as the International Monetary Fund (IMF), United Nations (UN), World 
Bank, and Organisation for Economic Co-operation and Development (OECD) have played a central 
role in shaping sustainability-driven recovery frameworks (Abdullah Al et al., 2022). In response to 
recent global disruptions, these institutions have shifted from conventional growth-focused policy 
advice to integrated frameworks that consider climate resilience, digital transformation, and social 
inclusion. The IMF, for instance, has incorporated climate risk assessments into Article IV consultations 
and emphasized green fiscal reforms in its guidance for member countries (Kurniawan, Othman, et al., 
2022). Studies have shown that carbon taxation, green subsidies, and environmental budgeting 
recommended by the IMF can yield high economic multipliers while fostering emissions reduction 
(Rahaman, 2022). The World Bank has similarly developed comprehensive toolkits for green, resilient, 
and inclusive development (GRID), focusing on sustainable infrastructure, nature-based solutions, and 
digital public goods (Hossen & Atiqur, 2022). Empirical evaluations suggest that World Bank–funded 
green infrastructure projects often yield higher socio-environmental returns than traditional capital 
projects. The UN system, particularly through the UN Environment Programme (UNEP) and the 
United Nations Development Programme (UNDP), has promoted green recovery by supporting low-
carbon development planning, clean energy access, and sustainable livelihoods in both developing and 
emerging economies (Bai et al., 2021; Sazzad & Islam, 2022). The OECD has contributed through its 
work on green innovation, just transition frameworks, and environmental taxation. Its policy 
recommendations emphasize the importance of aligning short-term stimulus with long-term structural 
reforms to avoid carbon lock-in (Akter & Razzak, 2022). Comparative policy studies across OECD 
countries indicate that nations embedding environmental conditionality into stimulus packages report 
stronger progress toward decoupling emissions from growth. These institutional initiatives collectively 
support the transformation of recovery efforts into pathways for sustainable development(Adar & Md, 
2023). 
The digital pivot in economic recovery has been largely driven by the rapid diffusion of artificial 
intelligence (AI), big data analytics, and deep learning techniques (Qibria & Hossen, 2023). These 
technologies offer unprecedented capabilities in processing high-volume, high-velocity, and high-
variety data, enabling more precise modeling of economic trends, real-time policy response, and 
optimization of resource flows (Balogun et al., 2020; Akter, 2023). Deep learning, in particular, has 
emerged as a transformative tool in macroeconomic forecasting, financial market analysis, and 
environmental simulation. Empirical studies have demonstrated that models such as convolutional 
neural networks (CNNs), long short-term memory (LSTM) networks, and generative adversarial 
networks (GANs) outperform traditional econometric methods in predicting GDP trajectories, labor 
market movements, and inflation dynamics (Masud, Mohammad, & Ara, 2023). Big data sourced from 
IoT networks, satellite imagery, digital transactions, and social media platforms further enhances the 
granularity and timeliness of economic analysis (Brenner, 2018; Masud, Mohammad, & Sazzad, 2023). 
For instance, IoT sensors in manufacturing and logistics allow DL models to optimize supply chain 
flows, reduce waste, and increase energy efficiency, aligning economic productivity with ecological 
goals (Hossen et al., 2023). Governments have also used AI-driven dashboards to track economic 
recovery indicators in real time, informing adaptive policy responses during crises such as the COVID-
19 pandemic. Moreover, the integration of DL into sustainability analytics enables multidimensional 
optimization by balancing economic, social, and environmental criteria simultaneously (Cueto et al., 
2022; Shamima et al., 2023). As digitization becomes embedded in national recovery strategies, AI and 
deep learning are no longer auxiliary tools but foundational elements of modern economic governance, 
creating intelligent systems that continuously learn and adapt to shifting economic and environmental 
realities. Historical evolution of recovery economics: from Keynesian stimulus to post-pandemic 
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sustainability. 
Deep Learning Architectures and Applicability 
Deep learning (DL) architectures have shown tremendous promise across economic and environmental 
modeling due to their capacity to handle high-dimensional, nonlinear, and time-variant data. Among 
the most widely used models are convolutional neural networks (CNNs), recurrent neural networks 
(RNNs), long short-term memory (LSTM) networks, generative adversarial networks (GANs), and 
more recently, transformer models.  
 

Figure 4: Deep Learning for Sustainable Recovery 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CNNs, initially designed for image processing, have been adapted for structured grid-like data and 
remote sensing in environmental studies (Gheisari et al., 2023). For example, CNNs have been used to 
detect deforestation from satellite imagery and classify urban land cover, contributing to 
environmental monitoring and sustainable urban planning. RNNs and their advanced version, LSTMs, 
are particularly suitable for modeling sequential data and have been widely applied in financial time 
series forecasting, economic trend analysis, and renewable energy prediction (Alam et al., 2023). LSTM 
networks outperform traditional autoregressive models in forecasting GDP, inflation, and stock indices 
due to their ability to capture long-term dependencies in data (Fan et al., 2023; Rajesh, 2023). GANs 
have become popular in data augmentation and scenario simulation tasks, especially in economic 
policy modeling and climate risk projections, as they can generate synthetic datasets that preserve 
statistical properties of the original data (Rajesh et al., 2023). Transformer models, originally developed 
for natural language processing, have been successfully applied to sequential financial and 
environmental data due to their attention mechanisms, which capture context more efficiently than 
RNNs (Ashraf & Ara, 2023). Studies show that transformers outperform LSTMs in multi-step 
forecasting of economic indicators and offer greater scalability for high-frequency data streams. These 
DL architectures, tailored to specific data structures and modeling objectives, constitute the backbone 
of intelligent systems for economic and environmental decision-making (Sanjai et al., 2023; Zheng et 
al., 2023). 
The choice between supervised and unsupervised learning in DL frameworks depends on the nature 
of the data and the modeling objective, particularly in domains such as economic forecasting and 
environmental monitoring. Supervised learning involves labeled datasets and is dominant in predictive 
modeling, including GDP forecasting, stock price prediction, and unemployment trend analysis 
(Tonmoy & Arifur, 2023). LSTM and GRU-based supervised models have demonstrated high accuracy 
in predicting short-term and long-term economic metrics, particularly when trained on macroeconomic 
indicators and financial time series (Ferreiro-Cabello et al., 2018; Tonoy & Khan, 2023). In contrast, 
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unsupervised learning methods, such as autoencoders, restricted Boltzmann machines, and clustering 
algorithms, are valuable for pattern detection, anomaly identification, and dimensionality reduction, 
especially when labeled data is scarce or unavailable (Zahir et al., 2023). These methods have been 
applied to segment economic actors by behavior, cluster urban energy consumption profiles, and detect 
outliers in environmental pollution data (Razzak et al., 2024). Hybrid models that combine supervised 
and unsupervised components are also emerging as powerful tools for semi-structured datasets in 
sustainability science. In environmental contexts, supervised DL models have been used to forecast air 
quality, rainfall, and crop yields, often using satellite data or sensor inputs with labeled environmental 
outcomes (Alam et al., 2024; Tien et al., 2022). Unsupervised approaches help identify latent pollution 
patterns and perform unsupervised segmentation of land use from hyperspectral images. The 
availability of large unlabeled datasets from IoT sensors, social media, and web logs necessitates greater 
use of unsupervised and semi-supervised methods, further expanding the applicability of DL in data-
driven decision-making (Hossain, Haque, et al., 2024; Li et al., 2021). 
Temporal prediction, scenario simulation, and multi-objective optimization are critical components of 
economic-environmental modeling, and recent advances in DL have significantly enhanced these 
capabilities. LSTM, GRU, and bidirectional RNN models have been widely utilized in temporal 
forecasting of macroeconomic indicators, enabling higher accuracy and longer forecast horizons than 
traditional econometric approaches (Akanbi et al., 2020; Hossain, Yasmin, et al., 2024b). Studies show 
that these models are particularly effective in dynamic, crisis-prone environments such as post-
pandemic economies or volatile financial markets (Hossain, Yasmin, et al., 2024a). Scenario simulation 
using DL models has also seen considerable progress. GANs and variational autoencoders (VAEs) are 
increasingly used to generate counterfactual economic scenarios and synthetic environmental datasets 
that are useful in risk analysis and stress testing (Khan & Razee, 2024). For instance, in climate 
adaptation studies, DL-based simulation tools can model the impact of sea-level rise, droughts, and 
extreme weather events under various intervention strategies. These capabilities support policymakers 
in evaluating alternative recovery pathways based on trade-offs among economic, social, and ecological 
objectives. Multi-objective optimization, where DL models are trained to balance several competing 
goals, such as maximizing GDP while minimizing emissions, has been facilitated through 
reinforcement learning, multi-task learning, and attention-based models(Calzolari & Liu, 2021; Nahar 
et al., 2024). Transformer-based architectures offer new ways to prioritize goals dynamically depending 
on policy contexts or environmental constraints. These models are being applied in energy load 
balancing, green logistics, and circular economy scenarios, where decisions must consider cost, 
efficiency, and sustainability simultaneously. As such, DL frameworks not only enhance predictive 
capacity but also enrich the decision-support systems required for integrated planning (Agga et al., 
2022). 
One of the defining features of deep learning is its ability to scale and adapt to highly volatile and 
uncertain environments, a crucial requirement in economic and environmental systems characterized 
by complexity, interdependence, and frequent shocks. DL models can process vast amounts of high-
frequency, high-dimensional data from heterogeneous sources, making them well-suited to manage 
real-time economic forecasting and environmental monitoring under uncertainty (Nosratabadi et al., 
2020; Subrato & Md, 2024). For instance, financial markets, which are influenced by macroeconomic 
news, geopolitical developments, and investor behavior, require adaptive learning systems like LSTM 
and transformer networks to remain effective (Ammar et al., 2025).  Scalability has also been 
demonstrated in environmental systems where DL models manage large-scale sensor networks, 
satellite imagery, and geo-tagged social media data to monitor pollution, biodiversity loss, or resource 
depletion (Khan et al., 2025; Wang et al., 2022). Cloud-based DL platforms further support horizontal 
scalability, enabling deployment across multiple geographic or administrative regions with real-time 
processing capabilities. Transfer learning and federated learning are increasingly employed to adapt 
pre-trained models to new contexts or regions without retraining from scratch, enhancing adaptability 
and cost-effectiveness (Akter, 2025). Moreover, the incorporation of feedback loops into DL systems 
enables continuous learning and re-optimization in light of new data or changing objectives (Masud et 
al., 2025). This feature is especially vital in policy modeling, where interventions such as subsidies or 
taxation may generate unforeseen effects (Aslam et al., 2019; Md et al., 2025). DL’s resilience in the face 
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of uncertainty also extends to forecasting rare events, such as financial crashes or extreme weather, 
making it a valuable tool for early warning systems (Islam & Debashish, 2025; Mukhamediev et al., 
2022). As such, DL’s scalability and adaptability position it as an essential pillar in the digital 
infrastructure for sustainable and resilient economic systems. 
Internet of Things (IoT) as an Environmental Intelligence Infrastructure 
The architecture of Internet of Things (IoT) systems designed for environmental intelligence is 
composed of layered infrastructures integrating sensor networks, edge computing, and cloud-based 
platforms. At the base layer, sensor networks function as the primary data collection mechanism. These 
include environmental sensors measuring temperature, humidity, particulate matter, CO₂, chemical 
pollutants, and radiation levels, which are deployed in both fixed stations and mobile units such as 
drones and autonomous vehicles (Albreem et al., 2021; Islam & Ishtiaque, 2025). Such distributed sensor 
systems allow for granular spatial and temporal resolution in environmental monitoring applications, 
making them essential for real-time analytics and event detection. Edge computing, the next 
architectural layer, processes data locally at the network periphery before it reaches centralized servers. 
This reduces latency, conserves bandwidth, and enables real-time decision-making in scenarios where 
immediate action is required—such as fire detection, water contamination alerts, or industrial 
emissions breaches. Research shows that integrating edge AI, including lightweight neural networks 
on edge nodes, enhances autonomous analytics capabilities while preserving data privacy (Kabalci et 
al., 2019; Sazzad, 2025). At the top layer, cloud computing platforms aggregate, store, and analyze large-
scale environmental datasets. Cloud-based systems support complex computations, long-term trend 
analysis, and multi-source data fusion using artificial intelligence tools such as deep learning. Modern 
architectures adopt fog computing as an intermediate layer, combining the responsiveness of edge 
computing with the processing power of cloud platforms, these architectural components enable IoT 
ecosystems to function as distributed, intelligent environmental information systems capable of 
supporting sustainability objectives, early-warning systems, and policy interventions across various 
ecological domains (Ghosh et al., 2018; Sazzad, 2025). 
IoT systems have revolutionized the acquisition of real-time environmental data, offering continuous, 
location-specific insights into air, water, soil, and waste conditions. For air quality monitoring, IoT-
based platforms employ low-cost sensors to measure pollutants such as PM2.5, PM10, NO₂, and CO in 
urban environments, often achieving near real-time resolution suitable for public health alerts (Shaiful 
& Akter, 2025). Studies conducted in metropolitan regions like Beijing, Delhi, and Los Angeles show 
that such systems can successfully complement or even outperform traditional air quality monitoring 
stations in terms of spatial coverage and responsiveness (Ghosh et al., 2018; Subrato, 2025). In water 
resource management, IoT applications have enabled smart monitoring of river basins, groundwater 
levels, and wastewater systems using chemical, turbidity, and flow sensors. These systems detect 
contamination events, monitor usage patterns, and support automated control of water distribution 
networks. For soil monitoring, smart sensors track parameters such as pH, salinity, and moisture levels, 
which are critical for precision agriculture and land restoration programs (Subrato & Faria, 2025; Zhang 
et al., 2019). Integration with DL models further enhance their predictive power, allowing for proactive 
irrigation and fertilization strategies.  Waste monitoring applications of IoT involve RFID tags, 
ultrasonic sensors, and image recognition tools to detect bin occupancy, classify waste types, and 
optimize collection routes (Tahmina Akter, 2025). Smart bins and municipal dashboards improve waste 
segregation, reduce operational costs, and minimize environmental leakage. Multi-modal systems that 
combine these domains offer cross-cutting insights—for example, linking rainfall patterns with waste 
overflow data to anticipate urban flooding risks. These IoT-enabled systems contribute significantly to 
data-driven environmental governance and support the operationalization of SDG targets related to 
clean air, safe water, and sustainable cities (Dey et al., 2018; Zahir et al., 2025). 
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Figure 5: IoT Architecture for Environmental Intelligence 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Energy-aware IoT systems play a pivotal role in optimizing energy production, distribution, and 
consumption—core components of both clean environment strategies and green economic recovery. In 
renewable grid integration, IoT devices monitor variables such as solar irradiance, wind speed, and 
temperature in real-time, enabling predictive analytics for solar and wind power output. These inputs 
feed into DL models that forecast energy supply variability and help grid operators balance loads 
efficiently, reducing reliance on carbon-intensive sources (Alkahtani & Aldhyani, 2021; Zahir et al., 
2025). Smart meters and energy monitors form the consumer-facing component of energy-aware IoT. 
These devices track real-time usage at household, commercial, and industrial levels, allowing users to 
adjust behaviors, shift demand to off-peak hours, or participate in demand response programs. Studies 
indicate that real-time feedback can lead to energy savings of up to 20% in residential settings and even 
more in industrial zones where machinery scheduling can be optimized. Furthermore, predictive 
maintenance of power infrastructure using sensor data has been shown to reduce operational losses 
and prevent outages. IoT-integrated microgrids also enhance energy independence and resilience in 
remote or disaster-prone regions. These systems autonomously manage local generation and storage, 
improving sustainability and reliability (Stoyanova et al., 2020). Energy-aware IoT platforms 
increasingly incorporate DL models for multi-objective optimization—balancing cost, efficiency, and 
carbon footprint. As such, these systems are central to national strategies for decarbonization, energy 
justice, and climate adaptation, especially as energy demand grows in tandem with digitalization and 
urbanization (Sadique et al., 2018). 
Despite their potential, IoT ecosystems for environmental intelligence face significant challenges 
related to standardization, interoperability, and cybersecurity. One major issue is the lack of 
standardized protocols and data formats across devices and platforms, which hampers cross-domain 
integration and long-term scalability (Stergiou & Psannis, 2022). Sensor manufacturers often use 
proprietary systems, making it difficult to synthesize data from heterogeneous sources or implement 
unified control schemes. Interoperability frameworks such as the Open Geospatial Consortium (OGC) 
SensorThings API and oneM2M have been developed to address these concerns, but their adoption 
remains uneven (Khayyam et al., 2019). Cybersecurity risks are another critical concern, especially as 
IoT platforms become increasingly interconnected with cloud services, control systems, and public data 
infrastructures. Vulnerabilities include unauthorized access, data tampering, denial-of-service attacks, 
and firmware manipulation, all of which can compromise the reliability and integrity of environmental 
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monitoring systems (Khayyam et al., 2019). Studies have documented real-world incidents where 
insecure IoT endpoints were exploited, leading to data breaches or control hijacking in smart grid and 
water systems. To mitigate these risks, researchers advocate for embedded security protocols, 
blockchain-based data authentication, and anomaly detection algorithms using DL (Maraveas et al., 
2022). Privacy-preserving techniques, such as federated learning and differential privacy, are also 
gaining traction in sensitive domains like health and environmental justice. Moreover, robust 
governance frameworks that outline roles, responsibilities, and data-sharing agreements are essential 
for ensuring accountability and public trust (Rejeb et al., 2022). Addressing these systemic challenges 
is vital for unlocking the full potential of IoT as a resilient, secure, and scalable infrastructure for 
environmental intelligence (Yaïci et al., 2021). 
Integration of DL and IoT in Smart Economic Recovery 
The integration of deep learning (DL) and Internet of Things (IoT) technologies has transformed 
traditional economic forecasting into a dynamic, real-time process with predictive and adaptive 
capabilities. Unlike conventional statistical models that depend on historical data and linear 
assumptions, DL models such as LSTM (Long Short-Term Memory) networks and transformer 
architectures can capture temporal dependencies and nonlinear patterns in economic time-series data, 
including GDP, inflation, trade volumes, and employment indices (Soo et al., 2023). When coupled with 
IoT systems that provide continuous, real-time data from supply chains, consumer activity, and 
environmental conditions, these DL models become powerful tools for high-frequency economic 
forecasting.  For instance, real-time transaction data from point-of-sale devices, logistics tracking 
systems, and mobile financial applications can be streamed through IoT platforms to DL algorithms 
that identify emergent economic trends, assess business cycle phases, and trigger early-warning alerts. 
Such DL-IoT pipelines have been used to forecast energy demand shocks, labor market disruptions, 
and consumption pattern shifts during global crises like COVID-19 and natural disasters. In 
agricultural economics, sensor-based crop health data combined with LSTM models have been used to 
forecast yields and assess supply risks (Zhang et al., 2021). Moreover, DL-based anomaly detection 
algorithms process IoT sensor data to identify deviations from expected economic activity, signaling 
potential downturns or policy inefficiencies. Integration with cloud computing and edge analytics 
ensures scalability and responsiveness, while federated learning enables the use of distributed data 
without violating privacy constraints. These developments highlight the transformative capacity of DL-
IoT pipelines in building anticipatory and resilient economic systems (Heidari et al., 2022). 
 

Figure 6: IoT Transforms Economic Forecasting and Policy Design 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Adaptive policy implementation, made possible through DL-IoT feedback loops, represents a major 
advance in economic governance. Traditional policy cycles often rely on delayed or infrequent data 
updates, resulting in reactive rather than proactive interventions. In contrast, IoT systems deliver 
continuous streams of real-time data on economic performance, environmental metrics, and public 
service delivery (Alahi et al., 2023). DL algorithms consume this data to evaluate policy impacts, retrain 
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models in real-time, and recommend course corrections, thereby enabling closed-loop policy 
mechanisms. Studies in urban mobility demonstrate how IoT-based traffic sensors combined with DL 
models can optimize congestion pricing and public transit schedules by continuously monitoring traffic 
flows, emissions, and commuter behavior. In energy management, DL-IoT frameworks have been 
applied to adjust subsidy levels and renewable energy dispatch in response to fluctuating supply and 
demand data (Jogarao et al., 2024). Similarly, agricultural policies on irrigation and fertilizer subsidies 
have been dynamically informed through sensor-based crop and soil health data, retraining DL models 
to improve precision and reduce overuse of inputs. Policy feedback loops are also valuable in welfare 
distribution and labor economics. For example, biometric and geospatial IoT data from public 
assistance programs can be used to detect fraud, identify underserved populations, and update DL 
models to improve targeting efficiency. Furthermore, DL models retrained on IoT-collected behavioral 
responses to policies—such as consumer spending after tax rebates—can guide future fiscal strategies 
(Simionescu & Strielkowski, 2025). These feedback-enriched policy systems support agility, equity, and 
effectiveness in economic recovery and governance initiatives. 
The integration of DL and IoT in public infrastructure development, particularly in smart grids and 
intelligent transportation systems, has significantly enhanced efficiency, resilience, and environmental 
sustainability. Smart grids represent an advanced energy infrastructure where IoT sensors collect real-
time data on electricity generation, demand, load balancing, and storage, while DL algorithms analyze 
these data streams to optimize system performance (Voulgaridis et al., 2022). LSTM and transformer-
based models have shown exceptional performance in load forecasting, enabling utilities to minimize 
energy waste, prevent blackouts, and incorporate higher shares of renewable energy. Microgrids, 
especially in remote and disaster-prone regions, utilize DL-IoT synergy to autonomously manage 
distributed energy resources and maintain system stability. These systems not only improve energy 
access and reliability but also support decarbonization and circular economy goals. The incorporation 
of edge computing enables local data processing, reducing latency and enhancing cybersecurity in 
energy distribution (Menon et al., 2025). In transportation, IoT-enabled smart infrastructure includes 
GPS systems, traffic flow sensors, and vehicle-to-infrastructure (V2I) communications that generate 
real-time mobility data. DL models process these data to optimize traffic light timing, public transit 
routing, and emission mitigation strategies, resulting in significant reductions in congestion, fuel 
consumption, and air pollution (Cao et al., 2023). Predictive maintenance in rail and road systems, 
driven by sensor data and DL classifiers, reduces downtime and enhances safety. The synergy between 
DL and IoT in public infrastructure exemplifies how digital intelligence can be harnessed for smart 
urban planning, climate-resilient design, and inclusive mobility systems. These applications are 
foundational to smart city frameworks and sustainable economic recovery agendas (Kor et al., 2023). 
DL-IoT for Green Recovery 
The energy sector has been at the forefront of DL-IoT integration, especially in the development of 
smart grids and renewable energy systems designed for green economic recovery (Suanpang et al., 
2022). Smart grids incorporate IoT sensors, smart meters, and real-time monitoring systems to 
dynamically manage power flows, reduce transmission losses, and detect faults (Teixeira et al., 2025). 
When augmented with DL algorithms such as LSTM and GRU models, these systems can perform 
accurate load forecasting, peak demand prediction, and fault classification. Forecasting renewable 
generation—especially solar and wind energy—relies heavily on DL models trained on meteorological, 
satellite, and IoT-based sensor data. Studies show that convolutional and recurrent neural networks 
significantly improve forecasting precision compared to conventional methods. Demand-side response 
(DSR) programs, which incentivize consumers to modify usage based on grid conditions, are enhanced 
by DL-IoT systems that analyze consumption behaviors in real-time and automatically control 
connected devices (Shahrabani & Apanaviciene, 2024). These intelligent energy systems contribute to 
both energy efficiency and carbon mitigation by reducing the need for peaking fossil-fuel plants. 
Moreover, predictive maintenance powered by DL algorithms trained on IoT sensor data ensures 
equipment longevity and reduces emissions from energy infrastructure operations. Microgrid 
implementations in remote and disaster-prone areas further illustrate the value of DL-IoT systems in 
ensuring decentralized, clean energy access. Case studies from India, Germany, and sub-Saharan Africa 
highlight improvements in energy equity, cost-effectiveness, and grid resilience. Collectively, these 



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 247–277 

260 
 

innovations underscore the transformative role of DL-IoT systems in transitioning toward low-carbon, 
smart, and adaptive energy infrastructure for sustainable recovery (Chander et al., 2022). 
 

Figure 7: Blockchain-Based Energy Trading System 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The transportation sector presents significant opportunities for DL-IoT-driven sustainability, 
particularly through emissions-aware route optimization and electric fleet management. Urban 
mobility systems are increasingly equipped with IoT-enabled GPS trackers, traffic sensors, and air 
quality monitors that feed real-time data into DL models for route planning, congestion analysis, and 
environmental impact reduction (Awogbemi et al., 2024). Studies have shown that LSTM and attention-
based neural networks outperform rule-based systems in predicting congestion and travel times, 
thereby reducing idling and fuel waste. DL-IoT platforms have been widely applied in electric vehicle 
(EV) fleet management, where predictive models optimize battery charging schedules, route 
assignments, and energy consumption patterns (Hassanat et al., 2021). Case studies in Singapore and 
the Netherlands demonstrate that integrating DL algorithms with IoT telematics improves fleet energy 
efficiency by up to 30% while enhancing delivery reliability and emissions tracking. In logistics, DL-
IoT systems enable dynamic fleet rerouting based on weather conditions, pollution hotspots, and real-
time traffic, aligning transportation operations with climate targets. Public transit systems also benefit 
from these technologies. Real-time tracking and crowd density estimation allow for better service 
planning, reduced wait times, and improved environmental performance (Tsoukas et al., 2022). 
Moreover, transportation authorities can use fused data from mobility patterns and pollution sensors 
to implement adaptive congestion pricing and low-emission zones, contributing to healthier urban 
environments (Omrany & Oteng, 2025). These systems provide strong evidence of how DL-IoT 
integration in transportation fosters operational efficiency, environmental compliance, and economic 
resilience. 
Frameworks in DL-IoT Sustainability Models 
Evaluating the performance of DL-IoT models in economic and environmental applications requires a 
robust set of quantitative metrics. Commonly employed measures include accuracy, precision, recall, 
F1-score for classification problems, and root mean square error (RMSE) and mean absolute error 
(MAE) for regression tasks. In economic forecasting—such as GDP growth, inflation, and 
unemployment prediction—LSTM and GRU models are typically evaluated using RMSE and MAE, 
where lower values reflect higher fidelity to actual trends (Raoufi et al., 2024). Studies comparing 
traditional ARIMA models with DL frameworks consistently demonstrate superior performance of DL 
models across multiple macroeconomic indicators. In environmental prediction, metrics such as F1-
score and accuracy are widely used for classification tasks like air quality category forecasting, land use 
segmentation, and waste type recognition. CNN-based environmental models achieve higher 
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classification accuracies than random forest and support vector machine (SVM) models, particularly 
when trained on high-resolution image or sensor data (Rajeh et al., 2025). For temporal prediction 
models used in forecasting rainfall, temperature anomalies, or pollution spikes, RMSE and MAE 
remain the standard benchmarks, with DL models often outperforming physics-based models. 
Furthermore, composite metrics such as the coefficient of determination (R²) and mean absolute 
percentage error (MAPE) offer interpretability for stakeholders unfamiliar with machine learning. 
However, performance evaluation in DL-IoT models must also consider overfitting risks and data 
imbalance, which can inflate metrics unless cross-validation and balanced datasets are ensured 
(Hussain et al., 2021). As such, appropriate metric selection and rigorous testing protocols are 
foundational for assessing model reliability in real-world economic and environmental contexts. 

Figure 8: Framework for DL-IoT Sustainability Models 

 
 
Beyond algorithmic accuracy, sustainability-oriented DL-IoT systems are increasingly evaluated using 
lifecycle assessments (LCAs), carbon footprint analyses, and environmental, social, and governance 
(ESG) compliance benchmarks. LCAs provide a systematic methodology for assessing the 
environmental impact of technologies from cradle to grave, covering energy consumption, raw material 
usage, and waste emissions (Shahrabani & Apanaviciene, 2024). Studies show that while IoT 
deployments offer clear benefits in energy optimization, they also pose challenges related to embedded 
emissions from device manufacturing, infrastructure maintenance, and data center operations. Carbon 
footprint analysis complements LCA by quantifying greenhouse gas emissions directly attributable to 
DL model training and IoT infrastructure. Recent research has highlighted the energy intensity of deep 
neural network training, especially in large transformer models, where emissions can exceed that of 
conventional computing tasks unless offset by renewable-powered infrastructure. Solutions such as 
model compression, transfer learning, and edge computing are being explored to reduce environmental 
costs without compromising accuracy (Brabin et al., 2025). ESG benchmarks provide a broader 
evaluative framework encompassing not only environmental but also social and governance 
dimensions. Companies and governments deploying DL-IoT platforms are increasingly required to 
align with ESG disclosure standards from frameworks such as the Global Reporting Initiative (GRI), 
the Sustainability Accounting Standards Board (SASB), and the Task Force on Climate-Related 
Financial Disclosures (TCFD) (Al-Garadi et al., 2020). IoT data streams help populate real-time ESG 
dashboards, while DL models aid in predicting ESG risks and compliance gaps. These benchmarks 
promote transparency, accountability, and holistic sustainability by extending evaluation beyond 
technical performance to include ethical and societal impacts. 
Validation of DL-IoT models in sustainability contexts poses unique challenges, particularly when 
models are trained on simulated datasets but deployed in dynamic, real-world ecosystems. Simulated 
environments are often used during model development due to their control, availability, and lack of 
data privacy concerns. For example, synthetic datasets generated by GANs and rule-based simulators 
are frequently used in urban planning, disaster resilience, and traffic flow optimization studies. While 
such datasets allow for rapid prototyping and controlled experimentation, they often fail to capture 
real-world noise, complexity, and user behavior (Devi et al., 2023). The transferability of DL models 
trained on simulated data is often compromised by “reality gaps,” leading to degraded performance 
upon deployment. Research shows that domain adaptation, fine-tuning, and transfer learning are 
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necessary to bridge this divide, especially in time-sensitive applications such as early-warning systems 
or energy load forecasting. For instance, models trained on synthetic energy demand profiles need 
retraining using real smart meter data to account for seasonal, cultural, and socio-economic variations 
(Sharmin et al., 2025). Cross-validation and testing against real-world, longitudinal datasets from IoT 
platforms enhance model generalizability and robustness. However, real data often suffer from noise, 
missing values, and inconsistent labeling, requiring preprocessing pipelines and data cleaning 
techniques. Moreover, the ethics of using real-world environmental and economic data, especially 
involving personal information or critical infrastructure, demand adherence to privacy laws and secure 
data management practices (Arora et al., 2024). Thus, model validation in DL-IoT sustainability systems 
is an iterative process, requiring real-time adaptation, robust error tracking, and hybrid evaluation 
frameworks to ensure credibility and applicability. 
Benchmarking across sectors and geographies is critical to understanding the effectiveness and 
scalability of DL-IoT sustainability models. While numerous models demonstrate strong results within 
isolated domains such as energy or agriculture, cross-sectoral benchmarking helps evaluate model 
transferability and interoperability in multi-domain scenarios (Chahal et al., 2023). Studies comparing 
smart city implementations in Europe and Asia show that energy consumption models trained in 
temperate regions often require recalibration when applied in tropical contexts due to variations in 
climate, consumption patterns, and socio-economic conditions. Cross-sectoral frameworks such as the 
Sustainable Development Goals (SDGs) and the Green Economy Transition Index provide common 
evaluative baselines that can be operationalized through DL-IoT analytics. IoT sensor networks 
generate harmonized data streams across sectors, while DL models offer comparative insights into 
sectoral efficiencies, risks, and environmental burdens. For instance, benchmarking carbon mitigation 
results between transport, energy, and manufacturing sectors enables policymakers to prioritize 
interventions with the highest net environmental and economic benefit (Hammadi & Abdullah, 2025). 
Geographical benchmarking is further enhanced by federated learning models that train across 
decentralized datasets from different countries while preserving data privacy. This approach has been 
successfully applied in healthcare, agriculture, and disaster response domains, enabling collaborative 
model development without compromising proprietary or sensitive data. Moreover, cultural and 
regulatory contexts significantly affect IoT adoption and DL deployment, necessitating locally 
contextualized benchmarks for ethical AI deployment and sustainability metrics (Palei et al., 2023). 
Overall, benchmarking practices across sectors and regions promote transparency, foster innovation 
diffusion, and ensure that DL-IoT solutions are globally relevant yet locally effective. 
Limitations in DL-IoT Deployment 
A major limitation in the deployment of DL-IoT systems lies in the issues of dataset bias, lack of model 
interpretability, and algorithmic opacity, which can lead to unethical or ineffective decisions. Dataset 
bias emerges when training data over-represent certain geographies, socioeconomic groups, or 
environmental conditions, thus reducing the generalizability of models (Cui et al., 2023).  For example, 
environmental DL models trained on sensor data from urbanized regions may misrepresent or fail to 
predict conditions in rural or under-monitored areas. In economic forecasting, biased input datasets 
can reinforce structural inequalities by prioritizing regions with more abundant data collection 
infrastructures. Equally concerning is the “black box” nature of DL models, especially deep neural 
networks, which hinders interpretability and explainability—a core requirement for high-stakes 
domains like sustainability policy and resource allocation. Lack of transparency impairs stakeholder 
trust, makes error diagnosis difficult, and prevents policymakers from understanding causal inferences 
behind AI-generated recommendations (Fan et al., 2023). This concern is further amplified in multi-
source DL-IoT systems where decision paths are influenced by heterogeneous inputs like weather, 
behavior, and economic metrics.  Efforts to improve model transparency include the development of 
explainable AI (XAI) techniques such as SHAP (SHapley Additive exPlanations), LIME (Local 
Interpretable Model-agnostic Explanations), and attention-based visualization tools (Rey et al., 2023). 
However, adoption remains limited in sustainability analytics. Interdisciplinary research is urgently 
needed to develop domain-specific interpretability frameworks that balance predictive accuracy with 
transparency, fairness, and ethical alignment.  
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One of the emerging ethical paradoxes in DL-IoT deployment is the tension between the environmental 
benefits of sustainability modeling and the significant energy consumption associated with DL model 
training. Training large-scale deep neural networks—particularly transformer-based models—requires 
vast computational resources, which translate into substantial carbon emissions unless mitigated by 
renewable energy or efficiency techniques (Chen et al., 2022). For instance, training a single natural 
language processing model such as GPT-3 can emit over 300,000 kg of CO₂ equivalent, raising concerns 
when such models are used to forecast environmental degradation or optimize energy systems. DL 
models applied to sustainability tasks, such as smart grid management or carbon footprint prediction, 
can indeed reduce emissions and improve efficiency; however, the carbon cost of training and 
retraining these models must be critically evaluated. Studies suggest that unless DL training is powered 
by low-carbon energy sources or conducted on optimized hardware (e.g., TPUs, edge processors), the 
environmental gains can be offset or nullified (Hysa et al., 2020). This creates a paradox where the 
means of sustainability may unintentionally contradict the ends they are designed to achieve. 
Mitigation strategies include model compression, pruning, federated learning, and knowledge 
distillation, all of which reduce model size and training cycles without significant loss of accuracy. 
Furthermore, the shift toward edge computing enables distributed, energy-efficient processing closer 
to the data source, reducing the need for centralized, energy-intensive computation. Incorporating 
lifecycle assessments (LCAs) and carbon accounting into the design and deployment of DL-IoT systems 
is increasingly recommended to ensure net-positive sustainability outcomes. Without such 
accountability, the scalability of DL for green recovery remains ethically and environmentally 
problematic. 
The deployment of DL-IoT technologies for sustainable recovery is disproportionately concentrated in 
the Global North, raising critical concerns about equity, access, and digital inclusion in developing 
countries. Many low- and middle-income countries (LMICs) lack the necessary infrastructure—such as 
broadband connectivity, stable power supply, and high-resolution sensor networks—to support robust 
IoT deployments and real-time DL analytics. This digital divide limits their ability to benefit from 
intelligent sustainability systems, despite often being the most vulnerable to environmental risks such 
as climate change, drought, and pollution (Bowsher et al., 2019). Moreover, DL models developed and 

Figure 9: Ethical and Social Challenges in DL-IOT 

Deployment 



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 247–277 

264 
 

trained in data-rich environments may not transfer effectively to the Global South due to contextual 
differences in climate, socioeconomic conditions, and consumption behaviors (Veerabathiran & 
Thomas, 2025). For example, smart agricultural platforms trained on European crop data often 
underperform in African settings due to differences in soil types, farming practices, and weather 
variability. Without localized data and culturally appropriate models, these technologies risk 
perpetuating systemic biases and excluding vulnerable populations from digital green transitions. 
Additionally, the high costs of sensors, edge devices, and cloud subscriptions place DL-IoT 
technologies out of reach for many rural communities and public institutions in the Global South 
(Schröder et al., 2020). Case studies from South Asia and sub-Saharan Africa reveal that donor-funded 
or pilot-based IoT projects often collapse due to maintenance issues, lack of capacity-building, and 
absence of long-term governance frameworks (Schröder et al., 2020). Bridging this divide requires 
strategic investments in digital infrastructure, open-source technology sharing, and partnerships 
between governments, NGOs, and the private sector (Gabor, 2021). Without a strong equity lens, DL-
IoT innovation risks exacerbating environmental injustices and digital marginalization. 

METHOD 
This study employed a systematic review and meta-analytical approach in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines to 
ensure a structured, transparent, and replicable research process. The methodology was designed to 
identify, evaluate, and synthesize empirical research examining the integration of deep learning (DL) 
and Internet of Things (IoT) technologies in sustainable economic recovery and clean environmental 
initiatives. A comprehensive search strategy was developed to retrieve peer-reviewed journal articles, 
conference proceedings, and high-quality technical reports published between 2010 and 2025. 
Databases searched included Scopus, Web of Science, IEEE Xplore, ScienceDirect, SpringerLink, and 
Google Scholar. Boolean operators and search strings such as ("deep learning" OR "DL") AND ("Internet 
of Things" OR "IoT") AND ("sustainability" OR "green recovery" OR "clean environment") were used 
to ensure precision and comprehensiveness in identifying relevant studies. 
Eligibility criteria were defined using the PICOS (Population, Intervention, Comparison, Outcomes, 
and Study Design) framework. Included studies had to (a) involve empirical implementation or 
evaluation of DL-IoT systems, (b) address domains related to economic forecasting, energy, 
transportation, agriculture, urban planning, or environmental monitoring, and (c) report measurable 
sustainability outcomes such as emissions reduction, energy efficiency, or environmental quality 
improvement. Both qualitative and quantitative studies were considered, but purely theoretical, 
editorial, or opinion-based papers were excluded. Duplicates were removed using EndNote software, 
and the remaining articles underwent a two-stage screening process involving title/abstract review 
followed by full-text analysis. Two independent reviewers screened the articles and resolved 
disagreements through consensus or third-party arbitration. Data extraction was conducted using a 
structured coding sheet that included variables such as publication year, country, domain of 
application, DL architecture used, IoT infrastructure details, type of sustainability outcome, evaluation 
metrics (e.g., RMSE, F1-score, carbon savings), and validation framework (e.g., real-time deployment, 
simulation-based testing). Meta-analytical synthesis was performed for studies reporting comparable 
quantitative outcomes using random-effects modeling to accommodate heterogeneity in study 
contexts, sample sizes, and measurement techniques. Heterogeneity was assessed using I² statistics and 
funnel plots were constructed to evaluate publication bias. This methodological rigor ensured that the 
final synthesis captured both the depth and breadth of current research, offering reliable insights into 
the role of DL-IoT systems in driving data-driven sustainability. 
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Figure 10: Methodology of This Study 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FINDINGS 
The meta-analysis revealed a strong consensus on the effectiveness of DL-IoT integration in driving 
sustainable economic and environmental recovery across multiple sectors. Out of the 147 articles 
reviewed, 118 studies demonstrated positive outcomes from the deployment of deep learning models 
in IoT-based infrastructure systems targeting sustainability goals. These articles, collectively cited over 
19,300 times, showed that DL-IoT systems significantly enhanced predictive capacity, operational 
efficiency, and responsiveness in areas such as smart grids, precision agriculture, and green logistics. 
The most frequently studied application domains were energy management (53 studies), 
environmental monitoring (41 studies), and economic forecasting (24 studies). The majority of these 
implementations relied on LSTM, CNN, or hybrid DL architectures, and the systems were often 
validated in real-time deployment environments using sensor-generated IoT data streams. Overall, 
more than 81% of the reviewed studies reported at least one quantifiable sustainability benefit—such 
as emissions reduction, energy savings, or improved environmental quality—as a direct result of DL-
IoT applications. This widespread effectiveness supports the growing consensus that these 
technologies can play a transformative role in post-crisis green recovery, particularly when used in 
tandem with sector-specific policy measures. 
A dominant finding from the analysis was the superior predictive performance of DL models—
especially LSTM, GRU, and transformer architectures—over traditional machine learning and 
econometric models in forecasting sustainability and economic indicators. Among 87 comparative 
studies analyzed (with over 14,500 combined citations), DL models consistently outperformed ARIMA, 
random forest, and support vector regression in terms of accuracy, stability, and resilience to noisy 



ASRC Procedia: Global Perspectives in Science and Scholarship, April 2025, 247–277 

266 
 

data. In predictive tasks such as carbon emission trends, renewable energy output forecasting, and 
urban pollution level prediction, DL models demonstrated lower RMSE and MAE values by margins 
ranging from 12% to 38% on average. These studies emphasized that DL models were particularly 
effective in high-frequency, multivariate datasets generated by IoT devices, which traditional models 
struggled to process efficiently. Furthermore, DL models embedded with attention mechanisms were 
reported to capture complex temporal dependencies in economic time series better than RNN-based 
architectures, with 31 articles highlighting significant performance gains in policy simulations and 
scenario-based recovery modeling. Notably, 54 of these articles had citation counts exceeding 100 each, 
indicating a strong degree of recognition and influence within the research community. These 
evidentiary base highlights the scalability and relevance of DL-based analytics for complex, dynamic 
economic-environmental ecosystems. 
 

Figure 11: DL- IoT Meta- Analysis Findings 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The sectoral analysis revealed that certain domains have achieved particularly high success rates in 
applying DL-IoT frameworks for sustainable recovery, with energy and transportation emerging as the 
most validated sectors. Of the 147 articles reviewed, 43 focused on smart energy systems, of which 38 
(88%) reported measurable benefits such as optimized load balancing, reduced power outages, and 
improved renewable integration. These 43 energy-focused studies have accumulated over 9,800 
citations in total, reflecting their empirical impact. Similarly, 29 transportation-related studies—
primarily centered around electric fleet management and emissions-aware routing—documented 
improvements in fuel efficiency, traffic decongestion, and reduction of carbon emissions. The highest-
performing studies in this domain achieved up to 25% emissions savings in real-world deployments. 
Agricultural applications also showed strong promise, with 24 studies using DL-IoT models for 
precision irrigation, soil condition monitoring, and pest prediction, resulting in improved crop yield 
and reduced water and chemical usage. Urban planning and waste management studies, while fewer 
in number (18 studies), exhibited high innovation density and policy alignment, especially in smart city 
pilot projects. These sector-specific findings suggest that DL-IoT integration is not only feasible but 
highly impactful when tailored to local environmental and operational conditions. The top 10 studies 
across these sectors each received more than 300 citations individually, signaling a growing alignment 
between academic research and real-world applications. 
Despite the broad success of DL-IoT systems, the findings also revealed persistent challenges, especially 
related to model transferability, infrastructure disparities, and ethical considerations. Out of the 147 
studies, 52 identified difficulties in adapting pre-trained DL models across different geographic and 
socioeconomic contexts. These studies, which collectively received over 5,400 citations, underscored 
the issue that models trained in high-income, data-rich settings often underperform when deployed in 
low-resource regions with fragmented data infrastructures. Infrastructure gaps—such as limited sensor 
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coverage, low cloud storage capacity, and unreliable internet access—were identified as critical barriers 
in 36 articles, primarily focusing on the Global South. Additionally, 41 studies raised concerns about 
data privacy, algorithmic bias, and the opacity of decision-making processes in automated DL-IoT 
systems. Many highlighted the lack of explainable AI mechanisms and the absence of local regulatory 
frameworks as serious bottlenecks to widespread adoption. These limitations were particularly evident 
in studies analyzing public resource allocation, environmental surveillance, and automated subsidies 
management. Although the ethical discourse was not always central, the presence of these concerns in 
over one-third of the reviewed articles indicates the importance of integrating fairness, transparency, 
and governance safeguards into future DL-IoT deployments. 
A significant number of studies—62 out of 147—provided rigorous evaluations using benchmark 
metrics such as RMSE, MAE, F1-score, and carbon savings to validate DL-IoT model performance. 
These 62 studies, cited over 8,900 times collectively, represented the highest methodological quality in 
terms of transparency and replicability. Nearly all these studies (59 out of 62) included baseline model 
comparisons, cross-validation, and sensitivity analysis. Evaluation metrics revealed that DL-IoT 
systems could reduce forecasting error rates by 15–45% compared to traditional models across energy, 
agriculture, and transportation sectors. Additionally, 34 studies included lifecycle assessments (LCAs) 
or carbon footprint analyses, offering tangible evidence that these systems contribute to sustainability 
beyond abstract modeling. For example, smart grid implementations tracked by IoT sensors and 
optimized through DL algorithms showed up to 18% reduction in CO₂ emissions over a one-year 
monitoring period. Urban air quality forecasting systems using DL models were associated with a 20–
30% improvement in early pollution alerting efficiency. Furthermore, cross-sector benchmarking was 
reported in 22 studies, comparing outcomes across domains and geographies. These studies 
emphasized the importance of context-sensitive performance metrics and the potential for global 
scalability when best practices in validation are followed. The widespread use of these frameworks 
marks a maturation of the field and reflects a data-driven foundation for policy and investment 
decisions in sustainable economic planning.  

DISCUSSION 
The findings of this meta-analysis strongly reinforce the transformative potential of integrating deep 
learning (DL) with Internet of Things (IoT) technologies in fostering sustainable economic recovery and 
clean environmental initiatives. A majority of the reviewed studies demonstrated measurable gains in 
operational efficiency, environmental resilience, and forecasting accuracy, who identified DL-IoT 
synergy as a cornerstone for precision agriculture and smart city development. Similarly, Strielkowski 
et al. (2025) emphasized the architectural compatibility of IoT systems with AI models in managing big 
data for environmental sensing, a concept substantiated by this review’s finding that over 80% of 
studies showed quantifiable sustainability outcomes. These results also build upon the foundational 
claims of Wu (2024), who argued that DL algorithms are necessary to harness the full potential of the 
IoT ecosystem. The scale of integration observed across sectors—from energy grids to urban 
infrastructure—supports the position of Samman (2024), who proposed IoT as an enabling substrate 
for AI-driven decision-making in complex environments. By validating these theoretical and early 
empirical claims with a broader base of applied case studies, this review provides robust confirmation 
of the DL-IoT framework’s utility across contexts (Kor et al., 2023). 
This study’s findings highlight the consistent superiority of DL models—particularly LSTM, GRU, and 
transformers—over traditional econometric and statistical methods such as ARIMA, SVR, and random 
forest models. This aligns with earlier work by Bahroun et al. (2023), who reported that LSTM 
outperformed conventional techniques in financial forecasting across multiple benchmarks. Similarly, 
RNN-based models could predict stock market indices with lower error rates than linear models. In 
environmental forecasting, Parisi and Manaog (2025) showed that CNNs significantly enhanced land 
use and pollutant classification tasks compared to decision trees or SVMs. Our analysis corroborates 
these claims with sector-specific findings: energy load forecasting and emission prediction benefited 
markedly from deep architectures trained on high-frequency IoT data. The dynamic modeling of 
economic behavior using transformer models—rarely discussed in earlier literature—is now emerging 
as a critical area, with studies like Sliwka et al. (2024) demonstrating state-of-the-art performance in 
temporal sequence modeling. The cross-sector superiority of DL models indicates a maturing 
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consensus that AI-driven methods can account for nonlinearities, temporal dependencies, and 
multivariate interdependencies better than legacy tools, affirming the shift documented by Mena-
Guacas et al. (2025) from rule-based analytics to adaptive learning systems. 
This review confirms prior assertions regarding the high-impact potential of DL-IoT deployments in 
specific sectors—particularly energy, transportation, agriculture, and urban systems. The energy 
sector, long identified by Nyagadza (2022) as fertile ground for smart grid and renewable forecasting 
applications, featured prominently in this review, with empirical studies reporting significant 
reductions in outage rates, improved load balancing, and emission savings. Similarly, the 
transportation domain has evolved beyond proof-of-concept into operational deployments of DL-IoT 
systems for electric fleet routing and emissions-aware traffic control, substantiating earlier modeling 
work by Yaghoubi et al. (2024). In agriculture, our findings extend those of Bekbolatova et al. (2024), 
who documented improved yield prediction through DL models, by showing increased adoption of 
real-time soil diagnostics and pest detection systems supported by IoT sensors. Urban applications, 
though less numerous, are advancing, with studies like Nan et al. (2022) already indicating the role of 
AI in smart waste management and pollution control. These patterns confirm the theoretical framework 
proposed by Montoya and Rivas (2019), which emphasized IoT as the backbone of precision 
infrastructure management, now operationalized through DL algorithms tailored to sector-specific 
dynamics. 
Despite technological advances, this meta-analysis found several recurring challenges that remain 
unresolved—namely, model transferability, infrastructural readiness, and algorithmic opacity. These 
findings echo those of Kalyani and Gupta (2023), who highlighted that pre-trained DL models often 
fail to generalize across regions with differing environmental and socioeconomic baselines. Moreover, 
infrastructure constraints—particularly in the Global South—impede large-scale IoT deployments due 
to inconsistent data networks, power supply issues, and high equipment costs. These limitations are 
supported by our findings that studies originating in developing countries reported significantly more 
implementation barriers. Furthermore, concerns about explainability and accountability in DL models, 
as raised by Naorem et al. (2019), persist across recent studies. Our review shows that while 
performance gains are frequently documented, the lack of transparent model behavior inhibits 
adoption in critical public-facing services. These ongoing limitations suggest that while DL-IoT systems 
are technically feasible, institutional, ethical, and infrastructural considerations must be addressed for 
equitable and effective deployment (Sharma et al., 2021). 
A unique insight from this meta-analysis is the paradoxical relationship between the environmental 
benefits delivered by DL-IoT systems and the energy-intensive nature of deep learning model training. 
This echoes the findings of Strielkowski et al. (2025), who quantified the carbon footprint of training 
large-scale neural networks. While the benefits of optimized energy grids and waste management 
systems are widely reported, the hidden costs of GPU-intensive model training—often conducted in 
data centers powered by non-renewable energy—undermine these sustainability goals. Uppal et al., 
(2024) have warned of this paradox, arguing for efficiency-focused solutions such as model pruning 
and edge deployment. Our review shows that only a minority of studies explicitly reported the energy 
consumption of model training or included lifecycle assessments of their systems. This supports the 
assertion by Koh et al. (2019) that sustainability research must include both output and process-level 
assessments. As DL-IoT applications scale, particularly in high-frequency prediction environments, 
this ethical trade-off becomes more pronounced, requiring a rethinking of what constitutes “green AI” 
in practice (Sharma et al., 2021). 
One of the most pressing concerns highlighted by this review is the inequity in access to DL-IoT systems 
across regions. Echoing the findings of Li et al. (2023), the majority of high-performing DL-IoT models 
were implemented in urban, high-income settings with robust digital infrastructure. The digital divide 
remains a critical barrier in the Global South, where unreliable internet, high costs of sensors, and lack 
of technical expertise severely constrain adoption. Haque et al. (2023) emphasized that localized 
solutions and open-source platforms are crucial to bridging this gap, a sentiment mirrored in studies 
advocating for federated learning and low-power IoT deployments. Our findings further affirm that 
while the DL-IoT paradigm is theoretically applicable across geographies, its real-world utility is 
conditional on equitable access to digital infrastructure and training. Wang and Fan (2025) also 
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identified the problem of donor-dependent pilot programs that fail to scale due to poor governance 
and lack of local ownership. As such, this review reiterates the need for international cooperation and 
policy support to democratize access to intelligent sustainability systems. 
The analysis also points to a critical need for standardized evaluation frameworks and governance 
structures in DL-IoT systems. As observed in earlier works by Tamayo-Vera et al. (2024), the lack of 
uniform metrics, transparency standards, and regulatory oversight inhibits the comparative 
assessment and ethical scaling of these systems. Our review confirms that only a fraction of studies 
used comprehensive benchmarking tools that account for fairness, interpretability, or carbon 
accounting. Although ESG frameworks are increasingly referenced in sustainability analytics 
(Shahrabani & Apanaviciene, 2024), their integration into DL-IoT evaluation remains inconsistent. This 
supports the argument made by Rani et al. (2023) and the European Union that AI ethics must be 
embedded in system design from the outset, not treated as an afterthought. Furthermore, the siloed 
development of DL-IoT systems across sectors—energy, transport, agriculture—creates fragmented 
governance pathways. Cross-sectoral and cross-geographic benchmarking, as proposed by Ali et al., 
(2022), is essential for understanding scalability and replicability. Our findings advocate for a unified 
governance model that incorporates ethical audits, regulatory compliance, and inclusive design 
principles to ensure DL-IoT technologies contribute equitably and sustainably to global recovery 
agendas (Moustafa et al., 2023). 
CONCLUSION 
In conclusion, this meta-analysis demonstrates that the integration of deep learning (DL) and Internet 
of Things (IoT) technologies hold considerable promise for advancing sustainable economic recovery 
and environmental stewardship. Analysis of 147 peer-reviewed studies revealed that DL-IoT systems 
consistently enhance prediction accuracy, operational efficiency, and decision-making across sectors 
such as energy, transportation, agriculture, and urban planning. These technologies outperformed 
traditional statistical and machine learning models, particularly in dynamic, high-frequency 
environments where real-time data is critical. Notably, over 70% of the studies reported measurable 
improvements in emissions reduction, energy savings, or ecological monitoring. However, the review 
also highlights important limitations that require attention. Issues such as model bias, lack of 
interpretability, and algorithmic transparency persist, potentially undermining public trust and 
adoption. Furthermore, the environmental cost of training energy-intensive DL models raises ethical 
concerns, particularly when sustainability is the core objective. A pronounced digital divide—
particularly in the Global South—further complicates the equitable deployment of these technologies, 
as many regions lack the infrastructure and governance capacity to support advanced DL-IoT 
applications. Despite these challenges, the overall evidence suggests that with appropriate regulatory 
frameworks, localized deployment strategies, and ethical safeguards, DL-IoT integration can serve as 
a powerful enabler of green recovery initiatives. Standardizing evaluation practices and promoting 
inclusive innovation will be key to unlocking the full potential of these technologies in achieving global 
sustainability goals. The findings of this meta-analysis offer a strong empirical foundation for 
policymakers, researchers, and technology developers seeking to harness AI and IoT for a cleaner, 
smarter, and more resilient future. 
RECOMMENDATIONS 
To ensure the ethical, effective, and equitable deployment of deep learning (DL) and Internet of Things 
(IoT) technologies in support of sustainable economic recovery and environmental resilience, several 
strategic actions are recommended. First, there is a pressing need to develop standardized 
benchmarking frameworks that allow for consistent evaluation of DL-IoT applications across sectors 
and geographies. Establishing universal metrics such as RMSE, carbon savings, and ESG compliance 
indicators would improve transparency, comparability, and model replicability. Second, policymakers 
and industry leaders should prioritize investments in green AI infrastructure. This includes energy-
efficient data centers, edge computing capabilities, and the adoption of low-energy model training 
techniques to mitigate the environmental cost of DL deployment. Third, efforts must be made to bridge 
the digital divide, especially in the Global South, where access to reliable IoT hardware, cloud 
platforms, and technical expertise remains limited. Collaborative partnerships among governments, 
NGOs, and technology providers are essential to expand infrastructure, deliver training, and support 
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community-based innovation initiatives. Fourth, ethical and explainable AI principles should be 
embedded into all DL-IoT development cycles, especially for public-facing applications. This includes 
implementing transparent algorithmic design, fairness audits, and clear communication of decision-
making processes. Fifth, interdisciplinary and multi-stakeholder collaboration should be encouraged, 
uniting technologists, environmental scientists, economists, and policymakers to co-create solutions 
that are technically robust and socially inclusive. Finally, policy-driven incentives such as research 
grants, regulatory sandboxes, and public procurement strategies can accelerate responsible innovation 
in critical domains like energy, transportation, agriculture, and urban planning. Together, these 
recommendations aim to ensure that DL-IoT systems are not only powerful but also aligned with long-
term sustainability and equity goals. 
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